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1 Introduction

We are interested in solving the following Cauchy problem for the 3D wave
equation for function u = u(z,y, z,t), namely

Pu Pu  0%u  9*u

E—C(X) @J’_ain 92 + [(X, 1), (1.1)
u(X,0) = up(X), Optt)p=0 = u1 (X), ulon = 9(X,t),

t € (0,7T), X = (1,9,2) € £, 2 =(0,L)3. (1.2)
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Here ¢(X) is the variable sound velocity, we assume that
0<cm<c(X)<epn, forXeln.

Before proceeding, it is important to make the following remarks.

1. The importance of the topic is emphasized by the fact that a number
of different theoretical approaches have been proposed to construct high-
order compact schemes for solving the 3D wave equations (see below).

2. This study does not consider the case of a non-stationary sound velocity
coefficient ¢(X,t), we restrict ourselves with ¢(X).

3. Compact approximations are defined as approximations of the Laplace
operator on three-point space mesh stencils in each dimension. Therefore,
we deal with tridiagonal matrices, which is very convenient for the efficient
implementation of the algorithms.

4. Integration in time is also done using high-order integration schemes.
They are based on factorized operators of the ADI (Alternating Direction
Implicit) and LOD (Locally One-Dimensional) types.

In order to reduce the linear algebra part of the time integration scheme to
solution of systems with tridiagonal matrices, the factorization methods should
be supplemented with special boundary conditions at all splitting steps. We
prefer schemes where these boundary conditions are defined on the same com-
pact mesh stencil and the additional equations follow from the basic discrete
equations. Another popular approach, which employs one-sided high-order
approximation techniques to resolve the challenge of artificial boundary condi-
tions, is beyond the scope of this paper.

5. One of our goals is to compare the stability factors of the evolution ma-
trices of the selected compact high-order schemes.

6. 3D problems require the use of discrete approximations on meshes with
a very large number of discrete points and unknowns defined on these
points. Therefore, the efficiency of parallel versions of these schemes is
also analyzed.

Next, we give a brief overview of the main scientific results recently achieved
in this direction. We limit ourselves to the most important works that have
a direct relation to the discrete schemes chosen as the basic sources of our
analysis.

Compact schemes of the ADI type are constructed in [2]. This article focuses
on the analysis of high-order compact ADI method for solving 2D coupled sine-
Gordon equations. The classical Crank-Nicolson method is used for the time
discretization. It is important to note that not only the spectral method but
also the energy method is used for the stability analysis.

A family of high-order LOD schemes for the 3D elastic wave equation is
constructed and analyzed in [11]. We note that the same restrictions on the
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velocity coefficient ¢(X) and on boundary conditions can be found in the earlier
paper [12].

For 2D wave equations the analysis of fourth-order accurate compact finite
difference schemes in both space and time, was started in [1]. The discrete
schemes have also been constructed for models with variable sound speed. Al-
though these schemes are implicit and only conditionally stable, they are more
efficient than the lower-order schemes. Fast time marching of the implicit
schemes is achieved by iterative methods such as conjugate gradient and multi-
grid. Stability is investigated using techniques based on the energy method, as
previously applied to nonstationary advection-diffusion problems.

The solutions of acoustic problems can have singularities in some parts of
the domain and adaptive/nonuniform meshes can be recommended in such
situations. Still we want to note that high-order schemes of the type given in
this paper can’t be constructed on adaptive meshes. Thus we needed to chose
one or another way to solve such problems. In this paper we consider the case
of uniform meshes and high order approximations. The case of non-uniform
schemes will be considered in a separate paper.

Stability and accuracy analysis of 4th order finite-difference schemes for the
wave equation is performed in [15]. An important result of [15] is a new tem-
plate of the discrete problems for which the stability estimates can be proved
by using the energy method. This technique is then further applied to certain
discrete schemes.

[14] can be considered as a continuation of [15]. One of the discrete
schemes developed in [14] is selected as a benchmark for a new class of compact
high-order ADI type schemes developed by using Numerov’s approximation ap-
proach. Thereafter, general properties of such schemes are investigated for the
wave equation with the variable sound speed coefficient.

A new family of LOD schemes with fourth-order accuracy in both space

and time for the three-dimensional (3D) acoustic wave equation is proposed
n [12]. Still only wave equations in a homogeneous media are investigated and
boundary conditions are also homogeneous. This family of LOD schemes has a
different stability factor in comparison with ADI type schemes, moreover, LOD
scheme has a smaller CFL (Courant-Friedrichs-Lewy) constant.

