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1 Introduction

Elliptic equations featuring Hardy potentials are fundamental to modeling
physical, mathematical, and engineering systems that exhibit singular behavior
and critical phenomena. The introduction of a singularity, particularly at the
origin, significantly complicates the analytical properties of the differential op-
erator and sensitively influences the solution’s behavior. This is underpinned
by the classical Hardy inequality, which guarantees that for 1 < p < N, a
bounded domain {2 € RY with smooth boundary and a function & in WP (RY)
or WhP(£2), the weighted function &£/|t| remains integrable in LP(2). This
principle has been extended to more general settings involving variable expo-
nents. Specifically, for a non-negative continuous function r(t) € C(£2), the
integrability of [£]°()/|t|"®) over £2 can be established under certain condi-
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Degenerate p(t)-Laplacian equations involving double Hardy terms

tions on e(t), giving rise to the r(t)-type Hardy potential. The solvability of
elliptic equations with such potentials has become an active area of research,
as evidenced by numerous recent studies (see, e.g., [1,12,14,15,22,23]). In
parallel, degenerate elliptic equations with nonlinear weights are employed to
model a variety of complex nonlinear processes. The nonlinear weight function
is used to portray the relationship between the critical current density and
the magnetic field. In recent years, p-Laplacian elliptic equations have been
studied extensively, (see, e.g., [16,17,18,19,20]). The emergence of a singu-
lar weighted function w(t) in the p-Laplacian operator or the p(t)-Laplacian
operator, that is div(w(t)|VE[P~2VE) or div(w(t)|VEPH—2VE), is called the
degenerate p-Laplacian operator or the degenerate p(t)-Laplacian operator. A
major analytical challenge arises when the weight function w(t) is singular or
fails to be bounded away from zero, as these conditions lead to degenerate or
singular equations. The challenge cannot be addressed within the framework
of the standard Sobolev spaces W1P(£2) or W) (§2). Instead, the framework
of weighted Sobolev spaces, specifically WP (w, £2) or W'P®) (w, 1), must be
adopted to deal with these issues effectively. A detailed discussion can be found
in [4].

The aim of this paper is to study the existence of weak solutions to the fol-
lowing weighted p(t)-Laplacian quasilinear elliptic equations with double phrase
Hardy potentials

b 9-2 e(t)—2
— Ay atee EHIEPO26+ (DIE*~2¢ | e(t)]g]"%¢

£E=0 on 012,

(1.1)

where 2 denotes an open bounded subset in RY(N > 3) with smooth bound-
ary 02,0 € 2, Appy.a,e)é = div(a(t, €)|VEIPO=2VE) is the degenerate p(t)-
Laplacian operator, a(t,£) = w(t)g(§), g(£) is a continuous function satisfying

a1 < g(€) < as, ae R, (1.2)

in which a1, ay are positive constants, w > 0 is measurable and satisfying
(w) w™h® € L1(92), for any h(t) € C(2),w € L}, .(£2), and

1< p(t) < +00,1 < q < pa(t) < N with pu(t) = 5582, 0 < b(t),c(t) €
L=(£2), 0 < r(t) € C(2), p(t),e(t) € C(R2) with 1 < e(t) < X7 0pr (1),
A > 0 is a parameter, the Carathéodory function f : {2 x R — R satisfying

(f1) [f(6)] < Mi(t) + MaleP D7, ace. (t,€) € 2 xR,

where M (t) > 0, M;(t) € L0 (@) with 1 < s(t) < pj(t) = p22 and
M is a positive constant. '

The primary objective of this paper is to establish new existence criteria
for at least one and at least two weak solutions to the elliptic equation (1.1)
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under general assumptions on the weight function a(t, £) and the nonlinear term
f(t,€). Our approach employs variational methods and critical point theory
applied to the energy functional associated with the elliptic equation (1.1),
enabling us to establish the existence of bounded, nontrivial weak solutions
within precisely characterized intervals.

