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Abstract. This paper deals with the construction of mean square analytic-numerical
solution of parabolic partial differential problems where both initial condition and
coefficients are stochastic processes. By using a random Fourier transform, an infi-
nite integral form of the solution stochastic process is firstly obtained. Afterwards,
explicit expressions for the expectation and standard deviation of the solution are
obtained. Since these expressions depend upon random improper integrals, which are
not computable in an exact manner, random Gauss-Hermite quadrature formulae are
introduced throughout an illustrative example.
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1 Introduction

Random partial differential initial value problems (IVP) was considered an
emergent mathematical subject since the celebrated surveys [3] edited by Al-
bert T. Bharucha-Reid. Diffusion models with uncertainties are frequent due
to material impurities apart from the appearance of error measurements. The
consideration of pollutants in presence of impurities is another situation where
uncertainty is relevant in diffusion problems. In the evaluation of microwave
heating processes, the time dependent model is more appropriate to avoid mis-
leading results due to the complexity of the field distribution within the oven
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and the variation of dielectric properties of the material with temperature,
moisture content, density and other parameters [15,20,27].

Random heat transfer models have been studied in [9] using a random per-
turbation method, in [24] using finite methods, and in [11] by applying finite
difference methods. Random linear advection equation has been treated in [16]
and the statistical moments of the solution of the random Burgers-Riemann
problem and of the transport random differential equation are studied in [12]
and [21,22], respectively. Stochastic heat transfer problems modeled in a dif-
ferent way to the one considered here, in fact based upon Browniann motion
and It6 calculus, may be found in [29]. As indicated in [2], numerous prob-
lems like continuum mechanics systems can be modeled by partial differential
equations with random coefficients or random operators and stochastic initial
and/or boundary conditions. One of the main difficulties in dealing with ran-
dom partial differential equations is the fact the search for solutions and the
analysis has to be carried out for every realization of the random parameters
of the model equation. In this respect one usually faces arduous problems
when trying to apply the usual and well known numerical techniques of the
deterministic case. Consequently, it appears very interesting to look for ap-
proximated analytic solution. Also in [26], authors say that in many complex
models understanding the behavior of the system requires obtaining many real-
izations of the state equations which necessitates performing simulations over
a range of model parameter values. Because performing many simulations
for complex partial differential equations (PDEs) is typically computationally
expensive, methods have been developed to reduce the work. In [26], authors
propose interesting stabilizations methods to overcome these drawbacks for the
advection-diffusion-reaction equation. The aim of this paper is just to progress
in this direction and we propose the construction of analytic-numerical solu-
tions for random parabolic-type models. To achieve this goal, we use a mean
square Fourier transform approach.

Random constant coefficient parabolic models have been recently treated
using a mean square (m.s.) approach based on an integral transform technique
in [7] using the random Laplace transform, and in [5, 6], using several random
Fourier transforms (trigonometric and exponential). In all these cases, the con-
stant coefficient model allows to obtain the exact m.s. solution of the random
transformed differential problem as well as of the inverse integral transform
captures the solution stochastic process (s.p.) of the original problem. For the
random time dependent case, the capture of the solution s.p. of the original
problem involves, throughout the inverse integral transform, unbounded ran-
dom integrals that makes advisable the numerical evaluation of random com-
plicated integrals. This is a major contribution introduced here, where random
numerical quadrature formulae are applied to approximate the solution s.p. to
random parabolic problems obtained after using the random Fourier transform.

In this paper we solve the time dependent random parabolic problem

ut(x,t) = ao(t) uge(x,t) + a1 (t) ug(x,t) + as(t) u(z, t), (1.1)
—o< <400, t>0,
u(z,0) = f(zx), —oo<z<+00, (1.2)



Mean Square Analytic-Numerical Solution of Random Parabolic Models 81

where a;(t) = a;(t;w) :]0,+00[x2 — R, 1 < i < 3 and f(z) = f(z;w) :
R x 2 — R are s.p.’s, defined in a complete probability space (2, F,P), that
satisfy certain hypotheses that will be specified later. To achieve this goal,
firstly we will establish some new results related to the so-called LP-random
calculus. Afterwards, we will extend some classical quadrature formulae to the
random context in order to compute reliable approximations of the mean and
the variance of the solution s.p., u(z,t), also termed random field, to the IVP
given in (1.1)—(1.2). All our theoretical findings will be illustrated by means of
several examples. The model (1.1)—(1.2) for the deterministic case, using the
Fourier transform was studied in [23].

The paper is organized as follows. Section 2 begins with some notational and
adapted results that are introduced for the sake of clarity in the presentation.
Some new auxiliary results that will be required throughout the paper are also
established. In Section 2.1, the numerical method of random Gauss-Hermite for
the evaluation of random improper integrals is introduced and it is applied to an
example strategically placed that will be used later in Section 3, where problem
(1.1)—(1.2) is firstly analytically solved using the random Fourier transform.
Then, using the random Gauss-Hermite quadrature introduced in Section 2.1,
the solution of problem (1.1)—(1.2) is numerically approximated. Numerical
examples illustrating the theoretical results are included in Section 3.