A compact in space 4th order scheme is constructed in [5] by using the well
known high-order approximation of the second derivative. The approximation
error in time is O(72). Both high-order approximations of the solution and
its second derivative generate commuting operators. Therefore the same com-
bined energy and spectral analysis as in [1] can be applied. The obtained CFL
constant is a little bit worse than that obtained by the direct application of the
spectral analysis for a constant sound speed coefficient. Here, the boundary
conditions in all computational experiments are homogeneous.

Parallelization and convergence of ADI time integrators for 2D finite dif-
ference acoustic wave propagation are analyzed in [8]. Three parallel versions
of each method are investigated. It is shown that parallel solvers based on
compact finite difference solvers with tridiagonal matrices and CUDA kernels
for a NVIDIA card give the highest performance.

The rest of the paper is organized as follows. In Section 2, the mathematical
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problem is formulated for a general 3D wave equation with a variable sound
speed coefficient. We are interested to analyze state of the art compact high-
order parallel finite-volume schemes.

Two different approaches are used.

First, the discretization is done by using the Padé approximation and ap-
plication of the factorized implicit regularization operator (ADI type schemes).

Second, the Numerov type approximations are used. The time integration
is implemented by using factorized operators and the important part consists
in the formulation of artificial boundary conditions.

In Section 3, the stability analysis is performed for all constructed compact
high-order discrete schemes of the ADI type. Both the spectral and energy
methods are used. In order to directly compare the dynamic stability factors
of discrete schemes, a simplified model problem is defined for which the sound
speed is constant. Then, the spectral method is used to find and compare CFL
stability factors. These factors are close to the stability conditions of classical
symmetric explicit schemes.

The energy method is used for general coefficients ¢(x,y, z). However, we
note that no complete results are known for ¢ # const. A partial stability result
is obtained for a simplified compact scheme.

In Section 4, results of computational experiments are given. We consider
two test problems and provide errors, experimental convergence rates, and CPU
times for a sequence of time and space steps. It is shown that the EHOC scheme
gives the most accurate approximations and is the most efficient in terms of
CPU time. The results of the computational experiments confirm both the
theoretical accuracy and the stability estimates.

The second set of the computational experiments deals with parallel com-
putations. It is shown that parallel versions of compact factorized high-order
ADI schemes can be implemented very efficiently. This property is important
when simulating large-scale applied 3D wave propagation problems.

Finally, conclusions are given in Section 5.

2 High-order discrete schemes

The uniform time mesh @, on [0, 7] with the discrete step 7 = T/N is defined
by
W, = {t" " =, nzO,...,N}.

In what follows, Hj, denotes the Hilbert space of discrete functions on the
uniform space mesh @, on {2, where h is the space discretization parameter
and

wh:{(xi,yj7zk):xi:ih, y; = jh, zi = kh, Ogi,j,kgM}.

For the sake of simplicity, h is assumed to be the same in all three directions.
We define the discrete function

e = U(Xije, "), Xije = (@i, 95, 2k),  (Xijr, 1) € wp X wr,

that approximates the exact solution u(Xjjf,t").
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First we formulate the benchmark problem, which is used to compare ap-
proximation errors and stability results for different compact high-order discrete
schemes. The problem is obtained by applying the following assumptions for
the mathematical problem (1.1)—(1.2):

oX):=0C, f(X,t)=0, (2.1)

i.e., the velocity ¢(X) is constant.

In [7] a rather general technique was used to construct the fourth-order com-
pact approximation of the benchmark problem (1.1)—(2.1). This approach is
based on the Padé approximation and the application of the factorized implicit
operator to the discrete second-order time derivative

(14 p02)(1+ po2)(1 + p62)52U™ = 12 [53 (1 + i52) (1 + iag)

1279 12
+52 (1 n %52) (1 + %52) + 53(1 n %55) (1 ¥ %55)] U, (22)

where r = C7/h and p = (1 — 7?)/12. We use the standard notations

(620) i1 =Uit1,j6 — 2Uijk + Ui—1 j ks
(;U)* =Urtt —20m + UM, (5§U)ijk =Ui 1.6 — 2Uiji + Ui j—1,k,
(820)ijk = Ui jir1 — 2Usji + Us j -1