2 Basic notations and technical preliminaries

Let

C4(2) ={p®)Ip(t) € C(R2), p(t) > 1, Vt € 2},
p~ =ess inf, 5p(t), pt = ess sup,p(t).

For [ > 0, p(t) € C,(£2), denote I? = max{l?", IP" }.
Set

LPO(Q) ={{: N>R measurable‘ / l€() PP dt < oo},
Lp(t)( {5 N—-NR measurable‘ / t)|E(t )|p(t dt < oo}

with corresponding norms

— =i £(t) p(t)
p(t = = -_— <
€]l Lo (2) = [Illp(ry = inf {77 > 0’ /Q| o [P dt < 1},
and

el o = €y =t {n >0 [ woEp0 ar <1},
Now, we define the variable exponent Sobolev space
W (Q) = {¢ € PO(@)||Ve| € PO},

with the norm
I€llw a2y = 1VEllpe) + 1€llpe)-
The weighted Sobolev space is

Wi, 2) = { € O(@)|u7t719 € 0(@)}.

and we denote by W7 (w, 2) the closure of C3°(£2) in WP(®)(w, 2) with
respect to the norm:

el = in n>o]/< )| T

p(t)
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Lemma 1. [8] If k1(t), k2(t) € C1(2) satisfy k1(t) < ka(t) almost everywhere
int € 82, then WhF2() () s Wk () is continuous.

Proposition 1. [9] If p(t) € C1(2) and &, &, € LPW(12), there holds
. - + - +
min €15 0650} < [ €GP0t < ma €I, el )

Proposition 2. [6] If p(t) € C(2), 2(t) is a positive measurable function on
2, then for any & € LPW(z(t), 2) there holds

: - +
min {[1€110, 0 =0y 1€Mooy 2oy | S/Qz(t)\f(tﬂp(t)dt

- +
< max { €160, 0 1€ ooy 200 3+
On the basis of Propositions 1 and 2, we can derive the following lemma.

Lemma 2. Let
pul&) = [ (6OP +a(t) |95t
For any £ € WP (w, 02),p(t) € CL(R2), there holds

min {7, €]7"} < pu(€) < max {||€[P, €]PT }.

If condition (w) holds, then W'P®)(w, 2) forms a reflexive and separable
Banach space(see [11]). Moreover, Theorem 2.11 of [13] establishes that under
condition (w), the embedding

Wwlp®) (w, ) = Wlmh(t)(g) (2.1)

is continuous, where
p(t)h(t)
h(t)+1°

p(t) > pn(t) =

By Proposition 2.7, Proposition 2.8 in [7] and (2.1), the embedding
WhP® (), 2) — L' ()
is continuous, where

Npn(t) _ Np(t)h(t)

Lsr®) =e®) = §— 5 = N + N = p0h(0)"

Furthermore, the embedding is compact when 1 < r(t) < p; (¢).

Lemma 3. [6] Assume that 0 Eﬁ, 082 possesses the cone property and
ph,re € C(12),0<r(t) < N,Vt e 2. If

N —r(t)

1<e(t
Se(t) < —%

pi(t),Vt € 2,

Math. Model. Anal., 31(1):116-129, 2026.
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then the embedding
Wm0 (@) = L0710, )
is compact.

Lemma 4. There exists a positive constant ¢ such that

j£]¢)
o [tr®

at < (Jele +el<") , ve e W (w, ).

Proof. Taking Proposition 2 and Lemma 3 into account, for V¢ € VVO1 P(t) (w, £2)
there exists ¢; > 0 such that

€]

et S eI oo + 1l -
< G150 ) F 1€l Gp1m 0 (2))-
Since Wo ™ (w, 2) — WP (), we can find a constant & > 0 satisfying
1E5y1.0n 00 2y + Il mmcor ey < GCIENT +11E1°),
and thus taking ¢ = ¢; - ¢ yields the desired inequality. O
The functional Ty : Wol’p(t) (w, £2) = R is given by

Ix(§) = (&) — A (S),

where

_ [a,8) o) 1w L[] c(t) g™
D(€) /Q %3 dt+/9 €] dt+q/ dt+/9 dt

p(t) p(t) o [t e(t)[t]®

£
79 = [ P Fr.e) - /O F(t,7)dr, V(t,€) € 2 x R.

