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Abstract. In this note we suggest a set of constitutive equations for

anelastic materials whose internal structure can present anomalous

variations resulting from external effects of tension/compression,

as in auxetic media. For these problems we require of a new func-

tion related with the variation of internal structure, which allows

us to define a threshold separating the internal structure media

from the classic ones. The equations are formulated in the case of

static problems but also when the material has memory or plastic

properties in addition to auxetic ones. In order to limit the com-

plexity of the formulae, the discussion is limited to the case where

the perturbation is one dimensional, which however does not limit

the significance of the results.
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1 Introduction

The special properties of auxetic materials are described in many notes; we
would like to cite that of [9], mostly concentrated in depth but also with de-
tails, on the Poisson ratio and that of [10] which describe with great detail
the large variety of properties of these materials which are now attracting an
increasing number of possible users and are applied in many fields such as
medicine, aerospace, and textiles. Among the important properties of auxetic
materials we note that they dilate when subjected to traction and contract
when subjected to pressure such that the Poisson ratio is negative. Among the
important problems concerning these materials are the mathematical models
of these phenomena, specifically the set of constitutive equations adequately
modeling their mechanical properties. Various attempts have been made for
the solution of these problems, among them we cite that very successful of [1]
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who presented an elegant theory for auxetic materials giving “the explicit re-
lation between the local auxetic strain and the local rotation and expansion
of the elementary building blocks of auxetic materials” which stimulates the
present note. We quote also the model of [5], where, with the use of a Lan-
dau model [7] and memory represented by first-order derivatives of the stress
strain relations, the authors reproduce the properties of auxetic media and the
seminal paper [3]. Concerning the mathematical modeling of auxetic materials
in this note we present 3-dimensional stress strain relations based on 3 elas-
tic parameters, on a memory formalism represented by a fractional derivative
and on a term depending on a dimensionless parameter introduced in order
to model the properties of auxetic media which, among other, could be the
temperature [6]. The presence of 3 elastic parameters instead of the classic 2
represents the possibility to have negative or positive Poisson ratio. The di-
mensionless parameter represents the state of the material which could depend
on temperature or other physical conditions. The note is structured as follows.
First, we introduce the memory dependent stress strain relation, then we apply
to the medium a one directional stress and compute directly the Poisson ratio
in the case of the absence of memory and assuming that it is given by the clas-
sic formula. Then we compute the strains caused by this stress and compute
from them the Poisson ratio cases where the memory with t− z (z real) kernel
is present showing that, asymptotically, the two values of the Poisson ratio
coincide. We show also that, formally, one obtains the same results by using
a memory based on any other fractional derivative equivalent to the Caputo
one [4]. Finally, we show that formally one may obtain the negative Poisson
ratio using also memory-based stress strain relations specific for plastic mate-
rials, such that when they are subject to a stress decreasing to zero, they relax
and asymptotically remain strained also when the stress is eventually zero.

2 The stress strain relation for auxetic materials

The stress strain relations with memory used in this note are:

τij = δij

(
n−m/g

)
ϵrr + 2

(
f/g

)
ϵij + 2

(
f/g

)
ηDν

(
ϵij − δijϵrr/3

)
, (2.1)

where δij is the Kronecker delta, τij and ϵij are stress and strain components
respectively dependent on spatial coordinates and time, n, m, f , are positive
elastic parameters, ϵrr is the dilatation, and g(y) dimensionless, monotonically
increasing function representing a phase field that describes the supposed evo-
lution of the medium’s internal structure; y is a generic physical parameter
such as temperature or other. η has dimensions kg · m−1 · s−2 · sz, and Dν

represents the [2] fractional derivative or any equivalent fractional derivative,
y is an internal parameter denoting a phase field able to describe the supposed
evolution of the internal structure of the medium. We note that in this note the
effective elastic parameters are 3: ng, m/g and f/g, since g(y) is a parameter
introduced to fit the model to auxetic materials. It is worth noting that since
g(y) is assumed to increase with increasing y, the rigidity properties vanish
when g is sufficiently large. Since we will operate in the Laplace Transform
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(LT) domain with LT variable p, the LT of Equations (2.1), assuming zero
values of stress and strain at t = 0, gives

Tij = δij

(
n−m/g

)
Err + 2

(
f/g

)
Eij + 2

(
f/g

)
ηDν

(
Eij − δijErr/3

)
,

where Dz = LT (Dν), Tij = LT (τij). In order to simplify the equations in the
following sections we also set:

r = n−m/g(y), s = f/g(y),

n > 0, m > 0, f > 0.
(2.2)