The popularity of this and similar ADI schemes stems from the fact that
they can be solved efficiently in three simple steps:

1 1
1482\ +L/3 — 2 [52 (1 752> (1 752)
+52(1 + i52) (1 + i(s?) + 52(1 + iéz) (1 + ics?)} un (2.3)
Y 12°° 1272 # 127 129 ’ '
(1+p5§)U"+2/3 _ U’n-&-l/B7
(14p62)52U™ = U2/, (2.4)
It is clear that Equations (2.3)—(2.4) can be solved as a sequence of 3M? tridi-
agonal linear systems with M x M matrices.
An important note needs to be considered here. Such an ADI-type imple-
mentation preserves the O(7* +h?*) accuracy when special boundary conditions

are used [3,9]. A set of boundary conditions consistent with the discrete equa-
tion (2.2) is the following [7]:
/s = (14 pd2)(1 + pd2) 57U™

Ui, = (L4 pd2) ;U™
Y

|(9th |6whz’

‘Bwhy :

Since the scheme (2.2) is a three-level scheme, it requires the initial condition
for U'. To construct the fourth-order approximation the standard method of
Taylor series can be used. The detailed definition of this condition is not
important for what follows (see [7] for all details).

Math. Model. Anal., 30(3):553-570, 2025.
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Next, we consider the explicit high-order compact scheme (EHOC) con-
structed in [4]. In the following, the discrete functions V., V;* and V" approxi-

mate the second-order derivatives 8;2‘, gy’; and gz’;, respectively. Fourth-order

Padé approximation is used to compute the values of these functions:

n n n (O2U)% 1<i<M,
Vg1 10V + Vi e = 12 Tz L 0<j k<M, (2.5)

n (52U)zgk: 1 S.] < M7

sz+1k+10V Z]k+V’Lj lk_12 B2 ) OS’L,kSM,

n n n (62U)Uk: 1<k< M,
Vi 10V + Vi o = 12 Tz 0<i,j<M. (2.6)

An important advantage of this scheme is that the boundary conditions for
the functions V", { = x,y, z follow directly from the exact boundary conditions
of the differential mathematical model (1.1)—(1.2). For the sake of brevity, we
only give the boundary conditions in the x direction:

1 0%g(X,t) 0?g9(X,t)  0%g(X,1)
n_ o _ ) _f(X.t N ) o )
Vz, Ijk CQ(X) ( ot2 f( ) ) 8y2 922 o 9
X:Xl,jk
I=0,M, 0<jk<DM, n>0. (2.7)

Note that the coefficient matrices in the system (2.5)—(2.7) are tridiagonal, so
the standard Thomas algorithm [3] can be used to solve these linear systems
efficiently.
The temporal part of the scheme is constructed applying the Taylor series
in time:
T

12
X {Fin—l,jk + et E e B T F e T

+1
Ul =20 — UJ,c +

2 n

ek [Vaticn + Voticge T Vo)
2 n n n

+ Cit1,ik [Vm,i+1,jk + Vo itk + Vz,i+1,jk]
2 n n n

¢ ok [Varigoie T Viligote T Vilij—14)
2 n n n

+ ¢ ik Ve igeie T Vaigeie T Vi g
2 n n n

+ i1 [Vaije—1 + Vyie—1 + V2ije—1)
2 n n n

+ g Ve + Vyligarn + V] }

+72(1=056,0%) (Fly + [V + Vg + V] )

7_4 aQFn
() o
ijk

where A = 7/h.
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In [13] the following compact ADI scheme is introduced
1 1
Bc,h (25t5tU) + AU = fQFh on wp X Wy, (29)
c c

1
Ben, (26tUO> +0.57A,U" = uy (") + 0.57F°% on wy,
c
n _ n
U ‘8‘0}1, _g(t )a
where the discrete derivative time operators are defined by

Un+1 —_yn Uu» — Un—l
W= ——, GU" = ——.
T

T

The splitting operator B, is defined as the product of 1D operators defined
on a three-point mesh stencil

h?(h? — 12¢

2
Bc,h = Bw,chBy,cth,ch; B{,ch =1y + 12 )Aﬁha f =T,Y,%,

where I}, is the discrete identity operator and the operators Ag, are defined as

(6:V)ij
h2 ’

(32V)ijk

(82V)iju
B2 '

AghV = s

AV = AV =

3 Stability analysis

We recall that we consider two PDE benchmark problems. In the first one, the
sound speed in (1.1)—(1.2) is a general stationary function ¢(z,y, z). Stability
analysis for discrete schemes that approximate this problem is usually based
on various versions of the energy method.

