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Abstract. We prove analytically the existence of a uniparametric

family of periodic travelling waves for a Cahn-Hilliard equation

with an external forcing term modelling the phase separation of

a binary mixture of fluids with thermal diffusion. Some quantita-

tive estimates on the solutions are derived.
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1 Introduction and main result

The Cahn-Hilliard equation [1] is a widely accepted model for the dynamics
of the variation of concentrations of the components of a binary mixture of
fluids. The dynamics of phase separation can be altered by external forces,
like an external heating of the fluid, known as the Ludwig-Sorret effect or
thermal diffusion. Following [4,6,7], we consider a Cahn-Hillard equation with
a travelling spatially periodic forcing term of the form

∂C

∂t
= D∂xx(C

3 − C − γ∂xxC) + f0k cos[k(x− vt)], (1.1)

where all the parameters are positive and have different physical meaning,
D is the mobility parameter, k is the wave number, f0k is the amplitude,
and v is the velocity of the external force, which models a travelling tempe-
rature modulation. The scalar field C(x, t) measures phase separation, with
C(x, t) = 0 indicating a locally well-mixed state (total homogenization), while
C(x, t) ̸= 0 means a higher concentration of one of the components relative
to the other. Our purpose is to perform a complete analytical study of the
existence of spatially-periodic travelling wave solutions of the form

C(x, t) = u(η), η = x− vt, u(η + L) = u(η), (1.2)

where L = 2π/k is the minimal period of the external forcing.
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Introducing the ansatz (1.2) into (1.1), we obtain the fourth-order ordinary
differential equation

−v
du

dη
= D

d2

dη2

(
u3 − u− γ

d2u

dη2

)
+ f0k cos(kη). (1.3)

Integrating in η and denoting the derivative in η by ′, we arrive to the third-
order equation

γDu′′′ = D(3u2 − 1)u′ + vu+ C0 + f0 sin(kη),

where C0 is a constant of integration. If there exists an L-periodic solution u,
an integration of this equation on a whole period [0, L] shows that C0 = 0 if
v = 0. Thus, by convenience we can write C0 = −vc0 without loss of generality,
where c0 is a new arbitrary constant, and the former equation reads

γDu′′′ = D(3u2 − 1)u′ + v(u− c0) + f0 sin(kη), (1.4)

in perfect analogy with Equation (5) from [6]. If v ̸= 0 and u is an L-periodic
solution, integrating over [0, L] gives

c0 =
1

L

∫ L

0

u(η)dη := ⟨u⟩.

Thus, fixing c0, we are prescribing the mean value of the eventual periodic
solutions of (1.3).

Our main result is some kind of universal existence result.

Theorem 1. For any value of c0, v ∈ R and any value of the positive parame-
ters γ,D, f0, k > 0, Equation (1.4) has at least one L-periodic soluton.

The obvious consequence is that for any prescribed c0, Equation (1.1) has
a periodic travelling wave with mean value c0, whatever is the value of the
involved parameters. The proof is developed in Section 3. For v ̸= 0, it relies
on Schaefer’s fixed point theorem, which is one of the most simple and elegant
fixed point theorems for operators defined on a Banach space. For the case
of a standing wave forcing, v = 0, it is possible to reduce the equation one
order more and to use the method of upper and lower solutions, as it is done in
Section 5. In the course of the proof, some a priori bounds on the solutions are
derived, providing quantitative information about the location of the travellling
waves. Due to its independent interest for the physical model, the computations
are done separately in Section 2. The paper finishes with some further remarks
in Section 5.

2 A priori estimates for the case v ̸= 0

We are going to embed Equation (1.4) into a one-parametric family of equations
given by

γDu′′′ − vu′ = λ
[
D(3u2 − 1)u′ − vc0 + f0 sin(kη)

]
, (2.1)
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where λ ∈ [0, 1]. The reason has to do with Schaefer’s fixed point theorem and
will be explained in the next section. It is evident that (1.4) corresponds to
(2.1) for λ = 1.

The objective of this section is to find uniform bounds (not depending on
λ) for any eventual L-periodic solution of (2.1) and its derivative. Denote
by ∥.∥2 the usual L2-norm. For brevity, let us denote the forcing term by
p(η) = f0 sin(kη). Given u an L-periodic solution, multiplying (2.1) by u and
integrating on [0, L], we get

v∥u∥22 = λvc20 − λ

∫ L

0

p(η)u(η)dη.

