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1 Introduction

The matrix equation AX B = C' is an important equation in mathematics and
engineering, with applications in various fields including linear algebra, control
systems, system identification, and optimization. In this matrix equation

e A and B are constant matrices that typically belong to specific dimen-
sions.

e X can be considered as the variable matrix that needs to be determined.
e (' is the resulting matrix.
Applications of the matrix equation AXB =C":

e Control systems: In linear control, the matrix equation AXB = C' can
be used for designing controllers and filters. Also the matrix equation is
often employed to derive the matrices needed for the controllers [26].
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e System identification: This matrix equation is utilized in system identifi-
cation techniques, where we aim to estimate the parameters of a dynamic
system based on its inputs and outputs.

e Optimization: The matrix equation AX B = C'is applied in optimization
problems that require decision-making in a matrix format.

e Image and signal processing: In signal processing, this matrix equation
can be used in the context of filtering images or signals [22]. In image
processing, image X undergoes transformations A and B from both sides,
resulting in the observed image C. The objective is to recover the original
source image X. Multiplying these two operators from both sides may
result in the image becoming blurred, disturbed, or both. Eliminating
the effects of these two operators by finding their inverses can be very
costly, so iterative algorithms are recommended. Additionally, techniques
such as regularization may be necessary during the image reconstruction
process to stabilize the algorithm. Iterative algorithms are employed to
reconstruct the source image.

Given the volume of data in science and engineering, it is preferable to use
algorithms with lower computational and communication costs to solve the
matrix equations. It is more economical to solve matrix equations using iter-
ative methods [8]. For example, using the acceleration technique, a method
for solving the generalized matrix equations was introduced that incorporates
the concept of momentum [18]. In [17], an iterative algorithm based on gen-
eralized displacement partitions was developed for solving coupled Sylvester
matrix equations using a hierarchical identification approach. An Acceleration
Over-Resolved (AOR) method for the complex or real generalized Lyapunov
matrix equation is introduced in [6]. An advanced parameterless gradient de-
scent method, utilizing the accelerated technique associated with momentum
methods, was employed to solve the coupled matrix equations arising from
dynamical systems [19].

Krylov subspace methods (KSMs) play a crucial role in the iterative solution
of linear systems and matrix equations and are frequently employed for solving
them [20]. Some notable techniques within this category include the conjugate
gradient (CG), conjugate residual (CR), bi-conjugate gradient (BiCG), stabi-
lized bi-conjugate gradient (BiCGStab), conjugate gradient square (CGS), bi-
conjugate residual (BiCR), and generalized minimal residual (GMRES) meth-
ods [1,13,16].

To enhance the performance of KSMs, the s-step methods were introduced
for symmetric and non-symmetric linear systems [14]. Utilizing the s-step
approach can considerably reduce the number of iterations needed for an al-
gorithm. While the original algorithm may require M iterations, the s-step
variant can achieve results in only M/s iterations. Adjusting the parameter
s allows for fine-tuning the total iteration count and minimizes data trans-
fer, though excessively increasing s is impractical. A significant challenge in
implementing s-step algorithms is selecting the most suitable value for s. A
promising method involves dynamically modifying s based on the algorithm’s
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parameters, which can lead to even fewer iterations during execution [5, 15].
Recent innovations have focused on enhancing the numerical conditioning of
the s-step methods by estimating Ritz values as the system matrix’s eigenval-
ues and utilizing Newton and Chebyshev polynomials [3]. Improvements in
precision and replacement of residuals have shown to stabilize the s-step CG
approach in [25]. Moreover, employing Newton’s polynomials to determine the
optimal s in the s-step GMRES method has mitigated instability issues [24].
To address numerical instability arising from the s-step approach, an increase
in Lanczos orthogonalization computations was employed in [2]. Additionally,
s-step adaptations of Orthomin(k) and GMRES algorithms were proposed to
better data locality in [4].