2 Preliminaries

This section is addressed to introduce some preliminaries, definitions and re-
sults that will be required throughout this paper. Further details about these
preliminaries can be checked [1,28]. Let (£2,F,P) be a complete probability
space, a complex random variable (r.v.), z : £ — C, is said to be of order
p > 1, if E[|z|P] < 400, being E[-] the expectation operator. It can be shown
that the set of all r.v.’s of order p,

RV (.
Ly (2) ={z: 2 — C/E[|z|’] < +oo}, 1<p< oo, (2.1)
endowed with the norm
lllp.ry = (E[2)” < +oo, (22)
is a Banach space, [1, p.9]. The convergence inferred by the |||, ry-norm is
usually referred to as the p-th mean convergence. More precisely, a sequence
of rv’s {zn, : n > 0} in LYV (£2) is p-th mean convergent to the r.v. z €

o Il
LEV(2), and it is denoted as z, —=—

o O if and only if, ||z, — z|prv =

(E[|zn — x|p])1/p R 0. The cases p = 2 and p = 4, corresponding to the
n—-+oo

so called mean square and mean fourth convergence, respectively, play a major
role in the study of random differential equations [10,30]. This key role will
also be manifested throughout this paper as well.

Below, we state some inequalities for r.v.’s, belonging to the space
(LY (92), || lp,rv), that will be required subsequently. In accordance with the
Liapunov’s inequality

(E[Jo")? < (E[le])?, 1<p<q< oo, (2.3)
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one gets
RV RV
Ly (2) Ly (£2), 1<p<gq<+oo. (2.4)

In dealing with random differential equations, a primary goal is try to formulate
general results in the space (LEV(£2),||'|l2,rv). Although the biggest space
corresponding to p = 1 has its own mathematical interest, when dealing with
random differential equations the reference space is LYV (£2). It is because
in practice most of the r.v.’s have finite variance. However, the legitimation
of some mean square operational rules often requires to assume hypotheses
involving information related to LEV (£2). For example, it can be seen that [4]

n—-+oo n—-+oo

Il Il
Tp ——>x, YE LEV(Q),} = Ty —— 1Y

. . - lI-I
Nevertheless, in general, this property does not hold if either x,, % x or
n—-+0oo
y € LEV(£2). This matter is a consequence of the fact that the [[[I,, gy-norm is
not submultiplicative, i.e., for z,y € LYV (£2), zyll, ry % 7], ry 191l gy in

general (see [30]). In the particular case that 2,y € LV (2) are independent
r.v.’s, the above relationship is just an identity, i.e.,

if 2,y € LEV(£2) are independent r.v.’s = ||zy . (2.5
D p,RV

This result is a consequence of the following Proposition 1 together with the
definition of the ||-||, gy-norm in terms of the operator expectation (see (2.2)).

prv = 12l ry (1]

Proposition 1. [19, p.92] Let f1, fo : R — R be measurable transformations
and x1,z9 : 2 — R be independent r.v.’s. Then, fi(x1) and fa(z2) are
independent r.v.’s and

E[fi(@1) f2(z2)] = E[fi(z1)] E[f2(x2)],
provided the above expectations exist.

A set {x(v) : v € V C R} of r.v.’s in LFV(£2) indexed by the index v, is said
to be a s.p. of order p. As usual, the definitions of continuity, differentiability
and integrability of a s.p. of order p can be established in terms of the |||, zy-
norm. For instance, a s.p. of order p, x(v), is said to be continuous at v € V
(z(v) is |||, gy-continuous at v € V, for short) if

oo+ 1) = (o)l — 0, w0 +hEV.

As a direct consequence of the Liapunov’s inequality (2.3), one deduces that if
z(v) is [|-[| , ry-continuous (differentiable or integrable) s.p., then x(v) is [|-||,, gy~
continuous (differentiable or integrable) s.p., being ¢ > p > 1. However, the
reverse is not true, in general.

Additionally to the definition of ||-[|, gy-integrability of a s.p. z(v) defined

in the space L\ (£2), we will use the concept of ||-|| »ry-absolutely integrable of
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as.p. Namely, a s.p. z(v) € LV (£2) is said to be (|||, ry-absolutely integrable
s.p. if the following deterministic integral

+oo
[ 1@y a0 (2.6)

— 00

exists and is finite. If z(v) € LYV (£2) is [|[, ry-absolutely integrable s.p., then
its random exponential ||| pry-Fourier transform is defined by

+oo

X(€) = Fa(0)](€) = / 2(v) exp(—i€v)dv, €€R, i=+vl,

— 00

where this random integral defines a s.p. {X(§) : £ € R} in the Banach space
LV (92), [|llprv). If 2(v) is |||, ry-absolutely integrable s.p., it is clear that
it admits a random ||-[|, gy-Fourier transform since

+00 Foo
[ la) espieo)lmy do < [ o)y lexp(-i€o)] dv

— 00 — 00

+oo
[ 1@l py dv < 40,
—o0

where we have used that, |exp(i§v)| = 1 and that x(v) is ||-[|, gy-absolutely
integrable s.p., hence by (2.6) the last integral is finite. In [5, p.5926], it
is proved the extension of the following well-known properties of the Fourier
transform

2" (0))(§) = i€z ()](©),  Fl2"(@))() = —*Flz(v))(©), (2.7)

to the random framework provided that the involved random ||-||,, zy-deriva-
tives exist and x(v), 2'(v) and 2”(v) are |||, gy-absolutely integrable s.p.’s.
These properties will be used later.

In order to formalize our study, besides the above Banach space of complex
r.v.’s having absolute moments of order p, (L} (£2), ||-|l5,rv), we will also need
the following Banach space, (LSP(R x 2),||-lp,sp) where

LEP(R x 2) = {f Rx2—=C/ /_+OO (E[|f(v)|p])1/Pdv < +oo}

_ {f:R K0T /:Onf(mp,mdv < —l—oo} . (28)

and

+oo 1/1’
1 llpse = + ( [ 1@l dv> , 1<p<+oc.