A direct calculation shows that ¢ and ¥ are continuously Gateaux differentiable
with derivatives

(P (€),v) = / a(t,&)|VE[PO—2VeVudt + / |£[PD 2 endt
(9] (]
b(t)|€]72¢w c(t)]€]cD2¢v
+/Qt|q dt+/ﬁt|r(t) dt,
and

(W'(&),v) :/Qf(t,f)vdt, VE, v e Wol’p(t)(w,ﬂ).

It is easy to obtain @/H(&gl)\’g) — 00 as ||€]| = oo, thus @' is coercive.

&€ Wol’p(t) (w, £2) is called a weak solution to the elliptic equation (1.1) if

(T, 0) =0, Vo e Wi (w, ).

The subsequent lemmas provide essential technical tools for our analysis.
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Lemma 5. (Holder-type inequality [7]) If u,v > 1 are measurable functions

on {2 and . )
—+—=1, a.e tef

u® o)
For any f € L*M(Q) and g € LM (), there holds

/ FOg)dt < 20|l lloco- (2.2)

Lemma 6. [5] If u(t) and v(t) are measurable functions satisfying u(t) €
L®(2) and 1 < u(t)v(t) < oo for almost every t € 2. For ¢ € LM (£2) with
& #0, we have

: u u ut
min {[1€][3 )00y 1115 (t)v(t)} < 1E“ oy < max {NIE 1% gy 1o I

Lemma 7. ?' is of type (Si), that is, if &, — & in Wol’p(t)(w,ﬂ), and
Titm,, o0 (@ (£0) — @/ (€), &0 — €) <0, then &, — & in Wy PP (w, 2).

Proof. Assume £, — £ in Wol’p(t)(w, 2), with

Firstly, we claim

lim [ (a(t, &) —a(t,€)|VEPD2VE(VE, — VE)dt = 0. (2.4)
2

n—oo

In fact, by the continuity of ¢g(£), Lemma 5 and Lemma 6, for Ve > 0, we have

\ [ (att.6) ~ alt. ) VOV, — Vo)

<

/Q w(t)(g(n) — 9(€))[VEPDVE, — VE|dt

<e / (w(t) 77 [VEDPO ()7 [V, — VE|dt
(94
< 2 (@) 7T [VEDPO | [fo(t)77V6n — Vel

< 25(| ()T [VEDIZLT + () AT [T o)) 196, — Vel
— 0 (n — 0),

which leads to the desired result. 0O

Secondly, in view of (2.2) of [21], for any 7,0 € RY, there exists C), > 0
such that
(In[P=2n — 10P=20)(n — 0) > Cpln — 6], if p > 2,
and )
Cpln — 0|

(I[P~ —10/P~=0)(n — 0) > W

,ifl<p<2

Math. Model. Anal., 31(1):116-129, 2026.
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While
(@ (£,) — ' (€), &0 — €)
= / (alt, &) |VELPO2VE, — alt, €)|VEPDT2VE)(VE, — VE)dt
N
+ /Q ([ 1702¢, — 6P O-26) (€, — €)dt
b n q—2 b q—2
+ [ (M 6 - 9 - O e, - ))a
t gn e(t)72 t ge(t)72
- / alt, £)(IVEPO2VE, — [VEPO-27)(Ve, — VE)d
(9]
+ /Q (alt, 60) — a(t, €))|VEPO-2VE(VE, — VE)dt

+ /Q (702, — €PO-2€) (€, — £)d

b n 72 b q—2
+ /Q ((t)'éq'&n(sn —o) - “)I'f'lg(gn —o)ar
t)|én e(t)=2 )€ e(t)—2
v [ (e —eute -0 - LG—e6, )

thus combine (2.3), (2.4) and (2.5), we get
T [ alt€0)(VE0 V6~ [VEPO29)(Ve, - Vet < 0.
Further, by (1.2) one has
T | wl)(V6,PO729E, = [VEPO2VE)(VE, Ve <,

then &, — € in W&’p(t)(w, 2) according to Lemma 3.2 in [10].

