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Abstract.This paper is devoted to establishing novel existence crite-

ria for weak solutions to a class of weighted quasilinear degenerate

elliptic equations featuring double phase Hardy-type singular coef-

ficients. These types of problems are rarely discussed in variable

exponent Sobolev spaces in previous work. We prove the existence

of at least one and at least two weak solutions via variational meth-

ods and critical point theory, under appropriate assumptions on the

weight function and the nonlinearity.
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1 Introduction

Elliptic equations featuring Hardy potentials are fundamental to modeling
physical, mathematical, and engineering systems that exhibit singular behavior
and critical phenomena. The introduction of a singularity, particularly at the
origin, significantly complicates the analytical properties of the differential op-
erator and sensitively influences the solution’s behavior. This is underpinned
by the classical Hardy inequality, which guarantees that for 1 < p < N, a
bounded domain Ω ∈ RN with smooth boundary and a function ξ in W 1,p(RN )
or W 1,p(Ω), the weighted function ξ/|t| remains integrable in Lp(Ω). This
principle has been extended to more general settings involving variable expo-
nents. Specifically, for a non-negative continuous function r(t) ∈ C(Ω), the
integrability of |ξ|e(t)/|t|r(t) over Ω can be established under certain condi-
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Degenerate p(t)-Laplacian equations involving double Hardy terms 117

tions on e(t), giving rise to the r(t)-type Hardy potential. The solvability of
elliptic equations with such potentials has become an active area of research,
as evidenced by numerous recent studies (see, e.g., [1, 12, 14, 15, 22, 23]). In
parallel, degenerate elliptic equations with nonlinear weights are employed to
model a variety of complex nonlinear processes. The nonlinear weight function
is used to portray the relationship between the critical current density and
the magnetic field. In recent years, p-Laplacian elliptic equations have been
studied extensively, (see, e.g., [16, 17, 18, 19, 20]). The emergence of a singu-
lar weighted function ω(t) in the p-Laplacian operator or the p(t)-Laplacian
operator, that is div(ω(t)|∇ξ|p−2∇ξ) or div(ω(t)|∇ξ|p(t)−2∇ξ), is called the
degenerate p-Laplacian operator or the degenerate p(t)-Laplacian operator. A
major analytical challenge arises when the weight function ω(t) is singular or
fails to be bounded away from zero, as these conditions lead to degenerate or
singular equations. The challenge cannot be addressed within the framework
of the standard Sobolev spaces W 1,p(Ω) or W 1,p(t)(Ω). Instead, the framework
of weighted Sobolev spaces, specifically W 1,p(ω,Ω) or W 1,p(t)(ω,Ω), must be
adopted to deal with these issues effectively. A detailed discussion can be found
in [4].

The aim of this paper is to study the existence of weak solutions to the fol-
lowing weighted p(t)-Laplacian quasilinear elliptic equations with double phrase
Hardy potentials−∆p(t),a(t,ξ)ξ+|ξ|p(t)−2ξ+

b(t)|ξ|q−2ξ

|t|q
+
c(t)|ξ|e(t)−2ξ

|t|r(t)
=λf(t, ξ) in Ω,

ξ = 0 on ∂Ω,

(1.1)

where Ω denotes an open bounded subset in RN (N ≥ 3) with smooth bound-
ary ∂Ω, 0 ∈ Ω, ∆p(t),a(t,ξ)ξ = div(a(t, ξ)|∇ξ|p(t)−2∇ξ) is the degenerate p(t)-
Laplacian operator, a(t, ξ) = ω(t)g(ξ), g(ξ) is a continuous function satisfying

a1 ≤ g(ξ) ≤ a2, a.e. ξ ∈ R, (1.2)

in which a1, a2 are positive constants, ω > 0 is measurable and satisfying
(ω) ω−h(t) ∈ L1(Ω), for any h(t) ∈ C(Ω), ω ∈ L1

loc(Ω), and

h(t) ∈ (
N

p(t)
,+∞) ∩ [

1

p(t)− 1
,+∞),

1 < p(t) < +∞, 1 < q < ph(t) < N with ph(t) = h(t)p(t)
h(t)+1 , 0 < b(t), c(t) ∈

L∞(Ω), 0 ≤ r(t) ∈ C(Ω), p(t), e(t) ∈ C(Ω) with 1 ≤ e(t) < N−r(t)
N p∗h(t),

λ > 0 is a parameter, the Carathéodory function f : Ω × R → R satisfying

(f1) |f(t, ξ)| ≤ M1(t) +M2|ξ|s(t)−1, a.e. (t, ξ) ∈ Ω × R,

where M1(t) > 0,M1(t) ∈ L
s(t)

s(t)−1 (Ω) with 1 < s(t) < p∗h(t) = Nph(t)
N−ph(t)

, and

M2 is a positive constant.
The primary objective of this paper is to establish new existence criteria

for at least one and at least two weak solutions to the elliptic equation (1.1)
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under general assumptions on the weight function a(t, ξ) and the nonlinear term
f(t, ξ). Our approach employs variational methods and critical point theory
applied to the energy functional associated with the elliptic equation (1.1),
enabling us to establish the existence of bounded, nontrivial weak solutions
within precisely characterized intervals.