Here, we have used that c0 = ⟨u⟩. Now, taking absolute values and using
Cauchy-Schwarz inequality on the integral,

|v|∥u∥22 ≤ λ|v| c20 + λ

∣∣∣∣∣
∫ L

0

p(η)u(η)dη

∣∣∣∣∣ ≤|v| c20 +∥p∥2∥u∥2 .

Such quadratic inequality is easily solvable, giving

∥u∥22 ≤ 1

2|v|

(
∥p∥2 +

√
∥p∥22 + 4c20|v|

2

)
=: C1. (2.2)

Now, multiplying (2.1) by u′ and integrating by parts on the left-hand side, we
obtain

γD
∥∥u′′∥∥2

2
= λD

∫ L

0

(1− 3u2)(u′)2dη − λ

∫ L

0

p(η)u′(η)dη

≤ D
∥∥u′∥∥2

2
+∥p∥2

∥∥u′∥∥
2
,

(2.3)

where again Cauchy-Schwartz inequality has been used. Observe that, by the
periodicity of the solution,

∥∥u′∥∥2
2
=

∫ L

0

u′2dη = −
∫ L

0

u(η)u′′(η)dη ≤∥u∥2
∥∥u′′∥∥

2
.

Inserting this inequality into (2.3), we arrive to

γD
∥∥u′′∥∥2

2
≤ D∥u∥2

∥∥u′′∥∥
2
+∥p∥2∥u∥

1/2
2

∥∥u′′∥∥1/2
2

,

and using (2.2), to

γD
∥∥u′′∥∥2

2
≤ DC1

∥∥u′′∥∥
2
+∥p∥2 C

1/2
1

∥∥u′′∥∥1/2
2

. (2.4)

Since the left-hand side is quadratic in
∥∥u′′

∥∥
2
and the right-hand side increases

linearly with respect to
∥∥u′′

∥∥
2
, it is sure that there exists C2 > 0 (not depending

on λ) such that ∥∥u′′∥∥
2
≤ C2.
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Such constant C2 can be computed explicitly. To this aim, let us call H =∥∥u′′
∥∥1/2
2

and look to (2.4) as the cubic inequality

γDH3 ≤ DC1H +∥p∥2 C
1/2
1 .

Thus, we are compelled to study the cubic polynomial in H

H3 − C1

γ
H −

∥p∥2 C
1/2
1

γD
= 0.

A basic analysis shows that there exists a unique positive root, and it is explic-
itly given by Cardano’s formula

H=
3

√√√√∥p∥2 C
1/2
1

2γD
−

√
∥p∥22 C1

4γ2D2
− C3

1

27γ3
+

3

√√√√∥p∥2 C
1/2
1

2γD
+

√
∥p∥22 C1

4γ2D2
− C3

1

27γ3
. (2.5)

Then,

C2 = H2.

We are now capable of determining a bound for the derivative of the solutions.
Observe that u is a bounded and regular function, then it must have criti-
cal points. Take η0 ∈ [0, L] such that u′(η0) = 0, then by Cauchy-Schwarzt
inequality, ∣∣u′(η)

∣∣ ≤ ∣∣∣∣∣
∫ η

η0

u′′(s)ds

∣∣∣∣∣ ≤ √
L
∥∥u′′∥∥

2
≤

√
LC2,

for all η ∈ [0, L].
Finally, considering that c0 = ⟨u⟩, by the Mean Value Theorem for integrals,

we can take η̃0 ∈ [0, L] such that u(η̃0) = c0. Then,

∣∣u(η)∣∣ ≤ ∣∣∣∣∣
∫ η

η0

u′(s)ds+ u(η̃0)

∣∣∣∣∣ ≤ L
√
LC2 + c0,

for all η ∈ [0, L].
To finish this section, let us note that the above computations are indepen-

dent of the concrete shape of the forcing term p(ν), provided that it has a zero
mean value. In the particular case of p(η) = f0 sin(kη) considered in [4, 6, 7],
an elemental computation provides

∥p∥2 = f0
√
π/k.

3 Proof of the main result for the case v ̸= 0

Denote by Cn
L the space of L-periodic functions with continuous derivatives up

to order n. C1
L is a Banach space endowed with the norm∥u∥ =∥u∥∞+

∥∥u′
∥∥
∞,

where ∥.∥∞ stands for the usual uniform norm.
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The first step is to reformulate the problem as a fixed point problem for an
adequate operator. Let us write (1.4) as

Lu = Nu, (3.1)

where

Lu := u′′′ − v

γD
u, Nu =

1

D
(3u2 − 1)u′ − vc0

γD
+

f0
γD

sin(kη).