Lemma 8. &' is a homeomorphism.

Proof. The strict monotonicity of &’ ensures injectivity. Since @’ is coercive,
it is surjective and thus admits an inverse mapping (&')~*.

Set fu, f € (WP (w, 2))* with f, = f. Set & = (®)~(f,) and £ =
(#)"1(f), so that &'(¢,) = fn and & (¢) = f. The coercivity of @ implies
boundedness of {£,,}. Without loss of generality, assume &, — &y, which yields

Jim (@(€,) = 2'(€), & — o) = lim (fu — f.€n — &) = 0.

Since @' is of type (S4.), we have &, — &, and thus &' (£,) — &'(£y). Combining
this with @'(¢,,) — @'(£), we obtain &'(§) = &'(§). The injectivity of &’

then implies £ = & and &, — &, hence (¢')~1(f,) — (@')71(f), establishing
continuity of (#')~!. O
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Lemma 9. ¥’ : Wol’p(t) (w, 2) — (Wol’p(t) (w, 2))* is compact.
Proof. By condition (f;) and the compact embedding
WarD(w, 2) e L*O(Q),  for 1 < s(t) < pi(t),

the derivative ¥’ is compact.

Indeed, let &, — £ in Wol’p(t) (w, 2). By the compact embedding, there is
a subsequence (denoted by {&,}) such that &, — & in L*®(02). Since f is
a Carathéodory function satisfying (f1), the Nemytskii operator N;(£)(t) =

s(t)
f(t,&(t)) is continuous from L) (£2) into L¥® -7 (£2). Hence,

Ni(€n) = Np(€) in L5071 (02).

Now, for any v € Wol’p(t) (w, §2), using Holder’s inequality (Lemma 5), we
obtain

|<W'<sn>w'<f>,v>|—\ / (f(t,ﬁn)f(t,ﬁ))vdt‘ < [ 1160 - 1(t.9)lula
oy Ny () = Ny(©)l

< 26 |[0[|[INp(&n) = Np(OIl e,
Lst)—1 (Q)

< 2|l

s (t)
L s(t)—1 (Q)

where ¢, is the embedding constant for Wol’p(t) (w, 2) = L*B (). Therefore,
! !/
||¢ (gn) —-v (f)H(WOl,p(t)(w’Q))* — 0,

which shows that ¥’ is completely continuous, hence compact. 0O

3 Main results

This section is devoted to establishing the existence of at least one or at least
two nontrivial weak solutions for the elliptic equation (1.1).

Theorem 1. Assume that (f1) holds, and there exist constants yu > max{p™,q,e™}
and R > 0 such that

(f2) 0<pF(t,&) < f(t,8E Yte R, || >R,

then the elliptic equation (1.1) admits at least two weak solutions for all \ €
(0, \), where

+ 1 st + st o n s —1
)\o: (20801”M1|| (st()tzl (p )TF +01MQCS (p )”7 +01M205 (p )IF) ’

cs denotes the embedding constant for T/Vol’p(t)(o.)7 2) = L*®O(02),1 < s(t) <
pi(t), and C1 will appear in the following proof process.