3 Studying the constitutive equations of auxetic media:
the effect of a stress

In the following we use the Caputo derivative [8] defined as:

∂up

∂tu
=

1

Γ (u− 1)

∫ t

0

1

(t− x)u
∂p

∂x
dx,

with 0 < u < 1, and Γ (x) the Euler Gamma function, for the somewhat
formally simpler notation of its LT. The 3D constitutive equations are then:

Tij = rδijErr + 2sEij + 2sηpz
(
Eij − δijErr/3

)
,

or, referring to the normal components of the stress, which are of interest here,

T11 = rErr + 2sE11 + 2sηpz
(
E11 − Err/3

)
,

T22 = rErr + 2sE22 + 2sηpz
(
E22 − Err/3

)
,

T33 = rErr + 2sE33 + 2sηpz
(
E33 − Err/3

)
,

(3.1)

from which one may express the algebraic expressions of the components Eij .
In the case of auxetic media, it is necessary to operate in 3 dimensions, and
in order to simplify the computation, without losing generality in the study of
these media, we assume nil the normal stress along the x2 and x1 axes and
different from zero only τ11 consequently yielding E22 = E33 and obtaining the
following system in the LT of the 2 unknowns principal strains where T11 is
assigned

T11 = r(E11 + E22 + E33) + 2sE11 + 2sηpz(E11 − (E11 + E22 + E33)/3),

E11(r − 2sηpz/3) + E22(r − 2s+ 4sηpz/3) + E33(r − 2sηpz/3) = 0,

E11(r − 2sηpz/3) + E22(r − 2sηpz/3) + E33(s+ 2µ+ 4sηpz/3) = 0.

Adding the 3 Equations (3.1) gives

T11 + T22 + T33 = (3r + 2s)(E11 + E22 + E33),
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which, in the case of our hypothesis

E22 = E33, T22 = T33 = 0, (3.2)

is
T11 = (3r + 2s)(E11 + 2E22). (3.3)

4 The computation of the deformations and of the
Poisson ratio

We first proceed with the computation of the deformation in the LT domain,
using the first of Equations (3.1) and Equation (3.3) which we recall below for
convenience:

T11 = r(E11 + E22 + E33) + 2sE11 + 2sηpz(E11 − (E11 + E22 + E33)/3),

T11 = (3r + 2s)(E11 + 2E22).

Then, setting

A = (3r + 2s), B = ηspν/3, (4.1)

we find:

E22 =(T11/A)(−r + 2B)/(2s+ 6B),

E11 =(T11/A)(2r + 2s+ 2B)/(2s+ 6B),

E22/E11 =(−r + 2B)/(2r + 2s+ 2B),

(4.2)

finally, using the Extreme Value Theorem (EVT) on the expressions (4.2) of
the strains, we obtain at t = ∞

E22/E11 = −r/[2(r + s)].

Provided that the initial conditions concerning Equation (3.2) are satisfied, the
expression of the ratio of the LT of the strains in terms of the new parameters
gives:

E22/E11 = −(1/2)(ng −m− 2gB)/(ng −m+ f + gB),

which asymptotically converges to:

ϵ22/ϵ11 = −(1/2)[ng −m)/(ng −m+ f)].

The LT of the dilatation is also of interest: Err = T11/A, which, in the case of
a 1-D stress parallel to the x2 or the x3 axes, is independent of the rheology
and is valid for any set of stresses normal to the reference axes.

In the case of absence of memory (η = 0) the Poisson ratio

P = −0.5(ng −m)/(ng −m+ f) (4.3)

is positive if
((m− f)/n) < g < (m/n), (4.4)
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and it is negative if:

((m− f)/n) > g or g > (m/n).

With the exploring assumption that g is monotonically increasing and in order
to study the variation of the Poisson ratio, we set: w = ng −m, the (4.3) is:

P = −w/2(w + f),

which is positive (auxetic) when −f < w < 0, but when 0 < w or w < −f , P
is negative. Moreover, considering the derivative of P

dP/dw = −f/(w + f)2 > 0,

we see that dP/dw, as well as P , has a singular point at w = −f . P is
decreasing from −0.5 to ∞ when g < (m − f)/n ; then, in the interval where
P > 0, P is decreasing from ∞ to 0 at g = m/n(w = 0) and decreasing from 0
at g = m/n(w = 0). When w > 0, P is decreasing from ∞ at g = m/n(w = 0)
to the asymptotic value 0.5.

