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Abstract.The Riemann hypothesis (RH) on zeros of the zeta-

function ζ(s), s = σ + it, states that all zeros of ζ(s) in the strip

0 < σ < 1 lie on the line σ = 1/2. Several equivalents of RH

are known. In the paper, we obtain equivalents of RH in terms

of self-approximation of ζ(s) by shifts ζ(s + ihtk), k ∈ N, where

{tk, k ∈ N} is the sequence of the Gram points.
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1 Introduction

Let s = σ + it denote a complex variable and P the set of all prime numbers.
The Riemann zeta-function ζ(s) on the half plane σ > 1 is defined by the
Dirichlet series

ζ(s) =

∞∑
m=1

1

ms
,

or by the Euler product

ζ(s) =
∏
p∈P

(
1− 1/ps

)−1
, (1.1)

and has the analytic continuation to the whole complex plane, except for a
simple pole at the point s = 1 with residue 1. L. Euler was the first to study
the function ζ(s), though only for real values of s. Notably, identity (1.1) is
due to Euler. B. Riemann, unlike Euler, discovered, that the function ζ(s) is
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an important analytic object for complex s. He proved the functional equation

π−s/2Γ

(
s

2

)
ζ(s) = π−(1−s)/2Γ

(
(1− s)/2

)
ζ(1− s) (1.2)

for all s ∈ C, where Γ (s) is the Euler gamma-function, gave analytic continua-
tion for ζ(s), proposed the application of ζ(s) for investigation of the function

π(x) =
∑

p⩽x, p∈P
1, x → ∞,

and stated important conjectures [25]. Riemann’s method to estimate the
function π(x) is related to the zeros of the function ζ(s). From Equation (1.2),
it follows that ζ(s) = 0 for s = −2k, k ∈ N. These zeros of ζ(s) are called
trivial. Let N(T ) denote the number of zeros of ζ(s) lying in the rectangle
{s ∈ C : 0 < σ < 1, 0 < t ⩽ T}. Riemann conjectured [25] that

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

The latter formula was proved by H. von Mangoldt [28]. Thus, ζ(s) has in-
finitely many zeros lying in the strip {s ∈ C : 0 < σ < 1}. These zeros of ζ(s)
are called non-trivial. Riemann conjectured that all non-trivial zeros of ζ(s) lie
on the critical line σ = 1/2. This conjecture, called the Riemann hypothesis
(RH), is one the most important problems of mathematics. RH was included
in the list of Hilbert problems [14,15] (Problem 8), it is among the seven most
important Millennium problems of mathematics [1]. One can easily obtain that
ζ(s) ̸= 0 for σ ⩾ 1.

The Riemann method for the asymptotics of the function π(x) is based on
using the zero-free regions lying in the half-plane σ ⩽ 1. J. Hadamard [13] and
C.-J. de la Valée Poussin [8, 9, 10] independently developed Riemann’s ideas.
They obtained that there is a constant c > 0 such that ζ(s) ̸= 0 for

σ > 1− c

log(|t||+ 2)
.

From this, they derived that

π(x) =

∫ x

2

du

log u
+O(xe−c1

√
log x), x → ∞,

with a certain constant c1 > 0. It is known that the RH implies the estimate

π(x) =

∫ x

2

du

log u
+O(

√
x log x), x → ∞. (1.3)

On the other hand, the latter estimate implies RH [27]. Thus, (1.3) is one of
the oldest equivalents of RH. There are many other equivalents of RH stated
in terms of various estimates, positivity of some functions, self-approximation,
etc., see [5] and [6]. The present paper is focuses on approximation properties
of the function ζ(s).
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Let D = {s ∈ C : 1/2 < σ < 1}. By K denote the class of compact subsets
of the strip D with connected complements, and by H0(K) with K ∈ K the set
of continuous non-vanishing on K functions that are analytic inside of K. Let
measA stand for the Lebesgue measure of a measurable set A ⊂ R. It is well
known that functions of the set H0(K), uniformly on K, are approximated by
shifts ζ(s+ iτ), τ ∈ R. This property of ζ(s) is called universality, and is stated
as follows:

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Moreover, ”lim inf” can be replaced by ”lim” for all but at most countably
many ε > 0.