To minimize potential instability from the s-step strategy, it is advisable
to employ regularization techniques analogous to those found in linear reg-
ularization frameworks. These methods aim to reshape the distribution of
singular values to diminish the influence of inaccuracies in the matrix. Various
approaches are available, including filtering singular values, truncating the sin-
gular value distribution, and applying iterative methods to achieve the desired
distribution. The Tikhonov method was the first regularization technique pro-
posed, effectively reducing noise in ill-posed problems by modifying the problem
matrix to decrease its condition number. Beyond the Tikhonov method, other
regularization techniques have been established, including truncated singular
value decomposition (TSVD), the L-curve method, and mapped regularization
techniques [20,21]. A key aspect of these regularization methods is identifying
the regularization parameter that minimizes the Tikhonov function [23].
Recently, several KSMs were enhanced with s-step and regularization tech-
niques. In [10], new algorithms utilizing these techniques were presented for
nonsymmetric linear systems. An s-step algorithm, based on a generalization
of the semi-conjugate gradient algorithm, was presented for solving nonsym-
metric linear systems [12]. Additionally, the CGNR algorithm was proposed
for addressing the Sylvester matrix equations arising in image processing prob-
lems [11].

In terms of the innovation presented in this paper, it is important to high-
light that the work begins with an expansion of the CGNR algorithm to ef-
fectively solve the matrix equation AXB = C. Following this initial step,
we implement the variable s-step technique on the newly derived algorithm.
This adjustment allows for a significant reduction in the number of iterations
required to reach a solution by manipulating the s parameter. Additionally,
the variable s-step algorithm contributes to a decrease in communication over-
head within the process, which is particularly beneficial for improving efficiency.
However, as the s parameter increases, there is a risk of the algorithm becoming
unstable. To mitigate this risk, the authors incorporate a regularization tech-
nique. This ensures that the algorithm maintains a stable convergence rate,
ideally matching or exceeding the speed of the original algorithm, all while
achieving this with a reduced number of iterations. This comprehensive ap-
proach not only enhances the performance of the algorithm but also emphasizes
its practical applicability in solving matrix equations effectively.

The outline is as follows. Section 2 introduces the variable s-step CGNR
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algorithm for solving the matrix equation AXB = C. In Section 3, several
necessary techniques for determining the parameters of the algorithm are dis-
cussed. In Section 4, we state and prove the convergence results. Finally,
Section 5 tests the algorithm by solving various numerical examples.

2 Variable s-step CGNR algorithm for matrix equations

Here, our goal is to extend the CGNR algorithm [7] to solve the matrix
equation AXB = C. In numerous image and signal processing applications,
after applying transformations to the original image, a distorted version of the
image is obtained. The objective in such cases is to reconstruct the original
image from the distorted one. To achieve this, it is necessary to apply inverse
transformations to the distorted image in order to recover the original content.
However, computing the inverse of a transformation (if it exists) can be a
complex and resource-intensive task, making iterative algorithms a preferred
choice. Here, two transformations, denoted as A and B, are applied to an
image X, resulting in a distorted image C. This scenario can be represented
by the matrix equation C = AX B. In this paper, the process of reconstructing
the original image involves finding a way to invert these transformations (A
and B) effectively, typically through iterative methods that allow for continued
refinement until the desired accuracy is achieved. We consider the matrix
equation

AXB =0, (2.1)

where A € R™*™ B € R™" and C' € R™*" are known, and X € R™*" ig
unknown.

Algorithm 1. CGNR algorithm for solving the linear system Ax = b
Choose x

ro =b—Axo, zo=ATry, po=ro

For i=0 Until Convergence Do

T

_ _ PiTi
wi = Api, @ = [
Tit1 = Tj + QiPi, Tip1 =T — QW5

_ AT _ lzixall3

zig1 = A'rig1, Bi= EE
Div1 = 2zit1 + Bips, 1=1i+1
End For.

To obtain our algorithm for solving the matrix equation (2.1), we apply the
same approach used in the CG algorithm. This is done following the initializa-
tion outlined below

Py=Ry=C—-AXyB.

In the final projection into the approximation space, we utilize the concept
employed in the CGNR algorithm. In i-th iteration, we set

Qi = AP, 1 B.
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To calculate the parameter « of the CGNR algorithm (Algorithm 1), which is
presented in matrix form here, the following system should be solved

(QF Qi)ai = (Q] Ri—v).

In solving the above system, the norm of the solution may increase due to the
ill-conditioning of the matrices, therefore, in this step, a suitable regularization
filter v;(1, ;) is applied to reduce it. Then the approximation and the residual
are updated as follows

Xi=Xi1+7(l0)Qi, Ry =C—AX;B,

where 7;(1, a;) is the regularization filter which will be discussed in Subsection
3.2. Similarly to the CG method, the parameter 5 and the new basis of P are
calculated

Bi = %» P, =R, + BiPi—1.

