

2025 Volume 30 Issue 3 Pages 571–582

https://doi.org/10.3846/mma.2025.23766

Equivalents of the Riemann hypothesis involving the Gram points

Julija Karaliūnaitė $^{a \boxtimes 0}$ and Antanas Laurinčikas b

- ^a Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius, Lithuania [®]R
- ^bInstitute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania №

Article History:

- received April 22, 2025
- revised June 26, 2025
- accepted July 1, 2025

Abstract. The Riemann hypothesis (RH) on zeros of the zetafunction $\zeta(s)$, $s=\sigma+it$, states that all zeros of $\zeta(s)$ in the strip $0<\sigma<1$ lie on the line $\sigma=1/2$. Several equivalents of RH are known. In the paper, we obtain equivalents of RH in terms of self-approximation of $\zeta(s)$ by shifts $\zeta(s+iht_k)$, $k\in\mathbb{N}$, where $\{t_k,k\in\mathbb{N}\}$ is the sequence of the Gram points.

Keywords: approximation of analytic functions; Gram points; Riemann hypothesis; Riemann zeta-function; weak convergence of probability measures.

AMS Subject Classification: 11M06.

1 Introduction

Let $s=\sigma+it$ denote a complex variable and $\mathbb P$ the set of all prime numbers. The Riemann zeta-function $\zeta(s)$ on the half plane $\sigma>1$ is defined by the Dirichlet series

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s},$$

or by the Euler product

$$\zeta(s) = \prod_{p \in \mathbb{P}} (1 - 1/p^s)^{-1},$$
(1.1)

and has the analytic continuation to the whole complex plane, except for a simple pole at the point s=1 with residue 1. L. Euler was the first to study the function $\zeta(s)$, though only for real values of s. Notably, identity (1.1) is due to Euler. B. Riemann, unlike Euler, discovered, that the function $\zeta(s)$ is

Copyright © 2025 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding author. E-mail: julija.karaliunaite@vilniustech.lt

an important analytic object for complex s. He proved the functional equation

$$\pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s) = \pi^{-(1-s)/2} \Gamma\left((1-s)/2\right) \zeta(1-s)$$
 (1.2)

for all $s \in \mathbb{C}$, where $\Gamma(s)$ is the Euler gamma-function, gave analytic continuation for $\zeta(s)$, proposed the application of $\zeta(s)$ for investigation of the function

$$\pi(x) = \sum_{p \leqslant x, \ p \in \mathbb{P}} 1, \quad x \to \infty,$$

and stated important conjectures [25]. Riemann's method to estimate the function $\pi(x)$ is related to the zeros of the function $\zeta(s)$. From Equation (1.2), it follows that $\zeta(s) = 0$ for $s = -2k, k \in \mathbb{N}$. These zeros of $\zeta(s)$ are called trivial. Let N(T) denote the number of zeros of $\zeta(s)$ lying in the rectangle $\{s \in \mathbb{C} : 0 < \sigma < 1, 0 < t \leq T\}$. Riemann conjectured [25] that

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).$$

The latter formula was proved by H. von Mangoldt [28]. Thus, $\zeta(s)$ has infinitely many zeros lying in the strip $\{s \in \mathbb{C} : 0 < \sigma < 1\}$. These zeros of $\zeta(s)$ are called non-trivial. Riemann conjectured that all non-trivial zeros of $\zeta(s)$ lie on the critical line $\sigma = 1/2$. This conjecture, called the Riemann hypothesis (RH), is one the most important problems of mathematics. RH was included in the list of Hilbert problems [14,15] (Problem 8), it is among the seven most important Millennium problems of mathematics [1]. One can easily obtain that $\zeta(s) \neq 0$ for $\sigma \geqslant 1$.

The Riemann method for the asymptotics of the function $\pi(x)$ is based on using the zero-free regions lying in the half-plane $\sigma \leq 1$. J. Hadamard [13] and C.-J. de la Valée Poussin [8, 9, 10] independently developed Riemann's ideas. They obtained that there is a constant c > 0 such that $\zeta(s) \neq 0$ for

$$\sigma > 1 - \frac{c}{\log(|t|| + 2)}.$$

From this, they derived that

$$\pi(x) = \int_2^x \frac{\mathrm{d}u}{\log u} + O(xe^{-c_1\sqrt{\log x}}), \quad x \to \infty,$$

with a certain constant $c_1 > 0$. It is known that the RH implies the estimate

$$\pi(x) = \int_{2}^{x} \frac{\mathrm{d}u}{\log u} + O(\sqrt{x}\log x), \quad x \to \infty.$$
 (1.3)

On the other hand, the latter estimate implies RH [27]. Thus, (1.3) is one of the oldest equivalents of RH. There are many other equivalents of RH stated in terms of various estimates, positivity of some functions, self-approximation, etc., see [5] and [6]. The present paper is focuses on approximation properties of the function $\zeta(s)$.