2 Basic notations and technical preliminaries

Let

C+(Ω) ={p(t)|p(t) ∈ C(Ω), p(t) > 1, ∀t ∈ Ω},
p− =ess inft∈Ωp(t), p+ = ess supt∈Ωp(t).

For l > 0, p(t) ∈ C+(Ω), denote lp̂ = max{lp+

, lp
−}.

Set

Lp(t)(Ω) =
{
ξ : Ω → R measurable

∣∣∣ ∫
Ω

|ξ(t)|p(t) dt < ∞
}
,

Lp(t)(ω,Ω) =
{
ξ : Ω → R measurable

∣∣∣ ∫
Ω

ω(t)|ξ(t)|p(t) dt < ∞
}

with corresponding norms

∥ξ∥Lp(t)(Ω) = ∥ξ∥p(t) = inf
{
η > 0

∣∣∣ ∫
Ω

|ξ(t)
η

|p(t) dt ≤ 1
}
,

and

∥ξ∥Lp(t)(ω(t),Ω) = ∥ξ∥(p(t),ω(t)) = inf
{
η > 0

∣∣∣ ∫
Ω

ω(t)|ξ(t)
η

|p(t) dt ≤ 1
}
.

Now, we define the variable exponent Sobolev space

W 1,p(t)(Ω) =
{
ξ ∈ Lp(t)(Ω)

∣∣∣|∇ξ| ∈ Lp(t)(Ω)
}
,

with the norm
∥ξ∥W 1,p(t)(Ω) = ∥|∇ξ|∥p(t) + ∥ξ∥p(t).

The weighted Sobolev space is

W 1,p(t)(ω,Ω) =

{
ξ ∈ Lp(t)(Ω)

∣∣∣ω 1
p(t) |∇ξ| ∈ Lp(t)(Ω)

}
,

and we denote by W
1,p(t)
0 (ω,Ω) the closure of C∞

0 (Ω) in W 1,p(t)(ω,Ω) with
respect to the norm:

∥ξ∥ = inf

η > 0
∣∣∣ ∫

Ω

(
ω(t)

∣∣∣∣∇ξ(t)

η

∣∣∣∣p(t) + ∣∣∣∣ξ(t)η
∣∣∣∣p(t)

)
dt ≤ 1

 .
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Lemma 1. [8] If k1(t), k2(t) ∈ C+(Ω) satisfy k1(t) ≤ k2(t) almost everywhere
in t ∈ Ω, then W 1,k2(t)(Ω) ↪→ W 1,k1(t)(Ω) is continuous.

Proposition 1. [9] If p(t) ∈ C+(Ω) and ξ, ξn ∈ Lp(t)(Ω), there holds

min
{
∥ξ∥p

−

p(t), ∥ξ∥
p+

p(t)

}
≤
∫
Ω

|ξ(t)|p(t)dt ≤ max
{
∥ξ∥p

−

p(t), ∥ξ∥
p+

p(t)

}
.

Proposition 2. [6] If p(t) ∈ C+(Ω), z(t) is a positive measurable function on
Ω, then for any ξ ∈ Lp(t)(z(t), Ω) there holds

min
{
∥ξ∥p

−

(p(t),z(t)), ∥ξ∥
p+

(p(t),z(t))

}
≤
∫
Ω

z(t)|ξ(t)|p(t)dt

≤ max
{
∥ξ∥p

−

(p(t),z(t)), ∥ξ∥
p+

(p(t),z(t))

}
.

On the basis of Propositions 1 and 2, we can derive the following lemma.

Lemma 2. Let

ρω(ξ) =

∫
Ω

(|ξ(t)|p(t) + ω(t)
∣∣∇ξ(t)

∣∣p(t))dt.
For any ξ ∈ W 1,p(t)(ω,Ω), p(t) ∈ C+(Ω), there holds

min
{
∥ξ∥p

−
, ∥ξ∥p

+}
≤ ρω(ξ) ≤ max

{
∥ξ∥p

−
, ∥ξ∥p

+ }
.