Math. Model. Anal., 31(1):116-129, 2026.
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Proof. Notice that

_ (a8 o) p(t) 4 b(t)[€]4 c(t)|¢]°®
2¢) /pr v ars [ POl o, t]o s | e (o) ® ™

1 1 . . +
= g minfar, 1} - pu(€ )ZEmm{al,l}'mm{llﬁllp P}

which shows that @ is bounded from below.
Let {§n}CW01’p(t)(w7 2) such that {Ix(&,)} is bounded, and I} (&,)—0
as n — +o0o, Thus there exists My > 0 independent of n such that

Iz (&n)] < Mo,
and for n large enough, one has
I4(En)En] < M gy w0 - Il < Nl (3.1)

thus, when |¢,| > R, one has

pIx(§n) — Is\(fn)fn = ﬂ/ﬂ alt,& ot )|V§n|p Ot + /Q ]%Kﬂp(t)dt

)
g b€l c(t)lg]*
+E/]RN [t|a e / e(t)[t]"¢ t>dt‘A/~‘/QF(t7€n)dt

q e(t)
_/a(t,gn)|V§n|p(t)dt—/|£n|p(t)dt—/b(t)|§n| dt—/c(t”f”t' dt
Q 0 o |t o [tr®

I /Q F(t € )endt

b(t) €

] dt

> (K = minfar, 1} () + (4 - 1)/0

p e(t)[€n ™
— -1 — =t
+ (€+ )A |t|r(t)

> ( — 1minfar, 1} - min, P 6P ).

Combining with (3.1), we get

M6 |2 D (60) = T4 (60)6n > (=1 ) mindar, 1} - min{ 0P 6017,

which implies boundedness of {£,,} since p > max{p*,q,e"}.

Without loss of generality, assume &,, — £. The compactness of ¥’ (Lemma
9) gives ¥'(&,) — W'(£). Since I5(&n) = ¢/(€,) — AN/(&,) — 0, we have
&' (&) = W' (&,). The fact @' is of type (S4) and the homeomorphism prop-
erty of &' (Lemma 8) yields &, — &, establishing that I satisfies the Palais-
Smale condition.
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To show I is unbounded below, we first establish the Hardy-type inequality

95

Sl “dt, P (0w, 02 2
[ < g [ (vera vee w0 (w2, (32)

for some H > 0. The classical Hardy inequality [1, Lemma 2.1] states that for
1<h<N

h
|§||hdt (N h) /|V§|hdt vE e Wi ().

This implies (3.2) holds for any ¢ € Wy%(2) when 1 < ¢ < N, and the
continuous embeddings

WP (w, Q) < Wy D (Q) — Wi i(Q),
obtained from (2.1), Lemma 1, and 1 < ¢ < pp(t) < N, ensure its validity for
¢ e WoPD(w, ).
Secondly, from (f5), there exist positive constants « and 3 such that

F(t,8) > alé]* — B, YVt e 2,16 > R.

Thus, for some fixed & € Wol’p(t)(w, 2)\ {0}, when m > 1, combining Lemma
2, Lemma 4, (1.2) with (3.2), one has

Bmd) = [ D nggroas [ Lomepoas ™ [ N (I,

p(t) |t]a
W,

+/ e A/Qthg

< ™% mafaa, 1} (P + 161P7) + "I [ [vépa

e e ey 1)~ Agtel - xam [
0

Since p > max{p*,q,et}, we conclude IA(mé) — —00 as m — +00, proving
I, is unbounded from below.

From (f1), there exists C7 > 0 such that

|F(t,€)| < C1(M(t)|€] + MalE]PD), ace. (t,€) € 2 xR. (3.3)

1

For £ € & 1((—00,1]), we have #(¢) < 1 and ||€]| < (pT)»~. Thus via (3.3)

Math. Model. Anal., 31(1):116-129, 2026.
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and Holder-type inequality (2.2), we have

sup U(¢) = sup /F(t,ﬁ)dt
yJo

£€P—1((—00,1)) £€P—1((—00,1]
<c s [ ORI+ IO

lel<(p+)r™

§+ s

<C s QUM €l + Mol + )

lel<+)r™

st st s s

<Cp sup 1(205||M1II%II£II+M2(CS €7 +es 115117 )

lel< )™

s

-+ % sJr —+ % s +\T =
< 2¢sCy || M| ‘(st@l(p )rm +C1Macy (pT)r~ +CiMac; (p7)e,

where ¢, is the embedding constant for Wol’p(t)(w,ﬁ) — L*®(0) with 1 <
s(t) < py(t).