The first assertion above is the improved version of the Voronin universality
theorem and can be found in [2, 11, 18, 19, 26], while the second assertion was
proved in [23].

Based on universality of ζ(s), B. Bagchi proved [3] the following equivalent
of RH: the RH is equivalent to the assertion that, for every K ∈ K and ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− ζ(s)| < ε

}
> 0.

In [20], the latter result was supplemented by the following statement: the
RH is equivalent to the assertion that, for every K ∈ K, the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− ζ(s)| < ε

}
exists and is positive for all at most but at most countably many ε > 0.

The Bagchi criterion [3] inspired several works on the so-called strong re-
currence of ζ(s). For example, in [24], it was obtained that for any real d ̸= 0
and for any ε > 0 and K ∈ K,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− ζ(s+ idτ)| < ε

}
> 0.

In [21], the latter criteria of RH were extended by using generalized shifts of
ζ(s). Return to the functional equation (1.2). The product g(s) = π−s/2Γ (s/2)
is an important ingredient of (1.2). Denote by θ(t) the increment of the argu-
ment of the function g(s) along the segment connecting the points s = 1/2 and
s = 1/2 + it. It is known [16,22] that the equation

θ(t) = π(τ − 1)

with τ ⩾ 0 has the unique solution tτ , and this solution is called the Gram
function. This name comes back to J.-P. Gram who considered [12] tτ with
τ = k, k ∈ N0 = N ∪ {0}, in connection with imaginary parts of non-trivial
zeros of ζ(s). The numbers τk, k ∈ N0 are called Gram points. In [21], the
criteria of RH was given in terms of self approximation by shifts ζ(s+ itτ ).
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Theorem 1. [21]. The RH holds if and only if, for every K ∈ K and ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ itτ )− ζ(s)| < ε

}
> 0.

Theorem 2. The RH holds if and only if, for every K ∈ K the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ itτ )− ζ(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

Theorems 1 and 2 are closely connected and inspired by universality theorem
for ζ(s) in terms of shifts ζ(s + itτ ) ( [21], Theorem 3): suppose that K ∈ K
and f(s) ∈ H0(H). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ itτ )− f(s)| < ε

}
.

Moreover, the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ itτ )− f(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

The latter theorem is of continuous type: τ takes arbitrary values from the
interval [0, T ]. There exists its discrete analogue using the shifts ζ(s + ihtk),
h > 0, with Gram points tk, k ∈ N0. Denote by #A the cardinality of a set A,
and let N run over the set N. Then the following statement has been obtained
( [17], Theorems 1.1 and 1.2).

Proposition 1. Suppose that h > 0 is a fixed number, K ∈ K and f(s) ∈
H0(K). Then, for every ε > 0,

lim inf
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− f(s)| < ε

}
> 0.

Moreover, the limit

lim
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− f(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

The aim of this paper is the discrete versions of Theorems 1 and 2.

Theorem 3. The RH is true if and only if, for every K ∈ K, h > 0 and ε > 0,

lim inf
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− ζ(s)| < ε

}
> 0.
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Theorem 4. The RH is true if and only if, for every K ∈ K, h > 0 the limit

lim
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− ζ(s)| < ε

}
exists and is positive for all but at most countably many ε > 0.

We will prove Theorems 3 and 4 in Section 3. Section 2 is devoted to
discrete limit theorems on weak convergence of probability measures in the
space of analytic functions.

2 Weak convergence

Denote by H(D) the space of analytic functions on the strip D endowed with
the topology of uniform convergence on compacta. Recall a metric in H(D)
which induces its topology. There is a sequence {Kl : l ∈ N} ⊂ D of compact
subsets such that [7]

D =

∞⋃
1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and every compact set K ⊂ D lies in some set Kl.
Then, for g1, g2 ∈ H(D), taking

d(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

,

we have the desired metric.
Clearly, the sets Kl can be chosen with connected complements. For exam-

ple, we can take closed rectangles.
Let X be an arbitrary topological space. Denote by B(X) the Borel σ-

field of X, i.e., the σ-field generated by open sets of X. We will consider
probability measures defined on (H(D),B(H(D)). Let Pn, n ∈ N, and P be
probability measures on (X,B(X). Recall that Pn converges weakly to P as

n → ∞ (Pn
w−−−−→

n→∞
P ) if, for every real continuous bounded function f on X,

the relation

lim
n→∞

∫
X
fdPn =

∫
X
fdP

holds.
Several equivalents of weak convergence of probability measures are known.