Notice that the elements of LIS)P(]R x §2) are ||-||p ryv-absolutely integrable s.p.’s
(see (2.6)). Observe that if f € LEP(R x §2), then the expectation E [| f(v)[?]
exists and is finite for every v € R fixed (otherwise would not make sense the
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definition of the space LEP(R x {2) given in (2.8)). Hence, for every v € R fixed,
f(v) is a r.v. of the space LV (£2).

As usual, in dealing with s.p.’s for convenience sometimes the sample pa-
rameter w € {2 will be hidden depending on the context. Hence, an element f
of LEV(£2) or LSF(R x £2) will be denoted by f(v) or f(v;w) interchangeably
throughout this paper.

Now, we recall an important class of r.v.’s that will be considered later.
This class has been used in previous works where random differential equations
are studied [5,7].

DEFINITION 1. A real r.v. a: {2 — R defined on a probability space (2,5, P)
is said to be of class C if

dM,H >0: E[|a|"]<MH™ < +c0, VYm >0. (2.9)
Remark 1. Condition (2.9) can be written in terms of the Landau’s symbol as
E(la™] = O((H)™).

As it has been demonstrated in [5], an important class of r.v.’s that belong to
the class C are bounded r.v.’s. Thus, binomial, uniform, beta, A-distributed
r.v.’s, etc. satisfy condition (2.9). Unbounded r.v.’s can be approximated using
the truncation method [25, ch.V] instead of checking the condition (2.9). This
is particularly convenient because there exist families of r.v.’s for which a closed
expression for their absolute statistical moments is not available.

Below, we establish an auxiliary result that will be used later. This result
involves a class of s.p.’s that satisfy a natural generalization of condition (2.9).

Lemma 1. Let h(§) be a complex deterministic function and let a(t) be a real
s.p. such that

IM; >0, Hig>0: E[lat)]™] < Ma(Hea)™ <400, ¥Ym>0, (2.10)
for every t > 0 fized. Then,
llexp(h(€) a(t))ll2, ry < V Ma exp(Re (h(§)) He.a), (2.11)

where Re (+) denotes the real part of a complex number.

Proof. On the one hand, it is important to point out that following an anal-
ogous reasoning to the one exhibited in Section 3 of [8] and under condition
(2.10), the exponential s.p. exp(h(§)a(t)) is well-defined for every ¢ > 0 and
h(§) given. On the other hand, using the definition of the p-norm for p = 2
(see (2.2)), one gets

(lexp(n(e) att >>||2Rv) —E[|exp< (&) a(t)*] = Elexp(2Re (h(¢)) a(t))]
_ [Z (2Re (h a(t))*”]:Z<2Re<h<s>>>mE[<a<t>>m1

m/!

1>0 m>0

\ /\

a, Y BRECEV DT _ oy sy Re (h(6)) Hi)

m=>0
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where we have used that |exp(z)| = exp(Re(z)), for every complex number z.
This proves the result. 0O

Now, we apply the previous Lemma 1 to a particular case that will required
later in the Example 2

Remark 2. Let a(t) = {at : t > 0} be a s.p. such that a is a r.v. of class C,
i.e., satisfying condition (2.9).
Let ¢ > 0 and let us observe that applying Lemma 1 to h(¢) = —£2, one
gets
Hexp (fgzta)H2 Ry S VM exp( §2Ht). (2.12)

Observe that the constant H; ; that appears in (2.11), now is just H ¢, for every
t > 0 fixed.

2.1 Approximation of random improper integrals by the random
Gauss-Hermite quadrature

We begin this section by extending to the random framework the practical
Gauss-Hermite quadrature formulae for the evaluation of improper random
integrals that appear in a natural way when using random integral transform
methods.

For f € L§F(R x £2), let us consider the following integral

+oo
[=1[f] = / £(€) exp(—€2) de, (2.13)

— 00

which is a r.v. Since 0 < exp(—¢2) <1 for all ¢ € R and f € L5T(R x £2) (see
(2.8) with p = 2), one gets

H/+OO ) exp(—£?)

[ 1@l e < oo

[1]]2,rv

+oo
< / 1£(6) exp(—€2) o py d
2,RV —o0

IN

Then, I[f] is well-defined. If we further assume that f € L§P(R x £2) has
continuous sample trajectories, i.e. f(z)(w) is continuous with respect to z € R
for all w € 2, then the r.v. (2.13) coincides, with probability 1, with the
(deterministic) sample integrals

—+oo
I(w) = I[f](w) = / F(&w) exp(—€2) e, we 2,

which are well-defined and thus they are convergent for all w € {2 [28, Appendix
I]. Then, taking advantage of the Gauss-Hermite quadrature formula of degree
N, [13,14], we can consider the following numerical approximation

N
2NFINL /7
~ pi flémw), pj=——", 1<j<N,we,
20316 T (Hy(EGm)?
(2.14)

Math. Model. Anal., 23(1):79-100, 2018.
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where &;  are the roots of the deterministic Hermite polynomial, Hy, of degree
N.

Example 1. Let us consider the following random integral whose interest will
be apparent later.

I(x,t) = /m exp (—52 (m2 + i)) cos(€ (tay + x))d€, (2.15)

—00
for fixed (x,t) € R x (0, +00) and given real r.v.’s a1, as : {2 — R defined on a
common probability space ({2, F,P) satisfying certain properties to be specified
later.
Note that the integrand of (2.15) can be transformed into the form of the
integrand (2.13), multiplying them by exp(£2) to obtain the s.p. f(&)(z,1),
that is,

exp (=€ (102 + 1) ) cos(etan + ) xp(€?) = F(©) 1) exp(—€2) expl€2).