If v ̸= 0, L : C3
L → CL is an invertible operator by the classical Fredholm’s

alternative. In fact, L−1 can be written explicitly as a convolution operator
with an associated Green’s function. Then, Equation (3.1) is written as the
fixed-point problem

u = Au,

where A = L−1N : C1
L → C1

L. More explicitly, the operator A can be written
as

Au(η) =

∫ L

0

G(η, s)

[
1

D
(3u(s)2 − 1)u′(s)− vc0

γD
+

f0
γD

sin(ks)

]
ds,

where G : [0, L]×[0, L] → R is the Green’s function associated to the operator L
with periodic conditions. Then, the continuity of A follows from the Dominated
Convergence Theorem, while the compactness is a consequence of Ascoli-Arzela
Theorem.

To obtain a fixed point of the operator A, we will use the following result.

Theorem 2 [Schaefer]. Let X be a Banach space and A : X → X be a
continuous and compact mapping such that the set

{u ∈ X : u = λAu for some 0 ≤ λ ≤ 1} (3.2)

is bounded. Then A has a fixed point.

This is a very well-known consequence of the Leray-Schauder degree and
can be found in all the monographies dedicated to topological degree from the
point of view of Nonlinear Analysis (see for example [5]). In our case X = C1

L

and it is easy to check that u = λAu is equivalent to Equation (2.1). Due to
the estimates derived in Section 2, we know that the set (3.2) is bounded, so
the result applies directly and the proof is done.

4 The case v = 0

The stationary case v = 0 presents some peculiarities that require separate
treatment. Note that in this case, Equation (1.4) can be integrated again to
get

γDu′′ = D(u3 − u)− f0
k

cos(kη) + h0, (4.1)

Math. Model. Anal., 30(4):707–713, 2025.
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where h0 is a constant of integration. Now, this constant is no longer the mean
value of an eventual periodic solution, nevertheless

h0 =
D

L

∫ L

0

(
u− u3

)
dη.

It is clear that any possible L-periodic solution of (4.1) is also a solution of
(1.3). Hence, h0 will play a similar role as c0 in identifying a uni-parametric
family of solutions of (1.3).

Equation (4.1) is recognized as a periodically forced Duffing equation. Due
to its interest as a model in different fields, there is a vast bibliography dedicated
to its study (see [3] and the references therein). There are a wide variety of
analytical and numerical methods available to study its dynamics, which in
general can be quite complex, including the appearance of KAM scenarios.
Here we perform an ad-hoc analysis based on the concept of upper and lower
solutions (see [2, Section 1.1]).

Let us define α as the lowest real root of the cubic polynomial

P−(u) := D(u3 − u) +
f0
k

+ h0 = 0,

and β as the highest real root of

P+(u) = D(u3 − u)− f0
k

+ h0 = 0.

Suppose that a local maximum of a solution of (4.1) is attained at η∗. Then,

0 ≥ γDu′′(η∗) = D(u3 − u)− f0
k

cos(kη∗) + h0 ≥ P+(u(η∗)),

so in consequence, u(η∗) ≤ β. An analogous argument proves that a local
minimum should be greater than α. Thus, any L-periodic solution holds the
uniform bounds

α ≤ u(η) ≤ β,

for all η ∈ [0, L]. As a matter of fact, α, β is a couple of ordered lower and
upper solutions of (4.1), and a classical theorem (see for instance Theorem 1.1
in [2, Section 1.1]) provides the existence of at least one L-periodic solution in
between. This closes the remaining gap in Theorem 1.

5 Final remarks

In conclusion, we have proved rigorously the existence of a uniparametric family
of periodic travelling waves for the Cahn-Hilliard equation with an external
forcing in the form of a travelling wave. The proof is independent of the specific
form of the external forcing term, as is pointed out at the end of Section 2.

Moreover, the quantitative estimates derived in Sections 2 and 5 are easily
interpretable from the point of view of the physical model of phase separation of
binary mixtures, providing additional information. For example, when c0 = 0,
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they can be used to understand possible strategies for homogenization. In view
of (2.2), if c0 = 0 we observe that

lim
v→+∞

C1 = 0,

so from (2.5) also C2 tends to 0 when v → +∞. This fact can be interpreted
as that the external forcing acts as a mixer of the binary mixture, in such a
way that increasing the travelling velocity enhances the homogenization. The
same effect occurs when k or γ tends to infinity. In contrast with the analytical
findings of [6], our results do not rely on perturbation theory.

An interesting open question concerns the uniqueness of the travelling wave
once all the parameters are fixed, including the proper parameter of the found
uniparametric family, which of course is not a proper parameter of the original
Cahn-Hilliard equation. This deep question was proposed by one of the referees
and requires further study.
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