Denote by ∂A the boundary of a A ⊂ X. Recall that the set A is said to be a
continuity set of P if P (∂A) = 0. For our aims, the following statement will
be useful.

Lemma 1. (A part of Theorem 2.1 of [4]). The statements

(i)

Pn
w−−−−→

n→∞
P ;

Math. Model. Anal., 30(3):571–582, 2025.
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(ii) For every open set G ⊂ X

lim inf
n→∞

Pn(G) ⩾ P (G);

(iii) For every continuity set A of P

lim
n→∞

Pn(A) ⩾ P (A)

are equivalent.

In order to state a limit theorem for ζ(s) in the space H(D), we need some
notation. Define the Cartesian product

Ω =
∏
p∈P

{s ∈ C : |s| = 1}.

With the product topology and pointwise multiplication, the set Ω is a com-
pact topological Abelian group. Therefore, on (Ω,B(Ω)), the probability Haar
measure mH can be defined, and we have the probability space (Ω,B(Ω),mH).
Denote elements of Ω by ω = (ω(p) : p ∈ P) and, on the probability space
(Ω,B(Ω),mH), define the H(D)-valued random element

ζ(s, ω) =
∏
p∈P

(
1− ω(p)

ps

)−1

.

Notice that the latter infinite product, for almost all ω ∈ Ω, is uniformly
convergent on compact sets of the strip D, see Theorem 5.1.7 of [19].

Denote by Pζ the distribution of the random element ζ(s, ω), i.e.,

Pζ(A) = mH{ω ∈ Ω : ζ(s, ω) ∈ A}, A ∈ B(H(D)),

and, on (H(D),B(H(D)), define the probability measure

PN,h(A) =
1

N
#{1 ⩽ k ⩽ N : ζ(s+ ihtk) ∈ A}, A ∈ B(H(D)).

Then the following limit theorem is true.

Theorem 5. ( [17], Theorem 3.1). Suppose that h > 0 is fixed. Then the

relation PN,h
w−−−−→

N→∞
Pζ holds.

In [17], Theorem 5 is applied for discrete universality of the function ζ(s)
by using the shifts ζ(s+ ihtk). We recall the main points of this proof.

First the measure

QN,h(A) =
1

N
#{1 ⩽ k ⩽ N : (p−ihtk : p ∈ P) ∈ A}, A ∈ B(Ω),
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is considered, and, using the Fourier transform method as well as the uniform
distribution modulo 1 of the sequence {htk : k ∈ N}, the limit relation

QN,h
w−−−−→

N→∞
mH (2.1)

is obtained.

The next step deals with the absolutely convergent Dirichlet series

ζn(s) =
∞∑

m=1

exp{−(m/n)θ}
ms

, n ∈ N,

with a fixed θ > 1/2. Let the map un : Ω → H(D) be given by

un(ω) =

∞∑
m=1

exp{−(m/n)θ}ω(m)

ms
, ω(m) =

∏
pl|m, pl+1∤m

ωl(p), m ∈ N.

Then (2.1) implies that, for

PN,h(A) =
1

N
#{1 ⩽ k ⩽ N : ζn(s+ ihtk) ∈ A}, A ∈ B(H(D)),

the limit relation

PN,h
w−−−−→

N→∞
mHu−1

n
def
= Pn (2.2)

holds, where mHu−1
n (A) = mH(u−1

n A) for A ∈ B(H(D)).