If condition (ω) holds, then W 1,p(t)(ω,Ω) forms a reflexive and separable
Banach space(see [11]). Moreover, Theorem 2.11 of [13] establishes that under
condition (ω), the embedding

W 1,p(t)(ω,Ω) ↪→ W 1,ph(t)(Ω) (2.1)

is continuous, where

p(t) > ph(t) =
p(t)h(t)

h(t) + 1
.

By Proposition 2.7, Proposition 2.8 in [7] and (2.1), the embedding

W 1,p(t)(ω,Ω) ↪→ Lr(t)(Ω)

is continuous, where

1 ≤ r(t) ≤ p∗h(t) =
Nph(t)

N − ph(t)
=

Np(t)h(t)

Nh(t) +N − p(t)h(t)
.

Furthermore, the embedding is compact when 1 ≤ r(t) < p∗h(t).

Lemma 3. [6] Assume that 0 ∈ Ω, ∂Ω possesses the cone property and
ph, r, e ∈ C(Ω), 0 ≤ r(t) < N, ∀t ∈ Ω. If

1 ≤ e(t) <
N − r(t)

N
p∗h(t),∀t ∈ Ω,
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then the embedding

W 1,ph(t)(Ω) ↪→ Le(t)(|t|−r(t), Ω)

is compact.

Lemma 4. There exists a positive constant c̃ such that∫
Ω

|ξ|e(t)

|t|r(t)
dt ≤ c̃

(
∥ξ∥e

−
+ ∥ξ∥e

+
)
, ∀ξ ∈ W

1,p(t)
0 (ω,Ω).

Proof. Taking Proposition 2 and Lemma 3 into account, for ∀ξ ∈ W
1,p(t)
0 (ω,Ω)

there exists c̃1 > 0 such that∫
Ω

|ξ|e(t)

|t|r(t)
dt ≤ ∥ξ∥e

+

(e(t),|t|−r(t)) + ∥ξ∥e
−

(e(t),|t|−r(t))

≤ c̃1(∥ξ∥e
+

W 1,ph(t)(Ω)
+ ∥ξ∥e

−

W 1,ph(t)(Ω)
).

Since W
1,p(t)
0 (ω,Ω) ↪→ W

1,ph(t)
0 (Ω), we can find a constant c̃2 > 0 satisfying

∥ξ∥e
+

W 1,ph(t)(Ω)
+ ∥ξ∥e

−

W 1,ph(t)(Ω)
≤ c̃2(∥ξ∥e

+

+ ∥ξ∥e
−
),

and thus taking c̃ = c̃1 · c̃2 yields the desired inequality. ⊓⊔

The functional Iλ : W 1,p(t)
0 (ω,Ω) → R is given by

Iλ(ξ) = Φ(ξ)− λΨ(ξ),

where

Φ(ξ)=

∫
Ω

a(t, ξ)

p(t)
|∇ξ|p(t)dt+

∫
Ω

1

p(t)
|ξ|p(t)dt+1

q

∫
Ω

b(t)|ξ|q

|t|q
dt+

∫
Ω

c(t)|ξ|e(t)

e(t)|t|r(t)
dt,

Ψ(ξ) =

∫
Ω

F (t, ξ)dt, F (t, ξ) =

∫ ξ

0

f(t, τ)dτ, ∀(t, ξ) ∈ Ω × R.

A direct calculation shows that Φ and Ψ are continuously Gâteaux differentiable
with derivatives

⟨Φ′(ξ), v⟩ =
∫
Ω

a(t, ξ)|∇ξ|p(t)−2∇ξ∇vdt+

∫
Ω

|ξ|p(t)−2ξvdt

+

∫
Ω

b(t)|ξ|q−2ξv

|t|q
dt+

∫
Ω

c(t)|ξ|e(t)−2ξv

|t|r(t)
dt,

and

⟨Ψ ′(ξ), v⟩ =
∫
Ω

f(t, ξ)vdt, ∀ξ, v ∈ W
1,p(t)
0 (ω,Ω).

It is easy to obtain ⟨Φ′(ξ),ξ⟩
∥ξ∥ → ∞ as ∥ξ∥ → ∞, thus Φ′ is coercive.

ξ ∈ W
1,p(t)
0 (ω,Ω) is called a weak solution to the elliptic equation (1.1) if

⟨I ′
λ(ξ), v⟩ = 0, ∀v ∈ W

1,p(t)
0 (ω,Ω).