In the second simplified benchmark problem for (1.1)—(1.2), (2.1) the co-
efficient ¢ is constant. This assumption allows the use of spectral stability
analysis. Exactly this technique allows us to compare the stability properties
of the high-order discrete schemes constructed in the previous section.

We approximate the problem (1.1)—(1.2), (2.1) by the explicit symmetric
scheme [3,9]

SiU™ =362+ 6, +02) U™, 1<n<N, (3.1)

where we recall that r = C7/h. The eigenvectors and eigenvalues of the discrete
space operator §2 are defined by

—5§¢l(xi) = )\lgol(a:i), l=1,....M -1, z; € wy,

the eigenvectors and eigenvalues for the operators 55 and 55 are defined in a
similar way. For the following stability analysis it is very convenient that the
set of eigenvalues can be written in an explicit form (see, e.g. [9])

Irh
A = 4sin? (”7) I=1,...,M—1, 0<A\ <...<Ay_1 <4

Math. Model. Anal., 30(3):553-570, 2025.
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Since the eigenvectors {¢!,1 = 1,..., M — 1} define a complete orthonormal
set of basis functions, we can write the solution U™ in the form

M—-1
irgl'k: Z Clmrqzznr@l(mi)@m(yj)QOT(Zk)v (3.2)

l,m,r=1

where the coefficients ¢, define the initial vector, g, are real numbers and
define the stability factors of the discrete scheme, the dynamics of the solution
is computed as ¢, = (qums)". The stability factors g, are defined for
each discrete scheme and depend on eigenvalues of basic eigenvectors. We are
interested in partial solutions in which the indices [, m, r are fixed. The discrete
scheme (3.1) is stable if the following condition for the stability factor g,

|qlmr|§1a 1SlamaT§M_17

holds.

Substituting (3.2) into the discrete scheme (3.1) and using the orthonormal-
ity of the basis functions (eigenvectors), we obtain the following second order
equations for the coefficients gy,

Gr — 2= 72N+ A+ A Gt +1 = 0.
It follows from the Hurwitz criterion that |gpm,| < 1 if
22N+ Am +A)[ <2 = 0< 1PN+ Am 4+ M) <4
The most restrictive condition is obtained for the highest spectral component
3 Am_1 <4 = 3P <1

Thus we get the following stability result (in fact, this result is quite well
known):

Lemma 1. The three-level symmetric discrete scheme (3.1) is stable if the time
and space steps satisfy the estimate

13

7< —=—h. 3.3
<52 (33)
For our stability analysis of high-order discrete schemes, this conditional sta-
bility estimate defines the benchmark stability condition for explicit classical

discrete schemes.
Now we consider the stability of the explicit symmetric scheme for a problem
with a non-constant sound speed ¢
1 1 4 1

;U™ =

2 2 2 n

using the energy method. Consider one of the canonical forms of three-layer
schemes (see [9]):

1 n n
Dh(;af)U + AU =0, (3.5)
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where Dy, A, are constant in time self-adjoint positive operators
Ay = A}k” Ap > 0, D= D;, Dy, > 0. (36)

For discrete functions V' := {Vjji := V (24, y;, 2c), X € wp} in Hy we define
the standard inner product (-, -) and the corresponding norm || - ||. We will use
the following stability result [9]:

Theorem 1. The discrete scheme (3.5) under conditions (3.6) and the addi-
tional constraint )
Dy, > %Am (3.7)

is stable with respect to the initial data.

Ezample. Let us consider the explicit symmetric scheme (3.4) when the sound
speed c is constant. Then we have the operators

1

1
thcjlhy Ah:—ﬁ(éi—&—éz—i—éﬁ)

It is easy to prove that

(DAV,V) = 5V V), (AaV,V) < 15 (VV),

hQ(
and the stability condition (3.7) is satisfied if

-2 2
37 1 1
TAS TS S = T<7£h
h? c? c
The latter condition coincides with the estimate (3.3) derived by using the
spectral method.