An important part of the proof is the approximation of ζ(s) by ζn(s) in the
mean, i.e., that

lim
n→∞

lim sup
N→∞

N∑
k=1

d(ζ(s+ ihtk), ζn(s+ ihtk)) = 0. (2.3)

Finally, it is proved that the probability measure Pn is tight, i.e., that for every
ε > 0, there exists a compact set Kε ⊂ H(D) such that

Pn(Kε) > 1− ε

for all n ∈ N. This, the relations (2.2) and (2.3) together with Theorem 4.2
of [4] prove Theorem 5.

One more ingredient for the proofs of Theorems 3 and 4 is the support of
the measure Pζ . Recall that the support of Pζ is a minimal closed Sζ ⊂ H(D)
such that Pζ(Sζ) = 1. The set Sζ consists of all functions g ∈ H(D) such that,
for every open neighbourhood G of g, the inequality Pζ(G) > 0 is satisfied.

Set

S = {g ∈ H(D) : g(s) ̸= 0 on D, or g(s) ≡ 0}.

Proposition 2. ( [2, 19]). The support of the measure Pζ is the set S.

Math. Model. Anal., 30(3):571–582, 2025.
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3 Proofs of Theorems 3 and 4

Proof. (Proof of Theorem 3). Necessity. Suppose that RH is true. Then
ζ(s) ̸= 0 on the strip D. Hence, ζ(s) ∈ H0(K) for all K ∈ K. Therefore, by
Proposition 1,

lim inf
N→∞

1

N
#{1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− ζ(s))| < ε} > 0 (3.1)

for all K, h > 0 and ε > 0.
Inequality (3.1) also follows from Theorem 5 and Proposition 2. Since

ζ(s) ̸= 0 for s ∈ D, we have ζ(s) ∈ S. Therefore, for every compact set K and
ε > 0, the set

Gε(K) =

{
g ∈ H(D) : sup

s∈K
|g(s)− ζ(s)| < ε

}
is an open neighborhood of the element ζ(s) of the support of the measure Pζ

in view of Proposition 2. Hence, by a property of the support,

Pζ(Gε(K)) > 0.

Thus, Theorem 5 and (ii) of Lemma 1 yield

lim inf
N→∞

PN,h(Gε(K)) ⩾ Pζ(Gε(K)) > 0,

and the definitions of PN,h and Gε(K) prove inequality (3.1).
Sufficiency. We will show that inequality (3.1) implies the RH. Suppose,

on the contrary, that the RH is not valid. Then ζ(s) has zeroes lying in D,
thus, ζ(s) ̸∈ S, and, by Proposition 2, ζ(s) is not an element of the support
of the measure Pζ . Therefore, by a support property, there exists an open
neighborhood G of ζ(s) such that

Pζ(G) = 0. (3.2)

There exists δ > 0 such that

Gδ = {g ∈ H(D) : d(g(s), ζ(s)) < 2δ} ⊂ G.

We will show that there exists a set K ∈ K and ε > 0 such that the set Gε(K)
satisfies the inclusion Gε(K) ⊂ Gδ. For this, we use the sets from the definition
of the metric d. Let l0 be such that∑

l>l0

2−l < δ. (3.3)

By a property of the sequence {Kl : l ∈ N}, the inclusion Kl ⊂ Kl0 is true for
all l = 1, . . . , l0. This remark and (3.3), for g ∈ Gε(Kl0), give

d(g(s), ζ(s)) =

 l0∑
l=1

+
∑
l>l0

 2−l sups∈Kl
|g(s)− ζ(s)|

1 + sups∈Kl
|g(s)− ζ(s)|

< ε

l0∑
l=1

2−l +
∑
l>l0

2−l < 2δ
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for ε < δ. Hence, we have an inclusion Gε(Kl0) ⊂ Gδ for all 0 < ε < δ. This
implies, for 0 < ε < δ, the inclusion Gε(Kl0) ⊂ G, thus, in view of (3.2),

Pζ(Gε(Kl0)) = 0 (3.4)

for 0 < ε < δ.

The boundary ∂Gε(Kl0) of the set Gε(Kl0) belongs to the set{
g ∈ H(D) : sup

s∈Kl

|g(s)− ζ(s)| = ε
}
.