Let $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. By \mathcal{K} denote the class of compact subsets of the strip D with connected complements, and by $H_0(K)$ with $K \in \mathcal{K}$ the set of continuous non-vanishing on K functions that are analytic inside of K. Let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. It is well known that functions of the set $H_0(K)$, uniformly on K, are approximated by shifts $\zeta(s+i\tau)$, $\tau \in \mathbb{R}$. This property of $\zeta(s)$ is called universality, and is stated as follows:

$$\liminf_{T \to \infty} \frac{1}{T} \mathrm{meas} \Big\{ \tau \in [0,T] : \ \sup_{s \in K} |\zeta(s+i\tau) - f(s)| < \varepsilon \Big\} > 0.$$

Moreover, "lim inf" can be replaced by "lim" for all but at most countably many $\varepsilon > 0$.

The first assertion above is the improved version of the Voronin universality theorem and can be found in [2, 11, 18, 19, 26], while the second assertion was proved in [23].

Based on universality of $\zeta(s)$, B. Bagchi proved [3] the following equivalent of RH: the RH is equivalent to the assertion that, for every $K \in \mathcal{K}$ and $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \mathrm{meas} \bigg\{ \tau \in [0,T]: \ \sup_{s \in K} |\zeta(s+i\tau) - \zeta(s)| < \varepsilon \bigg\} > 0.$$

In [20], the latter result was supplemented by the following statement: the RH is equivalent to the assertion that, for every $K \in \mathcal{K}$, the limit

$$\lim_{T \to \infty} \frac{1}{T} \mathrm{meas} \bigg\{ \tau \in [0,T] : \sup_{s \in K} |\zeta(s+i\tau) - \zeta(s)| < \varepsilon \bigg\}$$

exists and is positive for all at most but at most countably many $\varepsilon > 0$.

The Bagchi criterion [3] inspired several works on the so-called strong recurrence of $\zeta(s)$. For example, in [24], it was obtained that for any real $d \neq 0$ and for any $\varepsilon > 0$ and $K \in \mathcal{K}$,

$$\liminf_{T\to\infty}\frac{1}{T}\mathrm{meas}\bigg\{\tau\in[0,T]: \sup_{s\in K}|\zeta(s+i\tau)-\zeta(s+id\tau)|<\varepsilon\bigg\}>0.$$

In [21], the latter criteria of RH were extended by using generalized shifts of $\zeta(s)$. Return to the functional equation (1.2). The product $g(s) = \pi^{-s/2} \Gamma(s/2)$ is an important ingredient of (1.2). Denote by $\theta(t)$ the increment of the argument of the function g(s) along the segment connecting the points s = 1/2 and s = 1/2 + it. It is known [16, 22] that the equation

$$\theta(t) = \pi(\tau - 1)$$

with $\tau \geq 0$ has the unique solution t_{τ} , and this solution is called the Gram function. This name comes back to J.-P. Gram who considered [12] t_{τ} with $\tau = k, \ k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, in connection with imaginary parts of non-trivial zeros of $\zeta(s)$. The numbers $\tau_k, \ k \in \mathbb{N}_0$ are called Gram points. In [21], the criteria of RH was given in terms of self approximation by shifts $\zeta(s+it_{\tau})$.