Ezample. Let us consider the explicit symmetric scheme (3.4) when the sound
speed c(z,y, z) is non-constant. We then deal with the diagonal matrix and
the Laplace operator

Cijk

1 1

By calculating scalar products

M-—1

1
(DhV? V) = Z 2 vzjk > 5 (V V) (Ah‘/’ V) hg (V V)
ivj=1 ik Cinax
we obtain . 3,2 )
T T
Dy, > 7Ih_ h2 1 ZZAh

max

So the stability condition (3.7) is satisfied if

T<1f

" Cmax 3

h.

Math. Model. Anal., 30(3):553-570, 2025.


https://doi.org/10.3846/mma.2025.23819

m R. Clegis and S. Amiranashvili

Stability of the high-order discrete scheme (2.2). The sound speed is
constant C' in this problem, so the spectral stability method can be used. The
solution U™ is written as

M—1
1
k= Z Uy (T3) ™ (Y5) " (21)-
l,m,p=1
We restrict our analysis to the critical high eigenvector:
l=m=p=M-1 with w4y 1y =(2"

Substituting the above U™ into the discrete equation (2.2) we get an equation
for the stability factor ¢

(1= pAnr—1)*(q® —2q + 1) +3r* A1 (1 — A1 /12)%¢ = 0.

Taking into account that r = Cr/h and p = (1—7r?)/12, the following quadratic
equation is obtained
37’2)\1\/[,1(1 - )\M71/12)2

2
“—2-7)g+1=0, = ;
(1= Apa(1—72)/12)°

(3.8)

where A\pr_1 < 4. It follows from the Hurwitz criterion that discrete scheme
(2.2) is stable if 0 < v < 4. By solving the inequality we get that the stability
condition is satisfied for

Ct < 0.607935083 h.

This CFL estimate agrees well with results provided in [7]. We see that the
stability constant of this splitting scheme is a little bit larger than the CFL
stability constant for the the standard second-order explicit difference scheme
(3.4) for which Ct < 0.5773502693 h.

Stability of the EHOC high-order discrete scheme (2.9). The non-
constant sound speed is limited by the “frozen” constant C' = max |¢(z,y, 2)|.
Therefore, the spectral stability method will be used to analyze the stability of
the modified discrete scheme.

The discrete solutions U™, V™ are written as

M-—1

Pe= D Uit (@)™ (y)e (2),
l,m,p=1
M-—1

‘/g,lijk = Z U?,l'rrzp(pl (xl)@m(yj)(pp(zk)a g =T,Y,%.
l,m,p=1

As in the previous case, we restrict our analysis to the critical high eigenvector
withl=m =p= M — 1 and set

Upr—m—1,m-1 = (@™ VEm—im—1m-1 = (ve)", §=m,y, 2.
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Substituting these expressions into the discrete equations (2.5)-(2.6) we get
the following relation for the stability factor ¢

(12 - )‘Mfl)(vﬁ)n = _12)\]‘};{;1 (Q)na 5 =T,Y,z. (39)

Next, using the temporal part of the EHOC scheme (2.8) and relations (3.9),
we get

027_2
ntl _gm 4 n—1 _ 2 2(17
q q"+q Ohty 12

_ 36)\1\/[71 C2T2( _027'2
12— Ay K2 4h2?

The latter equation can be written in the following standard form

/\M_l) (vg + UZ + v;‘)

>\M71) q".

36— r?

2 M—-1 9
—@-mg+1=0, 7= 2 (1= Do),
¢ = 2= 0. 7 12_)\M_1r g Mt

where r = C7/h. It follows from the Hurwitz criterion that EHOC scheme is
stable if
v<4 = Cr <0.5773502693 h.

Thus, the CFL stability condition is the same as for the standard second-order
explicit difference scheme (3.4).

The spectral stability analysis for a compact ADI scheme with vari-
able sound speed coefficient. In [6] a compact-higher order ADI scheme
is proposed

- szjk Vo2 - C?jk Vi, L c?jk Vo2 (2™
12 1+62/12 12 1+62/12 12 1+02/12 )\ s
o Vo2 Vo Vo2 .
N ciﬂ”‘f(1 Toiz T iraziz T irezie) U (3.10)

for the 3D acoustic wave equation with variable sound speed coefficient. Here
v=r/h.