Then
“+o0

f(x,t)ZI(%t)[f]=/ F(€)(x,t) exp (—€2) de, (2.16)

— 00

3
_ _ 2 _ =
f(&)(z,t) = exp ( £ (ta2 4)) cos (€ (tay + z)).
Assuming that a; and ay are so that the s.p. f(z,t) € L¥(R x £2) and its

sample trajectories f(z,t;w) are continuous, then according to (2.14) we can
consider the following numerical approximations of (2.16)

I (2, 0)[f)(w) = 001, oy exp (=67 (taz — §)) cos(§; (tar + 7)),

_ 2N+1N!ﬁ
T &)

(2.17)
1<j<N, w € £2.

3 Solving random parabolic problems

In this section we consider the initial value problem (1.1)—(1.2) where the time
s.p.’s, a;(t), i = 1,2,3, and the spatial s.p., f(z), are assumed to satisfy the
following conditions

a;(t), f(x) are independent r.v.’s, Vi: 1<i<3, (3.1)
Y(x,t),—00 < x < 400, t >0, both fixed, ’

f(z) is a |||, gy — absolutely integrable s.p. such that its (3.2)
random Fourier transform F(¢) € L§P(R x ), '

a;i(t) are ||-||, gy — continuous s.p.’s, Vi: 1<i<3 (3.3)
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and

t
ai(t) = / ai(s)ds, 1<i<3, (3.4)
0
satisfy condition (2.10), i.e

EIM;H > 0, Ht,di >0: E [‘dl(t)|m] < M(z,; (thgi)m < 400,
Ym>0,Vi: 1<i<3. (3.5)

Notice that {a;(t) : t > 0}, 1 <14 < 3 are ||-[|; gy-continuous s.p.’s (see hypoth-
esis (3.3)), then by Lemma 3.16 of [30] the integral s.p.’s @;(¢) given in (3.4)
are well-defined in (L} (£2), |||ls.rv) (and hence also in (LY (£2), ||-||2.rv ), see
(2.4)).

In the following, we will apply the random Fourier transform approach,
introduced in [5], by assuming for the time being, that problem (1.1)—(1.2)
admits a solution s.p. u(z,t) such that itself and its two first derivatives with
respect to x, ug(x,t) and ug,(x,t), regarded as s.p.’s of the spatial variable
z, all are ||-[|, gy-random Fourier transformable. Let §lu(-,t)](§) = U(¢)(§) be
the random Fourier transform of the solution s.p. u(x,t) considering x as the
active variable and ¢ fixed. Applying the random Fourier transform to both
sides of equation (1.1) and to the initial condition (1.2), and using its linearity,
one gets

Slue (- DI(E) = a2(t)F[uwa (-, )](E) + a1 ()F[ua (-, 1)](E)
+az(t)Su(, 1)](6), (3.6)
Slu(, 0)](€) = Sf (2)I(€) = F(E)- (3.7)

By the properties of the random Fourier transform of a s.p. stated in (2.7),
one gets

S’[uwz(at)](€> = —523[’11,(,25)](5) = _fo(t)(€>7
Slua (- )](E) =i ESlul-, 1)](€) = iU (E)(E) -

Assuming that the solution s.p. w(z,t) is such that u(-,¢) is Fourier trans-
formable and that hypotheses of Lemma 2 of [5] hold, then one gets

Flu (1] () = < B0 (€) = TOH)E) (38)

Therefore, from (3.6)—(3.8) one deduces that, for each £ € R fixed, U(¢)(§)
satisfies the random IVP

GUONO = (Ca+ien®+am)voe. >0 | oo

U(0)(€) = F().
On the one hand, let us denote by

a(t) = a(t,&) = =% aq(t) +iar(t) +az(t), €& € R fixed, (3.10)

Math. Model. Anal., 23(1):79-100, 2018.
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and assume that

t+s*

36§>0, r>2p: sup E[exp(r/
s,8*€[—4,6] z+s

a(v) dv)} < +o0. (3.11)
On the other hand, observe that by hypotheses (3.2) and (3.3), a;(t) and f(z)
are in L}V (£2) for each t > 0 and = € R, respectively, then it is guaranteed
that a(t), defined by (3.10), and F(€), defined by (3.7), also belong to LEV (£2)
for £ € R fixed. Moreover, due to the hypothesis of independence among a;(t)
and f(z) assumed in (3.1), a(t) and F(&) are also independent. Finally, by
hypothesis (3.3), it is clear that the s.p. a(t) is [|-[|, gy-continuous. Then,
Theorem 8 of [10] allows us to guarantee that the mean square solution s.p. of
the IVP (3.9) is given by

t
U(t)(§) = exp </O a(s,§) ds> F(€), t>0, being € € R fixed.

Now using formally the random inverse Fourier transform, the candidate solu-
tion s.p. of problem (1.1)—(1.2) is given by

u(x,t)

“+o0
FHUE)] = — / U()(€) explice) de

21 J_ o

% /_ +: exp <i§x+ /0 a5, ds) F(&)dg.  (3.12)

For every (z,t) € R x [0, +o0] fixed, it remains to justify the latter random
integral given in (3.12) is convergent in the space (LY (R x £2), ||||, gp) defined
in (2.8) with p = 2. As a consequence, the s.p. u(z,t) given in (3.12) is well-
defined in the mean square sense, that is in the Banach space (LEV (£2), ||||2Rv)
defined in (2.1). With this goal, let us observe that

/_+°°H exp (ifx + /Ot a(s, g)ds)F(f)H2 Rvdf

o0 ’

= [l tien) e ([ ats.005)], . IF@ a6

— 00

= [ e ([ ats.005)[, o 1O d6 @13)

—00

where in the last step we have applied the relationship (2.5), since by hypothesis

