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1 Introduction

In this paper, we consider the unconstrained optimization problem
Minimize F(z):= f(x)+ h(x)subject tox € R™, (1.1)

where f : R™ — R is a function of the form f := g; + g2, where ¢g; has a
continuous Lipschitz gradient, go has a continuous Holder gradient, and h :
R™ — R is a convex function. When h is the indicator function of a convex
set C' then Problem (1.1) is equivalent to solving the problem of minimizing
F(z) = f(x) constrained to the convex set C'.

Many optimization problems in real-world applications are often large-scale
and high-dimensional, which makes them challenging to solve, especially when
there are derivatives that are difficult to calculate. Popular methods for ad-
dressing these problems include sparse models, as demonstrated in recent publi-
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cations on machine learning, statistics, and signal processing. Due to the struc-
ture of many such problems, derivative-free block coordinate descent (BCD)
methods are particularly suitable, as they utilize only a few variables in each
iteration, reducing the computational cost associated with function value and
gradient calculations.

The central idea of coordinate descent methods is to decompose a large
optimization problem into a sequence of smaller problems, thereby reducing
the computational effort required during the method’s execution. This class
of methods was among the first to appear in the literature on variable decom-
position, with its roots in pioneering algorithms such as the one described by
Gauss and Seidel for the minimization of quadratic functions. Recent stud-
ies have shown that these methods are effective in handling high-dimensional
problems with moderate accuracy, sparking growing interest in various appli-
cations [1,2,4,5,8,9,11]. In this context, extensions of BCD methods become
particularly relevant, considering the emergence of large-scale problems in dif-
ferent areas.

In [11], the convergence of BCD methods was analyzed in the context of
convex function minimization, with a focus on machine learning applications.
The study highlights the relevance of random selection of variable blocks at
each iteration, exploring optimized parallel implementations that demonstrate
the efficiency of BCD methods in this scenario. Furthermore, convergence
properties similar to those of the deterministic cyclic BCD described in [2]
were established.

In [1], a version of BCD methods with higher-order regularization was
proposed to minimize smooth, possibly non-convex functions under box con-
straints. The study presented complexity results, showing that the BCD method
with p + 1 order regularization requires at most O(e~ 1) outer iterations to
reach an e-stationary point, where the 2-norm of the gradient of f is less than
e. In [9], a convergence analysis of the Randomized Block Coordinate Descent
method for smooth block Hélder functions was presented, covering non-convex,
convex and strongly convex cases. It was shown that, for non-convex functions,

B
the expected norm of the gradient reduces to O (k’m) , where k is the number

of iterations and B-the Holder exponent. In the convex case the reduction fo is
of order O (k~7), and in the strongly convex case, the reduction improves to

@ (k_%) , when 8 > 1, and reaches a linear rate for g = 1.

In the context of methods with low computational cost, the search for
derivative-free alternatives has also advanced significantly. For instance, in [6,7]
and the references therein, Grapiglia proposed in [7] a quadratic regularization
method to minimize a function f : R™ — R. In this method, finite differ-
ence approximations of gradients were used, demonstrating that for functions
bounded below with Lipschitz gradients, the method requires at most O(e=?)
iterations to generate an approximate stationary point with accuracy e.

In this work, we propose a BCD method for the optimization problem (1.1),
assuming that the gradient of f satisfies a Holder-Lipschitz condition and that

B+1
h is convex. We show that the proposed method requires at most O (eiT)
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iterations to find an approximate solution with tolerance e, where (3 is the
exponent of the assumed Hélder condition. Our complexity bound is consistent
with that established by Martinez in [10] for the first-order version of his p-
order method. Furthermore, when § = 1 (Lipschitz condition), we obtain a
complexity of O (¢72), in accordance with the results presented in [1,7].

We chose a cyclic structure in our method, as it naturally guarantees that
all blocks are updated throughout the execution - a condition often required
in theoretical analyses of convergence and complexity, as discussed in [1]. This
structure also facilitates the extension of the convergence analysis to non-convex
scenarios, which is in line with the goals of this work. Furthermore, the cyclic
scheme simplifies the analysis under Holder-type smoothness assumptions.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the notations and the main preliminary results that support our contri-
butions. In Section 3, we present a detailed description of the BCD method,
accompanied by an analysis of its effectiveness. Section 4 is devoted to the
analysis of the worst-case iteration complexity of the method. In Section 5,
numerical examples are presented. Finally, in Section 6, we discuss the conclu-
sions of the study.

2 Notation and auxiliary results

In this section, we present some definitions and results that are essential for
understanding the remainder of this work.

Throughout this text, we use the following symbols: (-,-) represents the
usual inner product, || -|| denotes the Euclidean norm and || - || represents the
sup-norm.

The dimension of the i-th block of variables is denoted by n;, where ¢ =
1,...,q, and satisfies ny +ng +... +ny = n. The matrices U;, fori =1,...,q,
are chosen such that [Ul, Us, ..., Uq} = I, where I, is the n x n identity
matrix.