We will not consider a full convergence and stability analysis of this scheme,
since its implementation is based on an extended space mesh stencil and the
one-sided approximations are used to formulate additional boundary condi-
tions. These details of the discrete scheme are not included in the stability
analysis, presented in [6]. The authors restrict themselves to the stability anal-
ysis of the simplified (unfactorized) discrete equation

§t2 n 2 Vé:% Vé; Vég n
1+62/12 (Ui = €l 1462/12 - 14+62/12 * 1462/12 O i
The stability analysis is based on the standard energy method, the well-known

estimate for the spectrum of a self-adjoint operator A and a mapping of a real
valued measurable function [10]:

o(f(4)) € f(o(4),

Math. Model. Anal., 30(3):553-570, 2025.
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where o(A) is the spectrum of A and f (o (A)) is the closure of the set f(o(4)).
The following stability condition

h
V3
is proved in [6]. The latter equation is identical to the stability condition
we have proved above for the standard explicit second-order difference scheme
(3.4).

In order to test the proposed stability analysis technique, we consider the
scheme (3.10) in the case of constant C. Applying the spectral form of the
solution, the following quadratic equation is derived for the stability factor:

32— 2 A 3
2 (2- 1=0 — (2 AMeL 14 " AM-1
q ( ’7)q + ’ ’y 1 _ AM_1/12 + 1 _ )\M_l/l? Y

where r = C7/h. After simple transformations we get that parameter =y is
equal to this parameter in the stability equation of scheme (2.2). Thus ADI
scheme (3.10) is stable if the CFL condition

max |¢;j|T <
ijk

Ct < 0.607935083 h

is satisfied. Clearly, this result is obtained for the constant sound speed C.

Stability of compact ADI scheme (2.9). Now we consider stability of
high-order compact ADI scheme (2.9). This scheme solves the 3D acoustic
wave equation with a non-constant sound speed coefficient ¢(z,y, z).

First, we examine the stability of this scheme when the basic technique of
spectral stability analysis can be applied, i.e., for the constant coefficient C'
Here the stability factor ¢ satisfies the same quadratic equation (3.8) as for
the discrete scheme (2.2). Therefore the discrete scheme (2.9) is stable for the
constant speed of sound C, if again C'7 < 0.607935083 h. For the general case
of a varying sound speed coefficient ¢(x,y, z), the stability analysis cannot be
based on Theorem 1. Therefore a different three-level in ¢ template is proposed
in [13]:

BpDy6:6iV + ch?ApéidsV + AV =F in H, on w,,
and the following sufficient stability conditions are formulated

Ah:AZ>O, Bh:BZ>O, l)h:l);;>07
ApBpn = BrAp,
(1/4—0)m*B, ' Ay, < Dy,
This template cannot be used for the ADI scheme (2.9). However, one

can construct a modified ADI scheme for which the template easily gives the
stability results. Let us consider the following factorized ADI scheme [13]

_ 1 _
Bon <625t5tU> + A, U =0 on wp X ws,
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The splitting operator B, j, is defined as the product of 1D operators defined
on a three-point mesh stencil

o o o _ h?
Ay = _(sh,ysh,zAm + sh,zsh,sz + Sh,2Sh, yAz)» Sh,e ‘= I, + EA&

_ _ _ _ -~ h2(h2 2 2 )
Ba,h = B:v,cthy,cthz,aha BE,O’h = Ih + %A& 5 =X,Y,z

The stability of this scheme follows directly from general estimates for the
template scheme under the conditions of CFL type. This nice stability property
is obtained at some cost, as the approximation order is reduced to O(72 + h?).

4 Results of computational experiments

4.1 Experimental estimates of convergence rate and CPU time.

In this section, we provide a number of numerical experiments conducted in
order to demonstrate the accuracy and efficiency of the proposed higher-order
compact ADI schemes for solving 3D acoustic wave equations. All simulations
are implemented using C++ language on the computer with Intel(R) Core(TM)
i7-12700 processors with 16 GB RAM.

First we solve the 3D test problem (1.1) with coefficients:

C(l’,y’Z):]_7 ngvyazgﬂ-7 T:].
Initial and boundary data are defined according to the the exact solution
u(x,y, z,t) = cos (V/3t) cos(x) cos(y) cos(z).

Errors e(7), experimental convergence rates p(7) and CPU times for the
discrete solutions of ADI scheme (2.2), EHOC scheme and ADI scheme (2.9)
for a sequence of time and space steps 7 = T/N,h = 7/M, ea(N) = eg(N) are
presented in Table 1. It follows from computational results that errors for two
ADI schemes (2.2) and (2.9) are equal for this test problem.