The subsequent lemmas provide essential technical tools for our analysis.
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Lemma 5. (Hölder-type inequality [7]) If u, v ≥ 1 are measurable functions
on Ω and

1

u(t)
+

1

v(t)
= 1, a.e. t ∈ Ω.

For any f ∈ Lu(t)(Ω) and g ∈ Lv(t)(Ω), there holds∫
Ω

f(t)g(t)dt ≤ 2∥f∥u(t)∥g∥v(t). (2.2)

Lemma 6. [5] If u(t) and v(t) are measurable functions satisfying u(t) ∈
L∞(Ω) and 1 ≤ u(t)v(t) ≤ ∞ for almost every t ∈ Ω. For ξ ∈ Lv(t)(Ω) with
ξ ̸= 0, we have

min
{
∥ξ∥u

−

u(t)v(t), ∥ξ∥
u+

u(t)v(t)

}
≤ ∥|ξ|u(t)∥v(t) ≤ max

{
∥ξ∥u

−

u(t)v(t), ∥ξ∥
u+

u(t)v(t)

}
.

Lemma 7. Φ′ is of type (S+), that is, if ξn ⇀ ξ in W
1,p(t)
0 (ω,Ω), and

limn→∞⟨Φ′(ξn)− Φ′(ξ), ξn − ξ⟩ ≤ 0, then ξn → ξ in W
1,p(t)
0 (ω,Ω).

Proof. Assume ξn ⇀ ξ in W
1,p(t)
0 (ω,Ω), with

limn→∞⟨Φ′(ξn)− Φ′(ξ), ξn − ξ⟩ ≤ 0. (2.3)

Firstly, we claim

lim
n→∞

∫
Ω

(a(t, ξn)− a(t, ξ))|∇ξ|p(t)−2∇ξ(∇ξn −∇ξ)dt = 0. (2.4)

In fact, by the continuity of g(ξ), Lemma 5 and Lemma 6, for ∀ε > 0, we have∣∣∣∣∫
Ω

(a(t, ξn)− a(t, ξ))|∇ξ|p(t)−2∇ξ(∇ξn −∇ξ)dt

∣∣∣∣
≤
∣∣∣∣∫

Ω

ω(t)(g(ξn)− g(ξ))|∇ξ|p(t)−1|∇ξn −∇ξ|dt
∣∣∣∣

< ε

∣∣∣∣∫
Ω

(ω(t)
1

p(t) |∇ξ|)p(t)−1ω(t)
1

p(t) |∇ξn −∇ξ|dt
∣∣∣∣

≤ 2ε∥(ω(t)
1

p(t) |∇ξ|)p(t)−1∥ p(t)
p(t)−1

∥ω(t)
1

p(t) |∇ξn −∇ξ|∥p(t)

≤ 2ε(∥(ω(t)
1

p(t) |∇ξ|)∥p
+−1

p(t) + ∥(ω(t)
1

p(t) |∇ξ|)∥p
−−1

p(t) )∥ω(t)
1

p(t) |∇ξn −∇ξ|∥p(t)
→ 0 (n → ∞),

which leads to the desired result. ⊓⊔

Secondly, in view of (2.2) of [21], for any η, θ ∈ RN , there exists Cp > 0
such that

(|η|p−2η − |θ|p−2θ)(η − θ) ≥ Cp|η − θ|p, if p ≥ 2,

and

(|η|p−2η − |θ|p−2θ)(η − θ) ≥ Cp|η − θ|2

(|η|+ |θ|)2−p
, if 1 < p < 2.
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While

⟨Φ′(ξn)− Φ′(ξ), ξn − ξ⟩

=

∫
Ω

(a(t, ξn)|∇ξn|p(t)−2∇ξn − a(t, ξ)|∇ξ|p(t)−2∇ξ)(∇ξn −∇ξ)dt

+

∫
Ω

(|ξn|p(t)−2ξn − |ξ|p(t)−2ξ)(ξn − ξ)dt

+

∫
Ω

(b(t)|ξn|q−2

|t|q
ξn(ξn − ξ)− b(t)|ξ|q−2

|t|q
ξ(ξn − ξ)

)
dt

+

∫
Ω

(c(t)|ξn|e(t)−2

|t|r(t)
ξn(ξn − ξ)− c(t)|ξ|e(t)−2

|t|r(t)
ξ(ξn − u)