The velocity vp and vs of the P and S waves respectively are

vp = [(3n− (3m− 2f)/g)/d]0.5, vs = [(f/g)/d]0.5,

where d is the density of the medium.
Considering that a real velocity is required, it must be:

3ng − 3m− 2f > 0 or g > m/n− 2f/3n.

Considering this conditions together with Equation (4.2), which defines the
auxetic media, the Poisson ratio is in the limits 0 < P < 2/3. However, taking
into account that we require that the velocity of the P waves be positive, then
the condition for the parameters is w > 2f/3 or g > m/n − 2f/3n, which is
more restrictive. When x > 0, the Poisson ratio in negative.
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Figure 1. Plot of P (x) = −0.5/(1 + 1/x) with x = (ng −m)/f .
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Where we note (Figure 1), that assuming m, n, f and g are positive with
x = (ng − m)/f the material would be auxetic, when −4/7 < x < 0 or
−4f/7 < ng − m < 0, or 0 < g < m − 4f/7 and the maximum possible
value of P of the model would be 2/3 at x = −4/7.
Some critical values are of interest and are shown in Table 1.

Table 1. Values of P for different values of the parameters w, and x.

w g x P

−2f (m− 2f)/n −2 −2
−3f/2 (m− 3f/2)/n −3/2 −3/2
−2f/3 (m− 2f/3)/n −2/3 +1
−4f/7 (m− 4f/7)/n −4/7 2/3
−f (m− f)/n −1 ∞

−f/2 (m− f/2)/n −1/2 +1/2
0 m− n 0 0

f/2 (m+ f/2)/n 1/2 −1/6
2f/3 (m+ 2f/3)/n 2/3 −2/5
∞ ∞ ∞ −1/2

5 The time domain expression of the deformations

Now, we proceed to express the deformations in terms of the parameters of
the constitutive equations, that is in terms of n, m, f , and g(y). In order to
satisfy the nil initial condition of stress and strain, we assume that τ11 is a step
function H(σ, t) we assume H(σ, t) a step function at t = σ ,with σ as small as
desired, whose LT is

T11 = exp(−σp)/p. (5.1)

Remembering that:

E22 = (T11/A)(−r + 2B)/(2s+ 6B),

E11 = (T11/A)2(2r + 2s+ 2B)/2(2s+ 6B),
(5.2)

we then find:

E22 = (T11/A)[m− ng + 2Bg]/[2f + 6Bg],

E11 = (T11/A)[2ng − 2m+ 2f + 2Bg]/[2f + 6Bg],

where T11 is given by Equation (5.1). Reformulating Equations (5.2) we obtain:

E11 = (T11/3A)[(6 + 4s+ 2s+ 6B)/(2s+ 6B)],

E22 = (T11/3A)[(6r + 4s)/(2s+ 6B) + 1].

The LT−1 of both deformations are readily expressed in terms of the Mittag-
Leffler function, taking into account Equations (4.1) and (2.2):

A = (3r + 2s), s = f/g, r = n−m/g,

B = ηspν/3, B = fηpν/3g,

Math. Model. Anal., 30(3):504–513, 2025.
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we find:

E11 = (T11/3A)[1 + (6r + 4s)/[2fη/g]/[η−1 + pν ]],

E22 = (T11/3A)[1 + (−3r − 2s)/[2fη/g]/[η−1 + pν ]].

And finally:

E11 = (T11/3A)[1 + (α/β)(η−1 + pν ],

E22 = (T11/3A)[1 + (γ/β)(η−1 + pν ],
(5.3)

where: α = (6r + 4s), β = (2fη/g), γ = (−3r − 2s). We note that the
asymptotic values of the strain are:

ϵ22(∞) =(τ11/3A)/(1 + γη/β),

ϵ11(∞) =(τ11/3A)/(1 + αη/β).