Table 1. Errors e(7), experimental convergence rates p(7) and CPU times for the discrete
solutions of ADI scheme (2.2), EHOC scheme and ADI scheme (2.9) for a sequence of time
and space steps 7 =T/N,h = 7 /M, ea(N) = eg(N).

(N, M) e(N)  po(N) To(N)  e(N)  pu(N) Ti(N) Ta(N)

(40, 32) 8.0-1078 — 0.044 5.7-1078 — 0.042  0.04
(80, 64) 4.9-107° 402 0743 35-107° 402 0.635  0.72
(160, 128) 3.1-107'°  4.00 1534 22-107'° 399 1045  13.0
(320, 256) 1.9-107'*  4.00 2683 1.4-107'" 400  177.0 221

Math. Model. Anal., 30(3):553-570, 2025.
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It follows from the presented results that the convergence rates of all three
discrete schemes are equal to four. The CPU time for the EHOC scheme is the
smallest one.

As the second example we solve 3D test problem (1.1) with coeflicients:

clr,y,2) =1, 0<uz,y,z<mw, T=1,
f(z,y, z,t) = 4exp(—t) cos(z) cos(y) cos(z).

Initial and boundary data are defined according to the the exact solution
u(zx,y, z,t) = exp(—t) cos(x) cos(y) cos(z).

Errors e(7), experimental convergence rates p(7) and CPU times for the discrete
solutions of EHOC scheme and ADI scheme (2.9) for a sequence of time and
space steps 7 = T/N,h = w/M are presented in Table 2. It follows from

Table 2. Errors e(7), experimental convergence rates p(7) and CPU times for the discrete
solutions of EHOC scheme and ADI scheme (2.9) for a sequence of time and space steps
T=T/N,h=n/M.

(N, M) e1(NV) p1(N) Ti(N) ea(NV) p2(N) Ta(N)

(40,32)  312-100%  — 0169 1.36-1077  —  0.233
(80, 64)  2.08-10=° 391 2718 9.02-10~° 392  3.808
(160, 128) 1.33-10710 396 4458 577-1070 397 6255
(320, 256) 8.45-10712 398 7277 3.65-10"'' 399 1052

the presented results that in the case of variable sound speed coeflicients the
convergence rates of both discrete schemes again are equal to four. The CPU
time for the EHOC scheme is minimal also for this test problem.

4.2 Results of parallel computational experiments

We solved the second test problem. First, in order to test the efficiency of
the parallel computers used in all computational experiments we solved this
problem by using the parallel version of classical explicit symmetric second
order accurate discrete scheme

S;U™ = (0346, +02)U" + F",  (z,y,2) € wh. (4.1)

Since a computational part of the algorithm (4.1) is reduced in comparison with
high-order ADI type schemes, this parallel solver can be used as a benchmark
problem to test the efficiency of the communication part of all parallel discrete
schemes constructed in this paper.

Results for the symmetric second order accurate scheme (4.1) are calculated
by using one computational node and a different number of cores p =1, 2,4, 8.
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These results are presented in Table 3, here CPU time is denoted by T}, speed
up S, = T1/T, and efficiency E, = S,/p. Results are presented for problems
of two different sizes: a small size problem N = 160, M = 128 and a large size
problem N = 320, M = 256, where this information is denoted as T, S, and
B,

The space mesh wy, is split into 1 x 1 x 2, 1 x2x 2 and 2 x 2 x 2 sub-meshes.
Each process is responsible for computations at all discrete points of its mesh
part. The obtained results agree well with the well-known theoretical com-

Table 3. Results for the symmetric second order accurate scheme (4.1), one node with a
different number of cores p = 1,2,4,8 is used. Here notation of CPU time T}, speed up Sp
and efficiency E, are introduced for a small size problem N = 160, M = 128 and T, Sp, Ep
for a large size problem N = 320, M = 256.

p T, Sp Eyp Tvp gp E,p

10.206 1 1 165.9 1 1

5.278 1.934 0.967 87.26 1.901 0.951
2.831 3.608 0.901 47.68 3.479 0.870
1.588 6.429 0.804 27.44 6.046 0.756

QO = DN

plexity estimates of this parallel algorithm. Still we remark on one interesting
point, that in the case of the large size problem the usage of the memory is not
so effective as for the small size problem. This effect is explained by the fact
that we increase a number of cores but the size of the total memory remains
unchanged.