[Ri1ll,
Our algorithm is an algorithm between CG and CGNR algorithms. In some
cases it follows the CG algorithm and in some cases it is similar to the CGNR
algorithm. The CGNR method for solving the matrix equation (2.1) is given
in Algorithm 2.

Algorithm 2. CGNR algorithm for the matrix equation (2.1)
Choose X

Ry=C — AX,B, Py=Ry

For i=1 Until Convergence Do

Qi =AP,_1B

Solve (Q] Qi)a; = (QF Ri—1)

Calculate ~;(1, ;) from (3.2)—(3.6)

Xi=Xi1+7(,0)Qic;, R;=C—AX;B

Bi = I7:]ly Py =R; + 8P

= TRl
t=1+1
End For.

To rewrite Algorithm 2 in s-step mode, noting that the number of projected
bases (matrix @;) should be increased, the matrix Q; after choosing s; is defined
as follows Q; = [Qi, WQ:H, ..., W5~ 1Q;H*'], where W = AAT and H =
BT B. Since these matrices help to make the bases symmetric, this method can
be considered the incomplete symmetrization of the bases.

On the other hand, because each time to calculate the matrices placed
in Q;, the transpose matrix of sides matrices are multiplied by them and a
normalization occurs on the matrix equation, this method can be considered
similar to CGNR, which normalizes and solves the linear system by multiplying
by the transpose matrix. This algorithm is similar to Algorithm 2 and only
the matrix of subspaces of Q; is used instead of the ; matrix, although it
should be kept in mind that a different regularization filter should be chosen

Math. Model. Anal., 31(1):79-95, 2026.
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for this algorithm and the previous algorithm. According to the change of s;
in this algorithm, the filters should be dependent on s; in such a way that
with the increase of s;, the norm of the matrices will decrease even more,
otherwise the error will accumulate and the algorithm will lose its stability and
convergence. The variable s-step CGNR algorithm for finding the solution of
the matrix equation (2.1) is given in Algorithm 3. Some parameters such as
s; and regularization introduced in the algorithms remain unset. In the next
section, we will examine and specify these parameters.

Algorithm 3. Variable s-step CGNR (VsCGNR) algorithm for the

matrix equation (2.1)

Choose X

Ry=C—-AXyB, Py=Ro

W =AAT, H=BT"B

For ¢ =1 Until Convergence Do

Qi = AP, B

Qi = [QQ WQle (X3} WSiilQiHSiil]

Solve (Q Qi)a; = (QF Ri—1)

Calculate ~;(s;, ;) from (3.2)-(3.6)

Xi = X1+ 7i(sis ) Qi

R, =C—AX;B, B =2l
1Ri-a]l,

Pi=Ri+ BiPi

Choose s;

t=1+1

End For.

3 Techniques for balancing runtime and stability

To improve the efficiency of our algorithms, increasing the value of s can boost
their performance. However, raising s too quickly may lead to instability in
the algorithm. The next subsection outlines two approaches for selecting the
parameter s and applying regularization to find a balanced trade-off between
stability and performance speed-up.

3.1 Selection of s

Determining the parameter s is a crucial aspect when working with s-step
algorithms. Selecting the right value for s can greatly influence the algorithm’s
efficiency, and an inappropriate choice may lead to divergence. Several factors,
including system size, condition number, and the iterative method being used,
affect the selection of this parameter. Currently, there is no single best value
of s that applies to all linear systems.

Choosing a larger value of s can shorten processing time but may threaten
the stability of the algorithm, increasing the risk of divergence. On the other
hand, opting for a smaller s can improve stability but may prolong runtime.
One possible solution to this dilemma is to adjust s dynamically during var-
ious iterations of the algorithm, allowing it to increase as the residual norm
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decreases. The challenge here is to find an effective growth function that can
set s appropriately throughout the iterations.

Like the choice of a fixed s, using a rapidly increasing growth function
can reduce runtime further but might lead to instability. Conversely, a slowly
growing function can help maintain stability but may not optimize the time
efficiency as much. To address these issues, regularization techniques are ap-
plied. The next section introduces a function to determine s; (the value of s in
the i-th iteration) as follows:

i—1
s1=1; s;=1+1log {(Z sj)O‘SJ, Vi > 1. (3.1)
j=1

Integrating this function with the mapped regularization technique discussed
in the upcoming subsection can yield positive results [10].