Theorem 1. [21]. The RH holds if and only if, for every $K \in \mathcal{K}$ and $\varepsilon > 0$,

$$\liminf_{T\to\infty}\frac{1}{T}\mathrm{meas}\bigg\{\tau\in[0,T]:\ \sup_{s\in K}|\zeta(s+it_\tau)-\zeta(s)|<\varepsilon\bigg\}>0.$$

Theorem 2. The RH holds if and only if, for every $K \in \mathcal{K}$ the limit

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + it_{\tau}) - \zeta(s)| < \varepsilon \right\}$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

Theorems 1 and 2 are closely connected and inspired by universality theorem for $\zeta(s)$ in terms of shifts $\zeta(s+it_{\tau})$ ([21], Theorem 3): suppose that $K \in \mathcal{K}$ and $f(s) \in H_0(H)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \bigg\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + it_{\tau}) - f(s)| < \varepsilon \bigg\}.$$

Moreover, the limit

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + it_{\tau}) - f(s)| < \varepsilon \right\}$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

The latter theorem is of continuous type: τ takes arbitrary values from the interval [0,T]. There exists its discrete analogue using the shifts $\zeta(s+iht_k)$, h>0, with Gram points $t_k, k \in \mathbb{N}_0$. Denote by #A the cardinality of a set A, and let N run over the set \mathbb{N} . Then the following statement has been obtained ([17], Theorems 1.1 and 1.2).

Proposition 1. Suppose that h > 0 is a fixed number, $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s + iht_k) - f(s)| < \varepsilon \right\} > 0.$$

Moreover, the limit

$$\lim_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s + iht_k) - f(s)| < \varepsilon \right\}$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

The aim of this paper is the discrete versions of Theorems 1 and 2.

Theorem 3. The RH is true if and only if, for every $K \in \mathcal{K}$, h > 0 and $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s + iht_k) - \zeta(s)| < \varepsilon \right\} > 0.$$

Theorem 4. The RH is true if and only if, for every $K \in \mathcal{K}$, h > 0 the limit

$$\lim_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s + iht_k) - \zeta(s)| < \varepsilon \right\}$$

exists and is positive for all but at most countably many $\varepsilon > 0$.

We will prove Theorems 3 and 4 in Section 3. Section 2 is devoted to discrete limit theorems on weak convergence of probability measures in the space of analytic functions.

2 Weak convergence

Denote by H(D) the space of analytic functions on the strip D endowed with the topology of uniform convergence on compacta. Recall a metric in H(D) which induces its topology. There is a sequence $\{K_l : l \in \mathbb{N}\} \subset D$ of compact subsets such that [7]

$$D = \bigcup_{1}^{\infty} K_l,$$

 $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and every compact set $K \subset D$ lies in some set K_l . Then, for $g_1, g_2 \in H(D)$, taking

$$d(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

we have the desired metric.

Clearly, the sets K_l can be chosen with connected complements. For example, we can take closed rectangles.

Let \mathbb{X} be an arbitrary topological space. Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ -field of \mathbb{X} , i.e., the σ -field generated by open sets of \mathbb{X} . We will consider probability measures defined on $(H(D), \mathcal{B}(H(D)))$. Let P_n , $n \in \mathbb{N}$, and P be probability measures on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. Recall that P_n converges weakly to P as $n \to \infty$ $(P_n \xrightarrow[n \to \infty]{w} P)$ if, for every real continuous bounded function f on \mathbb{X} , the relation

$$\lim_{n \to \infty} \int_{\mathbb{X}} f \mathrm{d}P_n = \int_{\mathbb{X}} f \mathrm{d}P$$

holds.

Several equivalents of weak convergence of probability measures are known. Denote by ∂A the boundary of a $A \subset \mathbb{X}$. Recall that the set A is said to be a continuity set of P if $P(\partial A) = 0$. For our aims, the following statement will be useful.

Lemma 1. (A part of Theorem 2.1 of [4]). The statements

$$P_n \xrightarrow[n \to \infty]{w} P;$$

(ii) For every open set $G \subset \mathbb{X}$

$$\liminf_{n\to\infty} P_n(G) \geqslant P(G);$$

(iii) For every continuity set A of P

$$\lim_{n \to \infty} P_n(A) \geqslant P(A)$$

are equivalent.

In order to state a limit theorem for $\zeta(s)$ in the space H(D), we need some notation. Define the Cartesian product

$$\Omega = \prod_{p \in \mathbb{P}} \{ s \in \mathbb{C} : |s| = 1 \}.$$

With the product topology and pointwise multiplication, the set Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure m_H can be defined, and we have the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote elements of Ω by $\omega = (\omega(p) : p \in \mathbb{P})$ and, on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element

$$\zeta(s,\omega) = \prod_{p \in \mathbb{P}} \left(1 - \frac{\omega(p)}{p^s}\right)^{-1}.$$

Notice that the latter infinite product, for almost all $\omega \in \Omega$, is uniformly convergent on compact sets of the strip D, see Theorem 5.1.7 of [19].