All hypotheses of [2, Theorem 3.2] are now verified, ensuring the elliptic
equation (1.1) has at least two distinct weak solutions, one of which might be
trivial. O

To establish the existence of two nontrivial solutions, we proceed as follows.
Define the function:

p(t) =sup{p > 0| B(t,p) C 2}, Vte L.
There exists to € {2 such that B(to,d) C £2, where d = sup,c, p(t).

Theorem 2. Assume that (f1) and (f2) hold, with F(t,£) > 0 for all (t,§) €
B(tg,d) x [0,0]. Suppose there exist constants Cs and v satisfying Cs <

ind 2 2"
Mil | s S such that

2csyCh|| M|

S(E) —

. = +
min{ 2o, 2

r 1. infp1,,2)F (t,0)|B(to, )|
AZ Al o 05

s+ Cy My(yes)s 4 Cy My (vyes)s

Then, the elliptic equation (1.1) admits at least two nontrivial solutions for all
A€ (A, A2).

Proof. Tt is easy to verify that infx & = @(0) = ¥(0) = 0. Define the test
function

0, te ﬁ\B(fo,d),
E(t) = 2(d—|t—to]), te Blto,d)\ Blto, 2),
te B(th %)7

o



Degenerate p(t)-Laplacian equations involving double Hardy terms

thus,

/F (t,6)dt >/ F(t, 8)dt > |B(t0,g)| ess infy o, 0 F(1,0).
t072) 2

B B (3.4)
Direct calculation shows £(t) < §, VE(t) = %s. Let
2 (290w 11 ) + 07| Blto, )| = M
p~d P
By (1.2), the Hardy inequality (3.2) and Lemma 4, one has
a a(t, ) |zt L s
B(¢ :/ 7V§p()dt+/ —— [P at
©=/, o v 0@
1 / b(t)[€]* / e(t)[€]*"
+= dit+ [ — oot
aJo [t e(t)[¢["®
26 bloo 26
< 22 2l + =07 Bltn, ) + L= (20 Bto. )
p (3.5)

lelloot 532 2

lellooC oy 1 .-
M7=+ M) 4 M=C s | e
€

1

M + ||C||OOC(MP
€

eyt g lelloe e eye
€
[16]] oo 20

o

P

+
gl gl
d) )|B(to,d)| := Cs <m1n{ e ’T/V}'

. P
Set r = mln{”p+ ,

p+p+/p }, 50,0 < P(§) < r. For £ € &7 ((—00,7]), we have
P(&) <, and

1 1 1

1€l < max{(rp™)7, (rp™) 7T} < ptE max{re 1ot} = 1.

Thus via (3.3) and Holder-type inequality (2.2), we have

sip T = sup / F(t,€)dt
£ed—1((—o0,r]) £ed1((—o0o,r]) J 2

<0y sup /Q(Ml(t)|§|+M2|§|S(t))dt

li€l<~

< C; sup (2||M]
leh<~

st s s
<G Sup (2esI M _acer[1€]] + Mo (e el e gl )
<v

st s
o [l + M]3 + l1EN3) (36)

< 2¢yCh || M| a0 + ClMQ(’YCs)S + C1 Ma(vyes)®

Math. Model. Anal., 31(1):116-129, 2026.
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Thus (3.4), (3.5) and (3.6) leads to

SUPgeg—1 ((—oo,r)) P(€)

267CL M| _w + CiMa(1e,)*" + Cra(yes)*”

< )=
- min{ 2%, "3
pt 7yt /e

ess infp, 4\ F(t,0)|B(to, )l < v (€)
Cs a 45(5)

r

<

Therefore, all conditions of [3, Theorem 2.1] are satisfied, guaranteeing at least
two nontrivial solutions to the elliptic equation (1.1). O
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