)
dt

=

∫
Ω

a(t, ξn)(|∇ξn|p(t)−2∇ξn − |∇ξ|p(t)−2∇ξ)(∇ξn −∇ξ)dt

+

∫
Ω

(a(t, ξn)− a(t, ξ))|∇ξ|p(t)−2∇ξ(∇ξn −∇ξ)dt

+

∫
Ω

(|ξn|p(t)−2ξn − |ξ|p(t)−2ξ)(ξn − ξ)dt

+

∫
Ω

(b(t)|ξn|q−2

|t|q
ξn(ξn − ξ)− b(t)|ξ|q−2

|t|q
ξ(ξn − ξ)

)
dt

+

∫
Ω

(c(t)|ξn|e(t)−2

|t|r(t)
ξn(ξn − ξ)− c(t)|ξ|e(t)−2

|t|r(t)
ξ(ξn − u)

)
dt,

(2.5)

thus combine (2.3), (2.4) and (2.5), we get

limn→∞

∫
Ω

a(t, ξn)(|∇ξn|p(t)−2∇ξn − |∇ξ|p(t)−2∇ξ)(∇ξn −∇ξ)dt ≤ 0.

Further, by (1.2) one has

limn→∞

∫
Ω

ω(t)(|∇ξn|p(t)−2∇ξn − |∇ξ|p(t)−2∇ξ)(∇ξn −∇ξ)dt ≤ 0,

then ξn → ξ in W
1,p(t)
0 (ω,Ω) according to Lemma 3.2 in [10].

Lemma 8. Φ′ is a homeomorphism.

Proof. The strict monotonicity of Φ′ ensures injectivity. Since Φ′ is coercive,
it is surjective and thus admits an inverse mapping (Φ′)−1.

Set f̃n, f̃ ∈ (W
1,p(t)
0 (ω,Ω))∗ with f̃n → f̃ . Set ξn = (Φ′)−1(f̃n) and ξ =

(Φ′)−1(f̃), so that Φ′(ξn) = f̃n and Φ′(ξ) = f̃ . The coercivity of Φ′ implies
boundedness of {ξn}. Without loss of generality, assume ξn ⇀ ξ0, which yields

lim
n→∞

(Φ′(ξn)− Φ′(ξ), ξn − ξ0) = lim
n→∞

(f̃n − f̃ , ξn − ξ0) = 0.

Since Φ′ is of type (S+), we have ξn → ξ0, and thus Φ′(ξn) → Φ′(ξ0). Combining
this with Φ′(ξn) → Φ′(ξ), we obtain Φ′(ξ) = Φ′(ξ0). The injectivity of Φ′

then implies ξ = ξ0 and ξn → ξ, hence (Φ′)−1(f̃n) → (Φ′)−1(f̃), establishing
continuity of (Φ′)−1. ⊓⊔



Degenerate p(t)-Laplacian equations involving double Hardy terms 123

Lemma 9. Ψ ′ : W
1,p(t)
0 (ω,Ω) → (W

1,p(t)
0 (ω,Ω))∗ is compact.

Proof. By condition (f1) and the compact embedding

W
1,p(t)
0 (ω,Ω) ↪→↪→ Ls(t)(Ω), for 1 ≤ s(t) < p∗h(t),

the derivative Ψ ′ is compact.

Indeed, let ξn ⇀ ξ in W
1,p(t)
0 (ω,Ω). By the compact embedding, there is

a subsequence (denoted by {ξn}) such that ξn → ξ in Ls(t)(Ω). Since f is
a Carathéodory function satisfying (f1), the Nemytskii operator Nf (ξ)(t) =

f(t, ξ(t)) is continuous from Ls(t)(Ω) into L
s(t)

s(t)−1 (Ω). Hence,

Nf (ξn) → Nf (ξ) in L
s(t)

s(t)−1 (Ω).

Now, for any v ∈ W
1,p(t)
0 (ω,Ω), using Hölder’s inequality (Lemma 5), we

obtain

|⟨Ψ ′(ξn)− Ψ ′(ξ), v⟩| =
∣∣∣∣∫

Ω

(
f(t, ξn)− f(t, ξ)

)
vdt

∣∣∣∣ ≤ ∫
Ω

|f(t, ξn)− f(t, ξ)||v|dt

≤ 2∥v∥Ls(t)(Ω)∥Nf (ξn)−Nf (ξ)∥
L

s(t)
s(t)−1 (Ω)

≤ 2cs∥v∥∥Nf (ξn)−Nf (ξ)∥
L

s(t)
s(t)−1 (Ω)

,

where cs is the embedding constant for W
1,p(t)
0 (ω,Ω) ↪→ Ls(t)(Ω). Therefore,

∥Ψ ′(ξn)− Ψ ′(ξ)∥
(W

1,p(t)
0 (ω,Ω))∗

→ 0,

which shows that Ψ ′ is completely continuous, hence compact. ⊓⊔

3 Main results

This section is devoted to establishing the existence of at least one or at least
two nontrivial weak solutions for the elliptic equation (1.1).