Results of similar experiments for the parallel version of EHOC scheme are
are given in Table 4. The main new part of the parallel algorithm deals with a
parallel solution of split systems with tridiagonal matrices. It is implemented
as a modification of the classical factorization algorithm when two processes
solve their parts of the system by moving in different directions from the left
and right sides of the system. They exchange information at the middle point
of 1D mesh and continue calculation in the backward direction. Thus the
total amount of arithmetical operations is not increased and it is optimally
distributed among different cores. It follows from the given results of experi-
ments, that the efficiency E, of the parallel EHOC version is better than for
the explicit symmetrical discrete scheme (4.1).

The second remark confirms the conclusion that for one node with different
numbers of cores the efficiency of memory usage is decreased for the large size
problem.

Results of similar experiments for the parallel version of the ADI scheme
(2.9) are given in Table 5. The main new part of the parallel algorithm deals
with a parallel solution of split systems with tridiagonal matrix. It is imple-
mented as it was done in EHOC parallel algorithm.

All conclusions are the same as for the parallel EHOC algorithm.

Math. Model. Anal., 30(3):553-570, 2025.
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Table 4. Results for the EHOC scheme where one node with a different number of cores
p = 1,2,4,8 is used. Here notation of CPU time T}, speed up S, and efficiency E, are
introduced for a small size problem N = 160, M = 128 and Tp, §p, E‘p for a large size
problem N = 320, M = 256.

p T, Sp Ey Tp Sp Eyp

44.541 1 1 727.7 1 1

22437 1.985 0.993 366.9 1.983 0.991
11.672 3.816 0.954 1924 3.781 0.945
6.571 6.778 0.847 109.8 6.630 0.829

O = DN =

Table 5. Results for the ADI scheme (2.9) where one node with a different number of
cores p = 1,2,4,8 is used. Here notation of CPU time T}, speed up Sp and efficiency Ej
are introduced for a small size problem N = 160, M = 128 and fp, §p, Ep for a large size
problem N = 320, M = 256.

p T, Sp Ey T, gp E,

62.550 1 1 1052.4 1 1

31.729 1971 0.986 575.03 1.830 0.915
17.025 3.674 0919 287.53 3.660 0.915
9.736  6.425 0.803 169.36 6.214 0.776

0 = N

In order to investigate a possibility to distribute the computational mesh
among different nodes (and cores of these nodes), we made computational ex-
periments with a fixed total number of cores p = 8 distributed on different
numbers of nodes. The following CPU times are obtained, where Tg(n) de-
notes CPU time

Te(1) = 169.36, Ti(2) = 150.76, Ts(4) =143.37, Tx(8) = 153.01,

for the case of 8 cores distributed among n nodes. These results show the influ-
ence of the size of computer memory on a CPU time. This trend is even more
important for larger 3D problems and their CPU time is memory depended in
many applications.

5 Conclusions

In summary, we have studied two main issues on the construction and analysis
of high-order ADI-type discrete schemes for solving 3D acoustic problem with
variable sound speed coefficient. First, we studied the stability of popular dis-
crete schemes. The conclusion reached is that all the schemes studied in this
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paper are stable under very similar CFL conditions. Note that this result was
obtained for the simplified benchmark problem when the coefficient ¢(z,y, 2)
was approximated by the constant coefficient C. The challenge of develop-
ing efficient stability analysis techniques based on the energy method remains
unresolved.

The important point of our analysis is that for the selected ADI schemes
artificial boundary conditions are defined on the same stencil of space meshes.
Only for one scheme the boundary conditions for sub-steps are constructed
by using larger stencils and one-sided approximations. There are no rigorous
theoretical results on the stability of this particular ADI scheme with respect
to such boundary conditions.

The second part of this work was devoted to comparing the accuracy of
new ADI-type schemes and the efficiency of parallel versions of the solvers.
The latter point is really important for solving 3D problems. It is shown that
for the selected test problems the EHOC schemes are the most accurate and
efficient. On the other hand, the parallel efficiency of all schemes is similar. It
is planned to test the efficiency of parallel solvers when more than 2 processes
are used in one dimension. For example Wang’s parallel algorithm can be used
to solve systems with tridiagonal matrices.
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