Denote by P_{ζ} the distribution of the random element $\zeta(s,\omega)$, i.e.,

$$P_{\zeta}(A) = m_H \{ \omega \in \Omega : \zeta(s, \omega) \in A \}, \quad A \in \mathcal{B}(H(D)),$$

and, on $(H(D), \mathcal{B}(H(D)))$, define the probability measure

$$P_{N,h}(A) = \frac{1}{N} \# \{ 1 \le k \le N : \zeta(s + iht_k) \in A \}, \quad A \in \mathcal{B}(H(D)).$$

Then the following limit theorem is true.

Theorem 5. ([17], Theorem 3.1). Suppose that h > 0 is fixed. Then the relation $P_{N,h} \xrightarrow[N \to \infty]{w} P_{\zeta}$ holds.

In [17], Theorem 5 is applied for discrete universality of the function $\zeta(s)$ by using the shifts $\zeta(s+iht_k)$. We recall the main points of this proof.

First the measure

$$Q_{N,h}(A) = \frac{1}{N} \# \{ 1 \leqslant k \leqslant N : (p^{-iht_k} : p \in \mathbb{P}) \in A \}, \quad A \in \mathcal{B}(\Omega),$$

is considered, and, using the Fourier transform method as well as the uniform distribution modulo 1 of the sequence $\{ht_k : k \in \mathbb{N}\}$, the limit relation

$$Q_{N,h} \xrightarrow[N \to \infty]{w} m_H$$
 (2.1)

is obtained.

The next step deals with the absolutely convergent Dirichlet series

$$\zeta_n(s) = \sum_{m=1}^{\infty} \frac{\exp\{-(m/n)^{\theta}\}}{m^s}, \quad n \in \mathbb{N},$$

with a fixed $\theta > 1/2$. Let the map $u_n : \Omega \to H(D)$ be given by

$$u_n(\omega) = \sum_{m=1}^{\infty} \frac{\exp\{-(m/n)^{\theta}\}\omega(m)}{m^s}, \quad \omega(m) = \prod_{p^l \mid m, \ p^{l+1} \nmid m} \omega^l(p), \quad m \in \mathbb{N}.$$

Then (2.1) implies that, for

$$P_{N,h}(A) = \frac{1}{N} \# \{ 1 \le k \le N : \zeta_n(s + iht_k) \in A \}, \quad A \in \mathcal{B}(H(D)),$$

the limit relation

$$P_{N,h} \xrightarrow[N \to \infty]{w} m_H u_n^{-1} \stackrel{\text{def}}{=} P_n \tag{2.2}$$

holds, where $m_H u_n^{-1}(A) = m_H(u_n^{-1}A)$ for $A \in \mathcal{B}(H(D))$.

An important part of the proof is the approximation of $\zeta(s)$ by $\zeta_n(s)$ in the mean, i.e., that

$$\lim_{n \to \infty} \limsup_{N \to \infty} \sum_{k=1}^{N} d(\zeta(s+iht_k), \zeta_n(s+iht_k)) = 0.$$
 (2.3)

Finally, it is proved that the probability measure P_n is tight, i.e., that for every $\varepsilon > 0$, there exists a compact set $K_{\varepsilon} \subset H(D)$ such that

$$P_n(K_{\varepsilon}) > 1 - \varepsilon$$

for all $n \in \mathbb{N}$. This, the relations (2.2) and (2.3) together with Theorem 4.2 of [4] prove Theorem 5.

One more ingredient for the proofs of Theorems 3 and 4 is the support of the measure P_{ζ} . Recall that the support of P_{ζ} is a minimal closed $S_{\zeta} \subset H(D)$ such that $P_{\zeta}(S_{\zeta}) = 1$. The set S_{ζ} consists of all functions $g \in H(D)$ such that, for every open neighbourhood G of g, the inequality $P_{\zeta}(G) > 0$ is satisfied.

Set

$$S = \{ g \in H(D) : g(s) \neq 0 \text{ on } D, \text{ or } g(s) \equiv 0 \}.$$

Proposition 2. ([2, 19]). The support of the measure P_{ζ} is the set S.