Theorem 1. Assume that (f1) holds, and there exist constants µ > max{p+, q, e+}
and R > 0 such that

(f2) 0 < µF (t, ξ) ≤ f(t, ξ)ξ, ∀ t ∈ Ω, |ξ| ≥ R,

then the elliptic equation (1.1) admits at least two weak solutions for all λ ∈
(0, λ0), where

λ0 =
(
2csC1∥M1∥ s(t)

s(t)−1

(p+)
1

p− +C1M2c
s+

s (p+)
s+

p− + C1M2c
s−

s (p+)
s−
p−
)−1

,

cs denotes the embedding constant for W
1,p(t)
0 (ω,Ω) ↪→ Ls(t)(Ω), 1 < s(t) <

p∗h(t), and C1 will appear in the following proof process.
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Proof. Notice that

Φ(ξ)=

∫
Ω

a(t, ξ)

p(t)
|∇ξ|p(t)dt+

∫
Ω

1

p(t)
|ξ|p(t)dt+1

q

∫
Ω

b(t)|ξ|q

|t|q
dt+

∫
Ω

c(t)|ξ|e(t)

e(t)|t|r(t)
dt

≥ 1

p+
min{a1, 1} · ρω(ξ) ≥

1

p+
min{a1, 1} ·min

{
∥ξ∥p

+

, ∥ξ∥p
−}

,

which shows that Φ is bounded from below.
Let {ξn}⊂W

1,p(t)
0 (ω,Ω) such that {Iλ(ξn)} is bounded, and I ′λ(ξn)→0,

as n → +∞, Thus there exists M0 > 0 independent of n such that

|Iλ(ξn)| ≤ M0,

and for n large enough, one has

|I ′λ(ξn)ξn| ≤ ∥I ′λ(ξn)∥(W 1,p(t)
0 (ω,Ω))∗

∥ξn∥ ≤ ∥ξn∥, (3.1)

thus, when |ξn| ≥ R, one has

µIλ(ξn)− I ′λ(ξn)ξn = µ

∫
Ω

a(t, ξn)

p(t)
|∇ξn|p(t)dt+ µ

∫
Ω

1

p(t)
|ξn|p(t)dt

+
µ

q

∫
RN

b(t)|ξn|q

|t|q
dt+ µ

∫
Ω

c(t)|ξ|e(t)

e(t)|t|r(t)
dt− λµ

∫
Ω

F (t, ξn)dt

−
∫
Ω

a(t, ξn)|∇ξn|p(t)dt−
∫
Ω

|ξn|p(t)dt−
∫
Ω

b(t)|ξn|q

|t|q
dt−

∫
Ω

c(t)|ξn|e(t)

|t|r(t)
dt

+ λ

∫
Ω

f(t, ξn)ξndt

≥ (
µ

p+
− 1)min{a1, 1} · ρω(ξn) + (

µ

q
− 1)

∫
Ω

b(t)|ξn|q

|t|q
dt

+ (
µ

e+
− 1)

∫
Ω

c(t)|ξn|e(t)

|t|r(t)
dt

≥ (
µ

p+
− 1)min{a1, 1} ·min{∥ξn∥p

+

, ∥ξn∥p
−
}.

Combining with (3.1), we get

µM0+∥ξn∥≥Iλ(ξn)−I ′λ(ξn)ξn ≥
( µ

p+
−1
)
min{a1, 1} ·min{∥ξn∥p

+

, ∥ξn∥p
−
},

which implies boundedness of {ξn} since µ > max{p+, q, e+}.
Without loss of generality, assume ξn ⇀ ξ. The compactness of Ψ ′ (Lemma

9) gives Ψ ′(ξn) → Ψ ′(ξ). Since I ′λ(ξn) = Φ′(ξn) − λΨ ′(ξn) → 0, we have
Φ′(ξn) → λΨ ′(ξn). The fact Φ′ is of type (S+) and the homeomorphism prop-
erty of Φ′ (Lemma 8) yields ξn → ξ, establishing that Iλ satisfies the Palais-
Smale condition.
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To show Iλ is unbounded below, we first establish the Hardy-type inequality∫
Ω

|ξ|q

|t|q
dt ≤ 1

H

∫
Ω

|∇ξ|qdt, ∀ξ ∈ W
1,p(t)
0 (ω,Ω), (3.2)

for some H > 0. The classical Hardy inequality [1, Lemma 2.1] states that for
1 < h < N

∫
Ω

|ξ|h

|t|h
dt ≤

(
h

N − h

)h ∫
Ω

|∇ξ|hdt, ∀ξ ∈ W 1,h
0 (Ω).