(3.1), fot a(s,€)ds and F'(€) are independent r.v.’s for every ¢ > 0 and £ € R.
Moreover, according to hypotheses (3.1), (3.4)-(3.5), (3.10) and Lemma 1, one
gets

H exp (/Ota(s,f) ds) ‘QRV = H exp (/0'552 as(s) +ifai(s) + az(s) ds)

‘2,RV
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- H exp (/Ot —€2 ay(s) ds) exp (/Ot i ai(s) ds) exp (/Ota3(8) ds) HQ,RV

= H exp ( — {2/0 az(s)ds) LJWH exp (if/o ay(s) ds)

Jew ([ astrs)],

= [lexp (=€ a2(1)) ||, gy llexp (i€ @1 ()l ry lexp (@3 ()5 my

< (VAT xp(Re(ie) 00) ) (/3 exp(Re(—€2) i) ) Vi,
0 —g2

x exp (Re(1)Hya,) < /Ma, May My, exp (— (% Hy o, — Hyay)).  (3.14)

Taking into account the bound (3.14) in (3.13), one gets

/:o Hexp <i§x+/0ta(s,§) ds) F(OHQ,RV dé

+oo
< /My, Mo, M, / exp(—(EHyay — Hyay) [F(E)llpmy d€
+oo

— /M, My, My, exp(Hi o) / exp(—€2H, 2,) [|F(€)|

— 0o

’2,RV

2,RV dg

“+oo

< /My, My, My, exp(Hi ) / IF(E) |y dE < +00,

—00

where the finiteness of the last integral follows because by hypothesis (3.2),
F(¢) e LS (R x £2).
Summarizing the following result has been established.

Theorem 1. Let us consider the random IVP (1.1)~(1.2) and assume that the
coefficients a;(t), 1 < i < 3 and the initial condition f(x) satisfy conditions
(3.1)—(3.5) and (3.10)—(3.11). Then, the mean square solution s.p. of (1.1)-
(1.2) is given by

(o) = — /+OO exp (igx + /Ota(s,g) ds) F(e)de, (3.15)

2r J_
being F (&) the random Fourier transform of the stochastic process f(x).

Taking into account that fOt a(s,€)ds and F(£) in (3.15), are independent r.v.’s
for every ¢t > 0 and £ € R due to condition (3.1), we can obtain the follow-
ing explicit expressions for the expectation and the standard deviation of the
solution s.p. (3.15) of the random IVP (1.1)—(1.2)

Efu(z, 1)] = %/

—00

+oo

exalign) B[ ( [ a(s,6)05) B F(E) ae
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E[(u(z,1))*] = 5 /+Oo /+ooexp (i(&1 +&))

XE[exp( [ (ats.60) + ats. ) as) | B[ (e Fle)] acrdea

V/Var[u(z, t)] +\/IE u(z,t))?] — (Elu(z, t)])>.
Ezample 2. Let us consider the following particular case of the random IVP
(1.1)—(1.2)
ue(x,t) = aoUyy (x,t) + a1ug(x,t) + asu(x,t), |z] <oo, t>0 (3.16)
u(z,0) = exp(—2?), —o0 <z < 400. (3.17)

Observe that the initial condition is deterministic %nd admits a deterministic
Fourier transform, F(§) = F[f(x)](§) = % exp (%) (see Example 1 in [5],

for instance). We will assume that coefficients a;, 1 < 4 < 3, in (3.16), are
independent r.v.’s satisfying condition (2.9), i.e

Ella;|™] < M;(H;))™ < 400, ¥Ym>0, Vi:1<i<3. (3.18)
Thereby,

t
(A],Z(t) = / a; ds = ait,
0
E[Ja;(8)|™] = E [Ja;|™] ™ < M; (Ht)™ < +00, ¥m >0, Vi:1<i<3,

hence it is straightforwardly to check that all the hypotheses of Theorem 1
hold. Using expression (3.15) for each (z,t) fixed, one gets

exp(ta oo
u(z,t) = ;;(t\/;)/_ exp (=& (tas +1/4) + i(tar + z)) d¢. (3.19)

Note that imaginary part of integral (3.19) vanishes because the s.p.

y(&) :=sin (£(ta; + x)) exp (—52 (tag + 1/4))
is odd, i.e., y(—=&)(w) = —y(&)(w) for all w € 2. Thus,

+oo
/ sin ((ta1 + z)) exp (=& (taz +1/4)) d€ =0,

— 00

and one gets

t oo

u(x,t) = M/ exp (=& (taz + 1/4)) cos (&(tay + x)) d€.  (3.20)
271v2  J_oo

Using that exp (—&2 (tag + 1/4)) cos (£(tay + x)) is an even s.p. of the variable

&, hence the solution s.p. of problem (3.16)—(3.17), given by (3.20), takes the

form

exp(t as

u(z,t) = ) /+OO exp (—€ (tas + 1/4)) cos (&(tar +x)) d€.  (3.21)
’ ™2 Jo
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The knowledge of deterministic integrals involving conditions of exponentials
and trigonometric functions, and in particular (see [18, p.515])

*° 1 —b?
/ exp(—B£2) cos(b€)dé = = T exp|——=], Re(f)>0 (3.22)

0 2V 45
suggests the possibility of finding a closed-form expression of the integral given

in (3.21). Following this strategy, previously developed in [6], let us consider
the random improper integral

o 1
J(z,t) = / exp (752 (ta2+f>) cos (&(tay +x)) d¢, x € R, t>0. (3.23)
0 4
Note that as for each £ € [0,400], t > 0 and z € R fixed, it is verified

[[cos (&(tar + @))|l2,rv < 1. (3.24)