Therefore, the boundaries ∂Gε1(Kl0) and ∂Gε2(Kl0) do not intersect for ε1 ̸=
ε2. Hence, there are at most countably many values of ε such that

Pζ(∂Gε(Kl0)) > 0.

Actually, for m ∈ N \ {1}, there are at most m sets ∂Gεm(Kl0) such that

Pζ(∂Gεm(Kl0)) > 1/m.

Thus, the set

A
def
=

∞⋃
m=2

{
εm > 0 : Pζ(∂Gεm(Kl0)) >

1

m

}
is at most countable. Since

{ε > 0 : Pζ(∂Gε(Kl0)) > 0} = A,

we have the desired assertion. The latter remark implies that Pζ(∂Gε(Kl0)) = 0
for all but at most countably many ε > 0, in other words, the set Gε(Kl0) is
the continuity set of the measure Pζ for all but at most countably many ε > 0.
Therefore, there exists ε1 ∈ (0, δ) such that the set Gε1(Kl0) is a continuity of
the measure Pζ , and, by (3.4), satisfies

Pζ(Gε1(Kl0)) = 0.

Hence, application of Theorem 5 and (iii) of Lemma 1 give

lim
N→∞

PN,h(Gε1(Kl0)) = Pζ(Gε1(Kl0)) = 0.

Thus,

lim inf
N→∞

1

N
#
{
1 ⩽ k ⩽ N : sup

s∈Kl0

|ζ(s+ ihtk)− ζ(s)| < ε1

}
= 0,

and this contradicts inequality (3.1). This contradiction shows that RH follows.
⊓⊔

Math. Model. Anal., 30(3):571–582, 2025.
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Proof. (Proof of Theorem 4). Necessity. Suppose that the RH is true. Then
we have that ζ(s) ∈ H0(K) with every K ∈ K. Therefore, the second statement
of Proposition 1 shows that, for every K, the limit

lim
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− ζ(s)| < ε

}
(3.5)

exists and is positive for all but at most countably many ε > 0. This also
can be derived by using Theorem 5 and Proposition 2. Preserving the above
notation, in view of Proposition 2, we have Pζ(Gε(K)) > 0 for every compact
set K ⊂ D. Moreover, as in the proof of Theorem 3, we obtain that the set
Gε(K) is a continuity set for all but at most countably many ε > 0. Therefore,
by Theorem 5 and (iii) of Lemma 1, the limit (3.5) exists and equals to

Pζ(Gε(K)) > 0

for all but at most countably many ε > 0.
Sufficiency. Suppose that the limit (3.5) exists and is positive for all but

at most countably many ε > 0. We will prove that the RH is valid. If, on
the contrary, RH is not valid, then, as in the proof of Theorem 3, we obtain
that there exists δ > 0 and the set Kl0 such that equality (3.4) is true for all
0 < ε < δ. Moreover, the set Gε(Kl0) is a continuity set for all but at most
countably many ε > 0. From these remarks, Theorem 5 and (iii) of Lemma 1,
we found that

lim
N→∞

PN,h(Gε(Kl0)) = Pζ(Gε(Kl0)) = 0

for all but at most countably many 0 < ε < δ. However, this contradicts the
positivity of the limit (3.5) for all but at most countably many ε > 0. This
contradiction proves the validity of the RH. The theorem is proved. ⊓⊔

Remark 1. Statements analogical to Theorems 3 and 4 for shifts ζ(s + iφ(k))
with a function φ(t) such that

1

N
#
{
1 ⩽ k ⩽ N : ζ(s+ iφ(k)) ∈ A

}
, A ∈ B(H(D)),

converge weakly to Pζ as N → ∞, are valid.
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[25] B. Riemann. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse.
Monatsber. Preuss. Akad. Wiss. Berlin, pp. 671–680, 1859.

[26] J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877,
Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-44822-8.

[27] H. von Koch. Sur la distribution des nombres premiers. Acta Math., 24:159–182,
1901. https://doi.org/10.1007/BF02403071.

[28] H. von Mangoldt. Zu Riemanns’ abhandlung “über die Anzahl der Primzahlen
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