3.2 Regularization filters

A technique employed to enhance the stability of algorithms is regularization,
which entails fine-tuning the parameters to improve stability and decrease error
sensitivity. Among the well-known regularization filters are the Tikhonov and
TSVD filters [21]. A more advanced subset of these filters is known as mapped
filters, which improve algorithm stability by projecting the parameter of inter-
est into an appropriate space. Below are several filters specifically designed for
the variable s-step algorithm based on the s parameter:

Exponential filter:

Sq

V(si ) =1—e Toulz. (32)

Hyperbolic filter:

~(si, ;) = tanh <||0i||2> . (3.3)

Tikhonov filter:

57 [|avil |2

_— 3.4
T 22 (34

v(si, i) =

Logarithmic filter:

(s, 00) =1n ( o l||2+ ol >/ () |- 69)

Sign filter:

Si . Si
i QG) = 1 3 i _ . 3.6
(s, 00) 2%'2( sign oo ||az-||2>> (3.6)
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The above filters are examples of capped filters. Furthermore, it is possible to
create additional filters using various functions, many of which are based on
the Tikhonov filter and produce similar results. The filters mentioned function
similarly to vector consolidation methods in schemes for solving linear systems.
Given that s-step algorithms are often represented in block form, the process of
combining matrix columns can be computationally demanding. The mapped
regularization technique provides an effective solution by facilitating algorithm
stability through straightforward multiplication with a factor within the cor-
responding matrix. In the next section, we will explore features related to the
orthogonalization of vectors and matrices in the framework of linear systems
and their associated matrix equations.

4 Convergence results

In this section, some theorems related to the convergence and properties of the
CGNR algorithm for the matrix equation (2.1) are presented. These theorems
for the CGNR algorithm applied to linear systems have already been proven,
and here we will simply generalize them to the specified matrix equation.

Theorem 1. Let X* be the exact solution of the matriz equation (2.1), and
{Qi}"" is an orthogonal basis for R™*™  then

i=1

Proof. This theorem is one of the well-known theorems in the field of linear
algebra and has been proven in [9]. O

Theorem 2. Let X* be the exact solution of the matriz equation (2.1) and X;
is the approzimation obtained from Algorithm 2 in the j-th iteration, then

[X™ = Xjqall2 < X = Xl

Proof. According to Theorem 1, and the fact that X, = Zgzl a;Q; the fol-
lowing relations are established

mn mn
X' = Xj1 = Z aiQi, X' -X;= Z i Q;.
i=j+2 i=j+1
Due to the orthogonality of @;’s, we have

mn mn
IX* = X013 =1 > Qill3 =llajnQipal3 + 1| > iQill3

i=j+1 =742

mn
> D aiQill3 = 1X7 - Xl
i=j+2
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In these theorems, It is clear that «; can be transferred to the right side of Q;
as a; I, where I is the n x n identity matrix.

Theorem 3. If the conditions of Theorem 2 are satisfied and R; is the residual
obtained from Algorithm 2 in the j-th iteration, then

[Rjv1ll2 < IRjll2-

Proof. According to Theorems 1 and 2, we have

mn

Rj+1 =C — AX]‘+1B = A(X* - X]’+1)B = A( Z OLZ‘Qi)B,
i=j+2
R; =C — AX;B=A(X" - X;)B=A( Y :Q:)B.
i=j+1

Since the Q;’s are orthogonal, we can obtain

IR; |3 = |AX™ = X;)l5 = A Y 2:Qi)BlI3

i=j+1
= | A(0;1Q;11)Bl3 + [ A( D> iQi) B3
i=j+2
> [|AC D iQi)Bl3 = |AX* = X;41) B3 = | Rjll5.
i=j+2

O

Remark 1. Theorems 2 and 3 shows that the sequences of the norm of errors
and residuals are monotonically decreasing. The properties emphasize that the
CGNR algorithm possesses fast and converges smoothly.

Similar theorems regarding the variable s-step CGNR algorithm for the matrix
equation (2.1) can be proven, in which only the number of iterations is reduced
while consuming the same number of mn orthogonal matrices @;, ensuring that
the algorithm still converges. The theorems in this section are stated for the
case where there are no precision errors, and the numerical results may differ in
this context. In the next section, we will numerically compare the algorithms
described in the previous sections.