This implies (3.2) holds for any ξ ∈ W 1,q
0 (Ω) when 1 < q < N , and the

continuous embeddings

W
1,p(t)
0 (ω,Ω) ↪→ W

1,ph(t)
0 (Ω) ↪→ W 1,q

0 (Ω),

obtained from (2.1), Lemma 1, and 1 < q < ph(t) < N , ensure its validity for

ξ ∈ W
1,p(t)
0 (ω,Ω).

Secondly, from (f2), there exist positive constants α and β such that

F (t, ξ) ≥ α|ξ|µ − β, ∀ t ∈ Ω, |ξ| ≥ R.

Thus, for some fixed ξ̃ ∈ W
1,p(t)
0 (ω,Ω) \ {0}, when m > 1, combining Lemma

2, Lemma 4, (1.2) with (3.2), one has

Iλ(mξ̃) =

∫
Ω

a(t, ξ)

p(t)
|m∇ξ̃|p(t)dt+

∫
Ω

1

p(t)
|mξ̃|p(t)dt+ mq

q

∫
Ω

b(t)|ξ̃|q

|t|q
dt

+

∫
Ω

c(t)|mξ̃|e(t)

e(t)|t|r(t)
dt− λ

∫
Ω

F (t,mξ̃)dt

≤ mp+

p−
max{a2, 1} · (∥ξ̃∥p

−
+ ∥ξ̃∥p

+

) +
mq∥b∥∞

qH

∫
Ω

|∇ξ̃|qdt

+
me+∥c∥∞

e−
(∥ξ̃∥e

−
+ ∥ξ̃∥e

+

)− λβ|Ω| − λαmµ

∫
Ω

|ξ̃|µdt.

Since µ > max{p+, q, e+}, we conclude Iλ(mξ̃) → −∞ as m → +∞, proving
Iλ is unbounded from below.

From (f1), there exists C1 > 0 such that

|F (t, ξ)| ≤ C1(M1(t)|ξ|+M2|ξ|s(t)), a.e. (t, ξ) ∈ Ω × R. (3.3)

For ξ ∈ Φ−1((−∞, 1]), we have Φ(ξ) ≤ 1 and ∥ξ∥ ≤ (p+)
1

p− . Thus via (3.3)
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and Hölder-type inequality (2.2), we have

sup
ξ∈Φ−1((−∞,1])

Ψ(ξ) = sup
ξ∈Φ−1((−∞,1])

∫
Ω

F (t, ξ)dt

≤ C1 sup

∥ξ∥≤(p+)
1

p−

∫
Ω

(M1(t)|ξ|+M2|ξ|s(t))dt

≤ C1 sup

∥ξ∥≤(p+)
1

p−

(2∥M1∥ s(t)
s(t)−1

∥ξ∥s(t) +M2(∥ξ∥s
+

s(t) + ∥ξ∥s
−

s(t)))

≤ C1 sup

∥ξ∥≤(p+)
1

p−

(2cs∥M1∥ s(t)
s(t)−1

∥ξ∥+M2(c
s+

s ∥ξ∥s
+

+ cs
−

s ∥ξ∥s
−
))

≤ 2csC1∥M1∥ s(t)
s(t)−1

(p+)
1

p− +C1M2c
s+

s (p+)
s+

p− + C1M2c
s−

s (p+)
s−
p− ,

where cs is the embedding constant for W
1,p(t)
0 (ω,Ω) ↪→ Ls(t)(Ω) with 1 <

s(t) < p∗h(t).
All hypotheses of [2, Theorem 3.2] are now verified, ensuring the elliptic

equation (1.1) has at least two distinct weak solutions, one of which might be
trivial. ⊓⊔

To establish the existence of two nontrivial solutions, we proceed as follows.
Define the function:

ρ(t) = sup{ρ > 0 | B(t, ρ) ⊆ Ω}, ∀t ∈ Ω.

There exists t0 ∈ Ω such that B(t0, d) ⊆ Ω, where d = supt∈Ω ρ(t).

Theorem 2. Assume that (f1) and (f2) hold, with F (t, ξ) ≥ 0 for all (t, ξ) ∈
B(t0, d) × [0, δ]. Suppose there exist constants Cδ and γ satisfying Cδ <

min

{
γp−

p+ , γp+

p+p+/p−

}
such that

2csγC1∥M1∥ s(t)
s(t)−1

+ C1M2(γcs)
s+ + C1M2(γcs)

s−

min{γp−

p+ , γp+

p+p+/p− }

=
1

λ2
<

1

λ1
=

ess infB(t0,
d
2 )
F (t, δ)|B(t0,

d
2 )|

Cδ
.