3 Proofs of Theorems 3 and 4

Proof. (Proof of Theorem 3). Necessity. Suppose that RH is true. Then $\zeta(s) \neq 0$ on the strip D. Hence, $\zeta(s) \in H_0(K)$ for all $K \in \mathcal{K}$. Therefore, by Proposition 1,

$$\liminf_{N \to \infty} \frac{1}{N} \# \{ 1 \leqslant k \leqslant N : \sup_{s \in \mathcal{K}} |\zeta(s + iht_k) - \zeta(s))| < \varepsilon \} > 0$$
 (3.1)

for all K, h > 0 and $\varepsilon > 0$.

Inequality (3.1) also follows from Theorem 5 and Proposition 2. Since $\zeta(s) \neq 0$ for $s \in D$, we have $\zeta(s) \in S$. Therefore, for every compact set K and $\varepsilon > 0$, the set

$$G_{\varepsilon}(K) = \left\{ g \in H(D) : \sup_{s \in K} |g(s) - \zeta(s)| < \varepsilon \right\}$$

is an open neighborhood of the element $\zeta(s)$ of the support of the measure P_{ζ} in view of Proposition 2. Hence, by a property of the support,

$$P_{\zeta}(G_{\varepsilon}(K)) > 0.$$

Thus, Theorem 5 and (ii) of Lemma 1 yield

$$\liminf_{N\to\infty} P_{N,h}(G_{\varepsilon}(K)) \geqslant P_{\zeta}(G_{\varepsilon}(K)) > 0,$$

and the definitions of $P_{N,h}$ and $G_{\varepsilon}(K)$ prove inequality (3.1).

Sufficiency. We will show that inequality (3.1) implies the RH. Suppose, on the contrary, that the RH is not valid. Then $\zeta(s)$ has zeroes lying in D, thus, $\zeta(s) \notin S$, and, by Proposition 2, $\zeta(s)$ is not an element of the support of the measure P_{ζ} . Therefore, by a support property, there exists an open neighborhood \mathcal{G} of $\zeta(s)$ such that

$$P_{\zeta}(\mathcal{G}) = 0. \tag{3.2}$$

There exists $\delta > 0$ such that

$$\mathcal{G}_{\delta} = \{g \in H(D) : d(g(s), \zeta(s)) < 2\delta\} \subset \mathcal{G}.$$

We will show that there exists a set $K \in \mathcal{K}$ and $\varepsilon > 0$ such that the set $G_{\varepsilon}(K)$ satisfies the inclusion $G_{\varepsilon}(K) \subset \mathcal{G}_{\delta}$. For this, we use the sets from the definition of the metric d. Let l_0 be such that

$$\sum_{l>l_0} 2^{-l} < \delta. \tag{3.3}$$

By a property of the sequence $\{K_l : l \in \mathbb{N}\}$, the inclusion $K_l \subset K_{l_0}$ is true for all $l = 1, \ldots, l_0$. This remark and (3.3), for $g \in G_{\varepsilon}(K_{l_0})$, give

$$d(g(s), \zeta(s)) = \left(\sum_{l=1}^{l_0} + \sum_{l>l_0}\right) 2^{-l} \frac{\sup_{s \in K_l} |g(s) - \zeta(s)|}{1 + \sup_{s \in K_l} |g(s) - \zeta(s)|}$$
$$< \varepsilon \sum_{l=1}^{l_0} 2^{-l} + \sum_{l>l_0} 2^{-l} < 2\delta$$

for $\varepsilon < \delta$. Hence, we have an inclusion $G_{\varepsilon}(K_{l_0}) \subset \mathcal{G}_{\delta}$ for all $0 < \varepsilon < \delta$. This implies, for $0 < \varepsilon < \delta$, the inclusion $G_{\varepsilon}(K_{l_0}) \subset \mathcal{G}$, thus, in view of (3.2),

$$P_{\zeta}(G_{\varepsilon}(K_{l_0})) = 0 \tag{3.4}$$

for $0 < \varepsilon < \delta$.