5 Numerical results
In this section, a random matrix is initialized as the starting point (X, =
eye(m,n)), while the right-hand side vector is defined as

men = Amxm X 17”7L><TL + 1m><n X ann7

where 1,, x5 is a matrix with all its elements one. Also the value of the param-
eter s is determined by (3.1). In the illustrations provided, the algorithm is

Math. Model. Anal., 31(1):79-95, 2026.
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set to execute for a total of 3000 iterations, and in the s-step mode, 3000 bases
are also utilized. The termination criterion for the examples, unless specified
otherwise, is defined by ||Residual| < 10712, The matrices employed in this
section are obtained from a variety of problems, all of which are accessible
through MATLAB Help. The computational experiments are carried out on a
computer equipped with an Intel(R) Celeron CPU N2830 @ 2.16 GHz and 4
GB of memory.

Ezample 1. In the first example, a symmetrical image is reconstructed using
the proposed algorithm. The matrices

A = gallery('kms’,200,0.5), B = gallery('kms’,200,0.6),

are utilized for the matrix equation (2.1). The number of iterations is K = 3000
and the Tikhonov filter was used for regularization. The exact solution to the
problem is the 200 x 200 image in Figure 1. As shown in Figure 1 and Table 1,
the application of regularization techniques results in improved numerical out-
comes. Furthermore, Table 2 clearly demonstrates that the variable s-step
positively affects the runtime of the algorithm.

3
3

A

(a) CGNR (b) vs-CGNR (c) Exact image

(d) residual norms

Figure 1. Reconstructed images and residual norms in Example 1. (a) shows the
reconstructed figure using the original algorithm, (b) displays the reconstructed figure from
the proposed algorithm, (c) presents the original figure, and (d) illustrates the residual
norm obtained from the algorithms over different iterations.

Table 1. Residual and error norms for numerical Example 1. In this table, K represents
the number of bases used in the algorithms, E denotes the error norm, and R refers to the
residual norm obtained from the algorithm.

K E(Reg-CG) R(Reg-CG) E(Reg-vsCG) R(Reg-vsCG)
1000 0.3768 0.0351 0.1118 0.0096
3000 0.1351 0.0116 2.1096e-09 1.7612e-10
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Table 2. Runtime for Example 1.
iterations Runtime(Reg-CGNR) Runtime(Reg-vsCGNR)

1000 19.665874 16.453234
3000 54.388632 44.651685

FEzample 2. In this example, we replicated Example 1 using an nonsymmetric
image and presented the results in Figure 2, as well as in Tables 3 and 4.

(a) CGNR (b) vs-CGNR (c) Exact image

(d) residual norms

Figure 2. Reconstructed images and residual norms in Example 2. (a) shows the
reconstructed figure using the original algorithm, (b) displays the reconstructed figure from
the proposed algorithm, (c) presents the original figure, and (d) illustrates the residual
norm obtained from the algorithms over different iterations.

Table 3. Residual and error norms for Example 2. In this table, K represents the number
of bases used in the algorithms, E denotes the error norm, and R refers to the residual norm
obtained from the algorithm.

K E(Reg-CG) R(Reg-CG) E(Reg-vsCG) R(Reg-vsCQG)
1000 0.4308 0.0412 0.4036 0.0380
3000 0.2420 0.0211 5.0453e-04 4.2089e-05

As shown in the figures and tables of Examples 1 and 2, the presence or absence
of symmetry does not affect the performance of the proposed algorithm. The
residual norm consistently decreases more rapidly compared to the original
algorithm, while the runtime decreases with a given number of bases.

Math. Model. Anal., 31(1):79-95, 2026.
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Table 4. Runtime for Example 2.
iterations Runtime(Reg-CGNR) Runtime(Reg-vsCGNR)
1000 103.910521 101.190861
3000 279.734534 243.524095

Ezample 3. In this example, we discuss the changes in the parameter s across
different iterations. A general function is defined by ¢, and the parameter s
changes as c varies where

i—1
so=LVi>1s =1+ Y s;/ec|, (5.1)
j=1

A = gallery('tridiag’,m,—1,2,—1), B = gallery('tridiag’,n,0.5,2,0.5).

The results are verified and presented in Figure 3 and Table 5.

(a) n=4, m=6 (b) n=5, m=10 (¢) n=7, m=10

Figure 3. Residual norm in Example 3.

Table 5. Runtime for Example 3. In this table, the runtime of the original algorithm and
the proposed algorithm is compared with three algorithms that utilize different s functions
for various values of ¢ in (5.1).