Taking into account the hypothesis of independence of a; and as and, then
applying Proposition 1 together with (3.24) and (2.12) (see Remark 2), one
gets

Hexp (—62 (tag + 1/4)) cos (&(tay + x))HZRV
— [lexp (—€2 (taz + 1/0) |, o llcos(é (tar + 2))
= ||exp (—€* (taz +1/4)) H2,Rv = exp (—€°/4) [[exp (—€tas) ||2,RV
< VMexp (— (Hat+1/4) &%) ,

being M > 0 and Hs > 0 the constants involved in (3.18) for i = 2. Observe
that My and Hs are independent of z. Applying (3.22) with 8 = Hot+1/4 >0
and b = 0 yields

/WGX (*(15’7f+1/4)§2)d£:1 — <4
o P 2 2\ Hyt +1/4 ’

hence, the integral J(x,t), given by (3.23), is absolutely convergent in LYV (£2),
for each (z,t) fixed. This guarantees the mean square random integral J(z,t)
defined in (3.23) and its sample representation,

2,RV

+o00
J(,t)(w) = / exp (—€2 (ta(w) + 1/4)) cos (E(tar (w) + 2) d,

both coincide (see [28, Appendix I]). Then, applying (3.22) with 3 = tas(w)+7,
(provided Re (az(w)) > —5, for t > 0 fixed) and b = ta1(w) + «, (with ¢ and
x fixed), one gets

VT tm@) ) y
J(m,t)(w)—\/m p( 4ta2(w)+1>’ Ywe .

Thereby

t 2
Ja.t) = VT (et
VAtas + 1 4tas + 1
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and substituting the latter expression in (3.21), one finally obtains:

1 exp(tas)  (tar + x)?
vV Nor VAatas + 1 P dtas +1 )’

Now, using Example 1, note that for fixed (z,t), u(x,t) given by (3.20) can
be approximated using random Gauss-Hermite quadrature formula (2.17)

u(z,t) = reR, t>0. (3.25)

WG (g 1) = ez};?g ij exp ( (mz _ i)) cos (&;(tar + 1)), (3.26)

- 2N+1N!ﬁ
P (&)

By mean of the independence of r.v.’s a;, 1 <1 < 3, one gets the expressions
of the expectation and the standard deviation for the exact solution s.p. (3.25)
and their numerical approximations by the random Gauss-Hermite quadrature
(3.26), respectively,

1<j<N.

Elu(z,t)] = \/%E[exp taz)|E \/ﬁ} E{exp ( - m)}, (3.27)
E[(u(z, )] = %E[exp(Qtag)]E[ ta2+1]E[exp (- M)] (3.28)

st gsenml (3]

E[cos (¢(tar +2)) ], (3.29)
, N N
E [( ](\},H(x’t)) } S—IE exp(2tas) ZZpkaE[eXp(—(ff—i—g,%)
j=1k=1
X (ta2 - 3/4))}1@[005 (&(tay + x)) cos (& (tar + ) |, (3.30)
V/Var[u(z, t)] +\/IE u(z, t))?] — (Blu(z, t)])?, (3.31)
_ +\/E (u%‘H(x,t))Q] — (Bu$H(z, 1), (3.32)

In order to compute the values of (3.27), (3.28) and (3.31) for the ran-
dom IVP (3.16)—(3.17) and compare these values with those numerical approx-
imations obtained by the random Gauss-Hermite quadrature, (3.29), (3.30)
and (3.32), respectively, we will assume that the input r.v.’s of IVP (3.16)-
(3.17) follow some particular probabilistic distributions. Concretely, r.v. a;
has a gamma distribution of parameters (2;3) truncated on the interval [0, 6],
a; ~ Gammaygg(2;3); az has a beta distribution of parameters (2;1), ap ~
Beta(2;1); and finally a3 has an exponential distribution of parameter A = 1
truncated on the interval [1, 2], az ~ Expy; 4)(1). For this choice of the r.v.’s a;,
1 <4 < 3, it is guaranteed condition (3.18) because all of them are bounded

r.v.’s and, in addition, for r.v. as that Re (az(w)) = as(w) > —7% with ¢ > 0
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fixed, since az(w) € (0,1), w € §2. Observe that, the rest of the hypotheses of
Theorem 1 clearly also hold in the context of this example.

Figure 1 shows the evolution on the time domain 0 < ¢ < 1 of the expecta-
tion E[u(z,t)], computed by (3.27), and the standard deviation /Var[u(x,t)],
computed by (3.27), (3.28) and (3.31), of exact solution s.p. (3.25) to the ran-
dom IVP (3.16)—(3.17) on the spatial domain —7 < z < 5. Outside this spatial
range, both the expectation and the standard deviation tends to zero.

s
e a0 1oz ot
O e s z

(a) (b)

Figure 1. Plot (a): surface of the expectation E[u(z,t)], plot (b): surface of the

standard deviation \/Var[u(z,t)].

In Figure 2a and Figure 3a, we compare the expectation E[u(z;,0.5)], (3.27)
and the standard deviation \/Var[u(z;,0.5)], (3.31), respectively, vs. their
numerical approximations, E [u§™ (2;,0.5)], computed by means of (3.29), and

\/Var[u%‘H(xi70.5)], computed by means of (3.29), (3.30) and (3.32), for some

Hermite’s polynomials of degree N, at the time instant ¢ = 0.5 and on the
spatial domain —5 < x < 5.

Expectation

Figure 2. Plot (a): E[u(z;,0.5)] vs. E [u§H(z;,0.5)] by random Gauss-Hermite
quadrature using Hermite’s polynomials of degree N € {3,5,8,10,12,15}. Plot (b):

RelErr [ngH]. In order to represent properly the relative error, the domain —5 <z <5
has been shorten since the expectation is almost zero outside the interval —4 < z < 1.