The boundary $\partial G_{\varepsilon}(K_{l_0})$ of the set $G_{\varepsilon}(K_{l_0})$ belongs to the set

$$\Big\{g\in H(D): \sup_{s\in K_I} |g(s)-\zeta(s)|=\varepsilon\Big\}.$$

Therefore, the boundaries $\partial G_{\varepsilon_1}(K_{l_0})$ and $\partial G_{\varepsilon_2}(K_{l_0})$ do not intersect for $\varepsilon_1 \neq \varepsilon_2$. Hence, there are at most countably many values of ε such that

$$P_{\zeta}(\partial G_{\varepsilon}(K_{l_0})) > 0.$$

Actually, for $m \in \mathbb{N} \setminus \{1\}$, there are at most m sets $\partial G_{\varepsilon_m}(K_{l_0})$ such that

$$P_{\zeta}(\partial G_{\varepsilon_m}(K_{l_0})) > 1/m.$$

Thus, the set

$$A \stackrel{\text{def}}{=} \bigcup_{m=2}^{\infty} \left\{ \varepsilon_m > 0 : P_{\zeta}(\partial G_{\varepsilon_m}(K_{l_0})) > \frac{1}{m} \right\}$$

is at most countable. Since

$$\{\varepsilon > 0 : P_{\zeta}(\partial G_{\varepsilon}(K_{l_0})) > 0\} = A,$$

we have the desired assertion. The latter remark implies that $P_{\zeta}(\partial G_{\varepsilon}(K_{l_0})) = 0$ for all but at most countably many $\varepsilon > 0$, in other words, the set $G_{\varepsilon}(K_{l_0})$ is the continuity set of the measure P_{ζ} for all but at most countably many $\varepsilon > 0$. Therefore, there exists $\varepsilon_1 \in (0, \delta)$ such that the set $G_{\varepsilon_1}(K_{l_0})$ is a continuity of the measure P_{ζ} , and, by (3.4), satisfies

$$P_{\zeta}(G_{\varepsilon_1}(K_{l_0})) = 0.$$

Hence, application of Theorem 5 and (iii) of Lemma 1 give

$$\lim_{N \to \infty} P_{N,h}(G_{\varepsilon_1}(K_{l_0})) = P_{\zeta}(G_{\varepsilon_1}(K_{l_0})) = 0.$$

Thus,

$$\liminf_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K_{l_0}} |\zeta(s + iht_k) - \zeta(s)| < \varepsilon_1 \right\} = 0,$$

and this contradicts inequality (3.1). This contradiction shows that RH follows. \Box

Proof. (Proof of Theorem 4). Necessity. Suppose that the RH is true. Then we have that $\zeta(s) \in H_0(K)$ with every $K \in \mathcal{K}$. Therefore, the second statement of Proposition 1 shows that, for every K, the limit

$$\lim_{N \to \infty} \frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s + iht_k) - \zeta(s)| < \varepsilon \right\}$$
 (3.5)

exists and is positive for all but at most countably many $\varepsilon > 0$. This also can be derived by using Theorem 5 and Proposition 2. Preserving the above notation, in view of Proposition 2, we have $P_{\zeta}(G_{\varepsilon}(K)) > 0$ for every compact set $K \subset D$. Moreover, as in the proof of Theorem 3, we obtain that the set $G_{\varepsilon}(K)$ is a continuity set for all but at most countably many $\varepsilon > 0$. Therefore, by Theorem 5 and (iii) of Lemma 1, the limit (3.5) exists and equals to

$$P_{\zeta}(G_{\varepsilon}(K)) > 0$$

for all but at most countably many $\varepsilon > 0$.

Sufficiency. Suppose that the limit (3.5) exists and is positive for all but at most countably many $\varepsilon > 0$. We will prove that the RH is valid. If, on the contrary, RH is not valid, then, as in the proof of Theorem 3, we obtain that there exists $\delta > 0$ and the set K_{l_0} such that equality (3.4) is true for all $0 < \varepsilon < \delta$. Moreover, the set $G_{\varepsilon}(K_{l_0})$ is a continuity set for all but at most countably many $\varepsilon > 0$. From these remarks, Theorem 5 and (iii) of Lemma 1, we found that

$$\lim_{N \to \infty} P_{N,h}(G_{\varepsilon}(K_{l_0})) = P_{\zeta}(G_{\varepsilon}(K_{l_0})) = 0$$

for all but at most countably many $0 < \varepsilon < \delta$. However, this contradicts the positivity of the limit (3.5) for all but at most countably many $\varepsilon > 0$. This contradiction proves the validity of the RH. The theorem is proved. \square

Remark 1. Statements analogical to Theorems 3 and 4 for shifts $\zeta(s+i\varphi(k))$ with a function $\varphi(t)$ such that

$$\frac{1}{N} \# \left\{ 1 \leqslant k \leqslant N : \zeta(s+i\varphi(k)) \in A \right\}, \quad A \in \mathcal{B}(H(D)),$$

converge weakly to P_{ζ} as $N \to \infty$, are valid.