Dimentions T(CGNR) T(c=500) T(c=1000) T(c=1500) T(vs-CGNR)

m=6, n=4 1.361646  0.464819  0.560035 0.708186 0.307103

m=10, n=5 1.5566126  0.865437  1.000464 1.069885 0.824668

m=10, n=7 1.659863  1.364891  0.999417 1.100701 0.992463

The results of this example indicate that appropriate adjustments to the pa-
rameter s are particularly important throughout the algorithm. The proposed
function for s exhibits better performance in terms of speed and accuracy com-
pared to other functions. Figure 3 shows that changing the dimensions of the
A, B does not affect the performance of the proposed algorithm.
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FEzxzample 4. In this example, we evaluate and compare the proposed algorithm
using various regularization filters. The matrices A and B are considered as
follows

A = gallery('kms’,m,0.3), B = gallery('kms’,n,0.2).

The exact solution to the problem is presented in Figure 4, while the matrix
on the right side (C) is shown in Figure 5. The results for iteration number
K = 30 are shown in Figures 4. The figures in this example indicate that the
regularization filters exhibit similar performance.

(d) Tikhonov filter (e) Sign filter (f) Logarithmic filter

Figure 4. Image reconstruction in Example 4.

(a) Observed image (b) Residual norm

Figure 5. Residual norms and observed image in Example 4.

Math. Model. Anal., 31(1):79-95, 2026.
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Ezample 5. The algorithms described in the previous sections reconstruct the
non-diagonal elements of the solution at a faster speed. In this example, using
the following two matrices

A = gallery("toeppen’,m,0.1,—-0.4,1,—-0.4,0.1),
B = gallery("toeppen’,n,—0.1,0.4,1,0.4,—0.1).

we apply K = 130, 150,170,200 basis matrices in the variable s-step algorithm
to reconstruct the exact image from the observed image. The exact and ob-
served images are shown in Figure 6. The results with the Tikhonov filter are
presented in Figure 6.

(a) Observed image (b) K=130

(d) K=170 (e) K=200 (f) Exact image

Figure 6. Image reconstruction in Example 5.

We can easily see that by increasing the number of iterations (i.e., the number
of bases used), the image can be brought closer to the original image with
appropriate accuracy, and the image resolution can also be enhanced.

6 Conclusions

This paper introduces a novel s-step algorithm for solving matrix equations,
demonstrating several significant advantages as evidenced by our numerical
results and previous discussion. The core contributions and findings can be
summarized as follows:

1. The proposed algorithm significantly improves convergence rates and re-
duces runtime. The strategic application of the variable s-step technique
positively impacts the computational efficiency, as corroborated by the
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provided runtime tables. Furthermore, when coupled with appropriate
regularization methods, this technique markedly enhances algorithm con-
vergence. A crucial aspect of this improvement lies in selecting a suitable
function for adjusting the parameter s at each iteration, which establishes
a desirable balance between algorithmic stability and execution speed.

2. The algorithm exhibits remarkable insensitivity to symmetry. Our re-
sults clearly indicate that the presence or absence of symmetry in the
images (as shown in Examples 1 and 2) does not adversely affect the al-
gorithm’s performance. Consistently, the residual norm decreases more
rapidly compared to the original algorithm, irrespective of symmetry.

3. The efficacy of regularization filters is clearly demonstrated. The use
of regularization filters, such as the Tikhonov filter, leads to improved
numerical outcomes. Across various examples (e.g., Example 4), these
filters consistently show similar performance.

4. The algorithm demonstrates a superior capability in reconstructing non-
diagonal elements of the solution, achieving this at a faster pace (Exam-
ple 5).

5. The flexibility in adjusting the parameter s is a key strength. The ability
to define different functions for determining s (as illustrated in Exam-
ple 3) provides the algorithm with adaptability, making it suitable for a
diverse range of problems.

6. The proposed methodology shows broad applicability. Techniques tradi-
tionally employed for linear systems can be effectively extended to matrix
equations after appropriate normalization.

7. While the algorithm offers substantial benefits, it also presents challenges.
The determination of an optimal function for adjusting the s parameter at
each iteration remains a critical and sensitive selection, requiring careful
consideration.

In conclusion, the introduced algorithm stands as an efficient and robust method
for solving matrix equations. By leveraging the variable s-step technique and
appropriate regularization filters, it achieves faster convergence, reduced run-
time, and stable performance across various conditions, including both sym-
metric and nonsymmetric scenarios.
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