It can be seen in Figure 2b and Figure 3b the numerical values of the relative
errors for the approximate expectation, RelErr []ngH ], and the approximate

Math. Model. Anal., 23(1):79-100, 2018.
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standard deviation, RelErr {\/Var%_H ], respectively, computed using the fol-

lowing expressions

RelErr [ES ] = ‘(]E[u(m,t)] — E [u$H (2, 1)])/Elu(z, 1)), (3.33)
\/ ar Jf \/ I'UGH x
RelErr[ Var§™ } ’ i tv SNarlu(e. 0] (Va ol ) ' (3.34)
ar

The spatial domain considered, —4 < x < 1, has been properly chosen to com-
pute these relative errors since outside this piece the expectation, E[u(z;,0.5)],
and the standard deviation, \/Var[u(z;,0.5)], have very small values. The
computed relative errors show us that, for time ¢t = 0.5, it is sufficient to con-
sider a Hermite’s polynomial of degree N = 8, in the random Gauss-Hermite
quadrature, in order to obtain good approximations of the exact expectation
E[u(z;,0.5)] on the spatial domain —4 < x < 1.

Figure 3. Plot (a): /Var[u(z;,0.5)] vs. /Var[u§$H(z;,0.5)] by random Gauss-Hermite
quadrature using Hermite’s polynomials of degree N € {3,5,8,10,12,15}. Plot (b):

RelErr |:\ /Var%’H} . To be consistent with Plot (b) in Figure 2, where the relative error has

been represented on the spatial interval —4 < x < 1, here we keep the same interval to plot
the relative error.

Figure 4 illustrates that, in a longer time ¢ = 1, the approximations of the
expectation, E [u§ ™ (z;,1)], and the standard deviation, |/Var[u§™(z;,1)],
are being improved as the degree N of the Hermite’s polynomials increases.

In Tables 1 and 2 we collect the numerical values for the approximations
shown in Figure 4 as well as the relative errors on the spatial domain —4 <
x < 1. We observe that increasing N =5 up to N = 30, the proposed method
provides a reasonable approximation to the exact expectation E[u(z;,1)], while
for obtaining good approximations to the standard deviation +/Var[u(z;,1)] it
will be enough to consider N = 10.

Ezample 3. In this example, we shall illustrate the theoretical results previously
established by a random parabolic problem where both initial condition and
coefficients are s.p.’s. Let us consider random IVP (1.1)—(1.2) with

ay(t) = ay cos(t), ax(t) =azt, as(t) =as, f(z)=exp(—bz?),
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andard deviation

St

B (2. 1))

Figure 4. Plot (a): [u(zz, 1)] vs. E [uG'H(xi, )} for the degrees N € {5,10,20,30}. Plot

v/ Var[u(zi, 1)] vs.

where the r.v.’s a;, 1 <17 < 3, and b are given following the distributions
ar ~ Beta(2;3), az ~ N 4(3;0.1),a3 ~ Expg.51.5(1),b ~ Un([1,2]).

Following an analogous reasoning as the one exhibited in Example 2, it is
straightforwardly to check that hypotheses of Theorem 1 hold. Notice that
r.v. b has a positive lower bound ¢; > 0, ie., b(w) > 1 > 0, Vw € 2. Also
expressions of exact solution s.p. (3.15) and numerical approximation by the
random Gauss-Hermite quadrature (2.14), now take the form, respectively,

1 exp(tag) ( (a1 sin(t)+)?
=exp |~ T
V2 2a9t2+ 2a5t? + 3

G.H exp(tas) 2) t2 1
t — i
@) = 5 ij exp(& exp( £ (ag m

X COS (Ej (a1 sin(t) + z)) . (3.36)

u(z,t) = ), x€eR, t>0, (3.35)

Using statistical independence of r.v.’s a;, 1 < i < 3, and b, one obtains the
expectation and standard deviation (using (3.31)—(3.32)) of wu(z,t) given by
(3.35) and the expectation and standard deviation of their numerical approxi-
mations by the random Gauss-Hermite quadrature u](\;fH (x,t) given by (3.36),
as well

Blu(e.0] = <= | 72| Bloxp(ran)] [2tl+l/b

Math. Model. Anal., 23(1):79-100, 2018.
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Table 1. Exact values of E[u(z;,t)] and y/Var[u(z;, t)], at some spatial points z; € [—4, —2]
at the end time t = 1. Approximations of E [u§H (z;,¢)], and 4/ Var[u§H(z;, 1)), obtained by
random Gauss-Hermite quadrature using Hermite’s polynomials of degree N € {5, 10, 20, 30}.
A comparison of these approximations with respect to the exact values is reported by means

of the calculation of relative errors in the spatial points z; € [—4, —2] considered and for each
Hermite’s polynomial of degree N.

t=1 T;
N  —4.0 —3.5 -3 —2.5 —2.0
Elu(zi, t)] 0.5437 0.5644 0.5626 0.5387 0.4931
5  0.5383 0.5559 0.5543 0.5331 0.4941
E[u$ 7 (24, 1)] 10 0.5343 0.5543 0.5528 0.5295 0.4847
20 0.5343 0.5543 0.5528 0.5295 0.4847
30 0.5343 0.5543 0.5528 0.5295 0.4847

5 9.9863¢-03  1.5080e-02 1.4671e-02  1.0383¢-02  2.1077e-03
RelErr [EG" 10 1.7238¢-02  1.7901e-02  1.7429¢-02  1.7039¢-02  1.7035¢-02