Then, the elliptic equation (1.1) admits at least two nontrivial solutions for all
λ ∈ (λ1, λ2).

Proof. It is easy to verify that infX Φ = Φ(0) = Ψ(0) = 0. Define the test
function

ξ̄(t) =


0, t ∈ Ω \ B̄(t0, d),
2δ
d (d− |t− t0|), t ∈ B(t0, d) \ B̄(t0,

d
2 ),

δ, t ∈ B(t0,
d
2 ),
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thus,

Ψ(ξ̄) =

∫
Ω

F (t, ξ̄)dt ≥
∫
B(t0,

d
2 )

F (t, δ)dt ≥ |B(t0,
d

2
)| ess inft∈B(t0,

d
2 )
F (t, δ).

(3.4)
Direct calculation shows ξ̄(t) < δ,∇ξ̄(t) = 2δ

d . Let

a2
p−

(
2δ

d
)p̂∥ω∥L1(Ω) +

1

p−
δp̂|B(t0, d)| = M.

By (1.2), the Hardy inequality (3.2) and Lemma 4, one has

Φ(ξ̄) =

∫
Ω

a(t, ξ)

p(t)
|∇ξ̄|p(t)dt+

∫
Ω

1

p(t)
|ξ̄|p(t)dt

+
1

q

∫
Ω

b(t)|ξ̄|q

|t|q
dt+

∫
Ω

c(t)|ξ̄|e(t)

e(t)|t|r(t)
dt

≤ a2
p−

(
2δ

d
)p̂∥ω∥L1(Ω) +

1

p−
δp̂|B(t0, d)|+

∥b∥∞
qH

(
2δ

d
)q)|B(t0, d)|

+
∥c∥∞c̃

e−
(M

1

p− +M
1

p+ )e
+

+
∥c∥∞c̃

e−
(M

1

p− +M
1

p+ )e
−

= M +
∥c∥∞c̃

e−
(M

1

p− +M
1

p+ )e
+

+
∥c∥∞c̃

e−
(M

1

p− +M
1

p+ )e
−

+
∥b∥∞
qH

(
2δ

d
)q)|B(t0, d)| := Cδ < min

{γp−

p+
,

γp+

p+p+/p−

}
.

(3.5)

Set r = min
{

γp−

p+ , γp+

p+p+/p−

}
, so, 0 < Φ(ξ̄) < r. For ξ ∈ Φ−1((−∞, r]), we have

Φ(ξ) ≤ r, and

∥ξ∥ ≤ max{(rp+)
1

p− , (rp+)
1

p+ } ≤ p+
1

p− max{r
1

p− , r
1

p+ } = γ.

Thus via (3.3) and Hölder-type inequality (2.2), we have

sup
ξ∈Φ−1((−∞,r])

Ψ(ξ) = sup
ξ∈Φ−1((−∞,r])

∫
Ω

F (t, ξ)dt

≤ C1 sup
∥ξ∥≤γ

∫
Ω

(M1(t)|ξ|+M2|ξ|s(t))dt

≤ C1 sup
∥ξ∥≤γ

(2∥M1∥ s(t)
s(t)−1

∥ξ∥s(t) +M2(∥ξ∥s
+

s(t) + ∥ξ∥s
−

s(t)))

≤ C1 sup
∥ξ∥≤γ

(2cs∥M1∥ s(t)
s(t)−1

∥ξ∥+M2(c
s+

s ∥ξ∥s
+

+ cs
−

s ∥ξ∥s
−
))

≤ 2csγC1∥M1∥ s(t)
s(t)−1

+ C1M2(γcs)
s+ + C1M2(γcs)

s− .

(3.6)
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Thus (3.4), (3.5) and (3.6) leads to

supξ∈Φ−1((−∞,r]) Ψ(ξ)

r
≤

2csγC1∥M1∥ s(t)
s(t)−1

+ C1M2(γcs)
s+ + C1M2(γcs)

s−

min{γp−

p+ , γp+

p+p+/p− }

<
ess infB(t0,

d
2 )
F (t, δ)|B(t0,

d
2 )|

Cδ
≤ Ψ(ξ̄)

Φ(ξ̄)
.

Therefore, all conditions of [3, Theorem 2.1] are satisfied, guaranteeing at least
two nontrivial solutions to the elliptic equation (1.1). ⊓⊔
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