References

- [1] The Millennium Prize Problems. J. Carlson, A. Jaffe and A. Wiles (Eds.), Clay Math. Inst., Cambridge, 2000. Available from Internet: http://claymath.org/millennium-problems/.
- [2] B. Bagchi. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
- [3] B. Bagchi. Recurrence in topological dynamics and the Riemann hypothesis. Acta Math. Hungar., 50:227-240, 1987. https://doi.org/10.1007/BF01903937.
- [4] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

- K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 1, Encyclopedia Math. Appl. 164, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178228.
- [6] K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 2, Encyclopedia Math. Appl. 165, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178266.
- [7] J.B. Conway. Functions of One Complex Variable I. Springer, New York, 1978. https://doi.org/10.1007/978-1-4612-6313-5.
- [8] C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, I. Ann. Soc. Sci. Brux., 20:183–256, 1896.
- [9] C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, II. Ann. Soc. Sci. Brux., 20:281–362, 1896.
- [10] C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, III. Ann. Soc. Sci. Brux., 20:363–397, 1896.
- [11] S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, Ann Arbor, 1979.
- [12] J.-P. Gram. Note sur les zeros de la fonction $\zeta(s)$ de Riemann. Acta Math., **27**:289–304, 1903. https://doi.org/10.1007/BF02421310.
- [13] J. Hadamard. Sur les zeros de la function $\zeta(s)$ de Riemann. Comptes Rendus Acad. Sci. Paris, 122:1470–1473, 1896.
- [14] D. Hilbert. Mathematische probleme. Archiv Math. Physik, 1:44–63, 1901.
- [15] D. Hilbert. Mathematical problems. Bull. Amer. Math. Soc., 8:437–479, 1902. https://doi.org/10.1090/S0002-9904-1902-00923-3.
- [16] M.A. Korolev. Gram's law in the theory of the Riemann zeta-function. Part 1. Proc. Steklov Inst. Math., 292(Suppl. 2):1–146, 2016. https://doi.org/10.1134/S0081543816030019.
- [17] M.A. Korolev and A. Laurinčikas. A new application of the Gram points. Aequat. Math., 93(5):859–873, 2019. https://doi.org/10.1007/s00010-019-00647-8.
- [18] E. Kowalski. An Introduction to Probabilistic Number Theory. Cambridge University Press, Cambridge, 2021. https://doi.org/10.1017/9781108888226.
- [19] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-017-2091-5.
- [20] A. Laurinčikas. Remarks on the connection of the Riemann hypothesis to self-approximation. Computation, 12(8):164, 2024. https://doi.org/10.3390/computation12080164.
- [21] A. Laurinčikas. On equivalents of the Riemann hypothesis connected to the approximation properties of the zeta-function. *Axioms*, **14**(3):169, 2025. https://doi.org/10.3390/axioms14030169.
- [22] A.A. Lavrik. Tichmarsh problem in the theory of the Riemann zeta-function. Proc. Steklov Inst. Math., 207(6):179–209, 1995.
- [23] J.-L. Mauclaire. Universality of the Riemann zeta-function: two remarks. Ann. Univ. Sci. Budap., Sect. Compat., 39:311–319, 2013. https://doi.org/10.71352/ac.39.311.

- [24] T. Nakamura. The generalized strong recurrence for non-zero rational parameters. Arch. Math., $\bf 95(6)$:549–555,, 2010. https://doi.org/10.1007/s00013-010-0205-2.
- [25] B. Riemann. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. Berlin, pp. 671–680, 1859.
- [26] J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-44822-8.
- [27] H. von Koch. Sur la distribution des nombres premiers. Acta Math., 24:159–182, 1901. https://doi.org/10.1007/BF02403071.
- [28] H. von Mangoldt. Zu Riemanns' abhandlung "über die Anzahl der Primzahlen unter einer gegebenen Grösse". J. Reine Angew. Math., 114:255–305, 1895. https://doi.org/10.1515/crll.1895.114.255.