20  5.5588e-01 3.3138e-01 5.5945e-02  2.4677e-01 5.4834e-01
30  1.7228e-02 1.7900e-02 1.7424e-02 1.7035e-02 1.6992e-02

Var[u(z;, t)] 0.3636 0.3511 0.3539 0.3677 0.3849
5 0.3471 0.3374 0.3402 0.3530 0.3652
Var[u§~H (z,,1)] 10 0.3515 0.3391 0.3417 0.3568 0.3747
20 0.3515 0.3391 0.3417 0.3568 0.3746
30  0.3515 0.3391 0.3417 0.3568 0.3746

5 4.5441e-02 3.8990e-02  3.8725e-02  4.0012e-02 5.1189e-02
RelErr [1 / Varng:| 10 3.3189e-02  3.4337e-02  3.4367e-02 2.9479e-02 2.6660e-02

20  3.3208e-02  3.4339e-02  3.4377e-02  2.9485e-02  2.6724e-02
30  3.3208e-02  3.4339e-02  3.4377e-02  2.9485e-02  2.6724e-02

E{(u(z, 1)’ = - E H E fexp(2tas)]

T or|b
e R e G
E [u§H(z,1)] = ﬁE [\}B] E [exp(tas)]

« iv: o,E [exp (g; (1 - m‘f:“)ﬂ E [cos (& (a sin(t)4+2))], (3.39)

E [(u%H(%t))ﬂ = # E [1/b] E [exp(2ta3)]

X iim pr E [exp ((S?Jré“i) (1 - %CLﬁH))}

1
x E[cos (&(a1 sin(t) + x)) cos (§x (a1 sin(t) + x))] . (3.40)
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Table 2. The same random functions of Table 1 at some spatial points z; € [—1,1] at the
end time instant ¢ = 1.

t=1 T;

N —1.0 —0.5 0 0.5 1
Elu(z;, t)] 0.3492 0.2651 0.1859 0.1197 0.0706

5 0.3946 0.3596 0.3495 0.3663 0.4036
]E[ug’H(a;,i, t)] 10 0.3418 0.2572 0.1758 0.1043 0.0426

20 0.3421 0.2585 0.1797 0.1145 0.0667

30 0.3421 0.2585 0.1797 0.1145 0.0667

5 1.2978e-01  3.5644e-01  8.8040e-01 2.0606 4.7138
RelErr []Ef,_H] 10 2.1372e-02  3.0038e-02  5.3999e-02 1.2882e-01  3.9720e-01

20 1.0635 1.2569 1.4052 1.5137 1.5902

30  2.0301e-02  2.5157e-02  3.3004e-02  4.3317e-02  5.5300e-02

Var[u(z;, t)] 0.3776 0.3379 0.2769 0.2066 0.1402
5  0.3387 0.3038 0.2911 0.3153 0.3495
Var[u§ ™ (z;,t)] 10 0.3690 0.3292 0.2685 0.2023 0.1526
20 0.3687 0.3282 0.2656 0.1944 0.1292
30  0.3687 0.3282 0.2656 0.1944 0.1292

5 1.0294e-01 1.0073e-01 5.1349e-02 5.2626e-01 1.4926
RelErr [W/Varng] 10 2.2619e-02 2.5642e-02 3.0474e-02 2.0711e-02 8.8231e-02

20  2.3517e-02  2.8699e-02  4.0889e-02  5.8873e-02  7.8277e-02
30  2.3517e-02  2.8699e-02  4.0890e-02  5.8875e-02  7.8294e-02

In Figure 5a and Figure 6a, we compare the expectation E[u(z;,1)], using
(3.37), and standard deviation /Var[u(z;,1)], (3.31) and (3.37)—(3.38), re-

spectively, vs. their E [ung(xi,l)}, (3.39), and \/Var[ung(:EZ-,1)]7 (3.32)
and (3.39)-(3.40), for N € {3,5,8,10,12} at the time instant ¢ = 1 on the
spatial domain —3.5 < x < 3.5. Notice that approximations improve as N
increases. This behaviour can be observed in Figure 5b and Figure 6b, where
relative errors, computed by (3.33)-(3.34), are shown. For the sake of clarity,
since the order of magnitud of relative errors associated to N € {3,5,8,10,12}
are very different, the latter two figures (Figure 5b and Figure 6b) have been
plotted on a shorted spatial domain, —2 < 2 < 2, for N € {8,10,12}.

4 Conclusions

In this paper we have considered the construction of exact and approximate
solution of random time dependent parabolic partial differential initial value
problems where the uncertainty is treated in the mean square sense. We have
shown that a random Fourier transform method can be applied so efficiently as
it has been proved to be in the solution of deterministic problems [17]. How-
ever, in the random case, not only the solution stochastic process is important,
but also its expectation and standard deviation. This has motivated the con-
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(a) (b)

Figure 5. Plot (a): E[u(z;,1)] vs E [u§ (2, 1)] for the degrees N € {3,5,8,10,12}.
Plot (b): RelErr [ngH]. In order to represent properly the relative error, the domain
—3.5 < z < 3.5 has been shorten.

Figure 6. Plot (a): \/Var[u(z;,0.5)] vs {/Var[u§H(z;,0.5)] for the degrees
N €{3,5,8,10,12}. Plot (b): RelErr [Q/Var%'H]. To be consistent with Plot (b) in Figure

5, where the relative error has been represented on the spatial interval —2 < x < 2, here we
keep the same interval to plot the relative error.

sideration of random integral numerical methods to approximate infinite mean
square convergent integrals. In fact, random Gauss-Hermite quadrature for-
mulae are proposed to approximate the solution stochastic process in a more
computable way. Results have been illustrated with an example.
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