The time domain expression of the deformations are readily found in terms of
Mittag-Leffler function:

ϵ11(t) = (τ11/3A)H(σ, t) + τ11/3A)(α/ηβ)[sin(πv)/(πv)]

×
{
H(σ, t) ∗

∫ ∞

0

exp(−(η−1u)1/vt)du/(u2 + 2u cos(πv) + 1)

}
,

ϵ11(t) = (τ11/3A)H(σ, t) + τ11/3A)(α/ηβ)[sin(πv)/(πv)]

×
∫ ∞

0

[exp(−(η−1u)1/vσ)− exp(−(η−1u)1/vt)]du/(u2+2u cos(πv)+1), (5.4)

ϵ22(t) = (τ11/3A)H(σ, t) + τ11/3A)(γ/ηβ)[sin(πv)/(πv)]

×
{
H(σ, t) ∗

∫ ∞

0

exp(−(η−1u)1/vt)du/(u2 + 2u cos(πv) + 1)

}
,

ϵ22(t) = (τ11/3A)H(σ, t) + τ11/3A)(γ/ηβ)[sin(πv)/(πv)]

×
∫ ∞

0

[exp(−(η−1u)1/vσ)− exp(−(η−1u)1/vt)]du/(u2+2u cos(πv)+1), (5.5)

which are valid for t ≥ σ, as consequence of the convolution; the integrals are
monotonically increasing to a finite value. From which the Green functions are
readily obtained substituting H(σ, t) with δ(t − σ). The Figure 2 shows the
values of the integral appearing in both deformations for different values of v
and with the time t in abscissa in units of 1/η1/v.
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Figure 2. Values of the integrals present in formulae (5.4) and (5.5) calculated for
different values of v .

Figure 2 gives the values of:

[sin(πv)/(πv)]

∫ ∞

0

[exp(−(η−1u)1/vσ)−exp(−(η−1u)1/vt)]du/(u2+2u cos(πv)+1),

which appear in formulae (5.4) and (5.5). These values should be completed
with the terms appearing in formulae (5.4) and (5.5), namely the factor
(τ11/3A)(α/ηβ) concerning ϵ11 and the factor (τ11/3A)(γ/ηβ) concerning ϵ22.

It is verified that with values of g in the interval:

m/n > g > m/n− 2f/3n,

the corresponding values of α and γ in formulae (5.4) and (5.5), with τ11 > 0
(τ11 < 0 ), give positive (negative) values of deformations, that is, give P > 1.
We note that the effect of the memory on the deformations, represented by the
integrals in Equations (5.4) and (5.5), depends on the 2 parameters ν and η.
With reference to the Figure 2 , where the time is measured in units of η 1/ν ,
for a given ν, which we assume here 0 < ν < 1, an increase of η implies that a
shorter time is required to reach a given value of the integral, that is the time
scale is dilated and vice versa.

6 The auxetic media with memory based on the
exponential kernel

If we were to use a memory based on the fractional derivative with exponential
kernel [4], then the term B of Equation (4.4) is:

B1 = µηp/(p(1− v) + v),

where η is dimensionless and the ratio of the strains is:

E22/E11 =− (1/2)[((ng2 −m)(1− v)− 2µη)p

+ (ng2 −m)]/(p(1− v) + v))(ng2 + (f −m)),

Math. Model. Anal., 30(3):504–513, 2025.
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which asymptotically gives:

ϵ22/ϵ11 = −(1/2)[((ng2 −m)/v(ng2 + (f −m))],

which is positive in the range defined in Equation (4.3).
In a similar manner, we find the strains using Equation (5.3).

E11 = −(T11/A)(r −A)[p(1− v) + v]/(2s(1− v) + 4sη)p+ 2sv,

E22 = −(T11/A)(2r − 4sηp)/(2r + 4sηp).
(6.1)

We note that in Equations (6.1), the right-hand members are formed by the
ratio of linear forms of the variable p; then the LT−1 is readily expressed in
terms of exponentials.

Using the EVT one finds that the asymptotic values of the strains are:

ϵ22 = −(τ11/3A)(1 + γη/β), ϵ11 = −(τ11/3A)(1 + αη/β),

which, as expected, are equal to the asymptotic values obtained using the
fractional derivative with kernel t−v; only the travel times to these values are
different.

7 Conclusions

The constitutive equations proposed in this note to discuss some the properties
of materials with internal structures include 3 parameters instead of the classic
2 of elastic media, but there is also a generic dimensionless function g(y) which
defines the thresholds for possible phase changes to the different properties of
the material. The presence of 3 parameters instead of the classic 2 of perfectly
elastic media allows the comparison with the elastic media and with the plastic
ones. The properties of auxetic materials modeled concerning the change of
sign and values of their Poisson ratio are valid also when the material has a
memory.
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