Each matrix U; € R™*"™ is used to extract the vector v; = UZ-Tv e R™,
which consists of the components of v € R™ corresponding to the i-th block.

With this setup, the partial gradient of a function g : R™ — R can be written
as V(yg(x) = Ul'Vg(x), derived from the total gradient Vg(z). Similarly, the
partial Hessian of g at x is given by V%i)g(x) = UI'V2g(z)U;, which is a matrix
of dimension n; X n;.

3 BCD with quadratic regularization

The cyclic block coordinate descent method is presented in Algorithm 1.
For the development of the method proposed in this work we consider a
function ¢ that satisfies

v R™ x [0,1] — R™ where )1\imo pr(x,A) = Vf(z). (3.1)
—

The function in (3.1) can be defined as ¢y = V f. However, this definition is not
recommended when the computation of the gradient of f is computationally
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prohibitive. In such cases, it is preferable to define ¢; as an approximation of
the gradient V f, which can be obtained at a lower computational cost.
Below we present three options for the definition of ¢y.

Remark 1. If f is differentiable, then ¢ can be defined in one of the following
ways:

op(z,\) = _f(H/\e;)ff(x),m ,f(a:H‘ej\‘)f(x)] and ¢y(z,0)=V f(z),
QOf(iC,)\) _ f(x)_fix_)\el)v' o f(l')—fil'—)\en)] and QOf(fE,O):Vf(x),
() = flzx+ )\61)2—>\f(.’17 —dey) . flz+ Aen)z;\f(x — )\en)} and

@f(mvo) = Vf(),
where e;, i = 1,...,n is the canonical vector of R™. In practice, the central
difference formula is the most accurate.

Below we present a version of a partially derivative-free method, which can
be made completely derivative-free, to solve Problem (1.1).

Algorithm 1. - Derivative-free Block Cyclic Coordinate Descent - BCDC-
Dfree

Let 2% € R, for each i = 1,..., ¢ a symmetric positive semidefinite matrix
B (x°) e R"*" a € (0,1), e € (0,1), 09 > 1 and Fyarger € R.
Initialize k < 0.

Step 1: For A, € [0,€/0+/n] consider pg(z", Ay).

Step 2: Write 250 = 2% and for each i = 1,..., ¢ compute

gkt = kil | Uisl&),

where s’(“i) € R™ is a solution to the following problem

> 1 , )
glﬂ%g(U?(pf(xk’l_l, k), s>+§<B(i) (z"Y)s, 8)+h(z® + U;, s)—h(mk’z_l)—k%HsHQ.
(3.2)

q
Step 3. If HZ UiSéci)Hoo < Uik or F(z%%) < Fiarget, stop declaring 2% an

i=1
acceptable solution. Otherwise, go to Step 4.
Step 4: If

F(zh?) < F(aF) — —e (3.3)

holds, take k < k + 1, define 2**! = 2%9 and oy,; = o, choose a symmetric
positive semidefinite matrix B(;)(z*™!) € R"*" and go to Step 1. Otherwise,
define o, < 20 and go to Step 1.

The parameter « controls the level of reduction of F' in (3.3), where values close
to 1 result in a more aggressive decrease e F', which may cause the penalty pa-
rameter o to grow unnecessarily. Therefore, it is crucial to adjust « carefully.
The descent test in (3.3) shows that small values of oy tend to produce larger
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steps, which can accelerate the convergence of the method. The justification
for the stopping criterion adopted in Step 3 is provided in Remark 3.

It is important to note that the matrix B, (2%=1) used in Algorithm 1 does
not need to be an approximation of the Hessian V(QZ.) f(xF=1), as the expression

for géC might suggest. It can even be defined as the null matrix, where only the
first-order information is used, which is useful when the Hessian V%i) fzki=1)
is expensive to compute. However, second-order information, when available,
can improve the efficiency of the step. The flexibility in choosing B;)(z*#~1)
allows using the Hessian, a cheap approximation (e.g., quasi-Newton), or the
null matrix, as long as it is uniformly bounded (Assumption 2).

To obtain the good definition of Step 2, for each i € {1,2,--- , q} we consider

the function g¥ : R" — R where

i— 1 i— i— g
9 () =(UT 0 (@1 N)+5 By (04 )s, ) (o + )~ 1)+ 2 ]2

with B¥ (zF~1) symmetric matrix. Since h is convex, then there exists a linear
function h(z) = {(a,x) + b, a,z € R™ b € R such that h(z) > h(z) for all
z € R™. For simplicity we write H(s) = (Ul @ (z™1=1, \p), s) + %HSHQ. From
which it follows that

gmin ,
H(s) + 225 ||s|]” + {a, 2" + Uis) + b — A" )

< H(s)+ %<B(i)(xk’i—1)s, s) + <a,xk +Uss) + b — h(xlc,i—l)
> H(S) + %(B(i)(gjkai—1>s, S> +E(1‘k + UZS) _ h(fEk’i_l)

1 ) '
< H(S) + §<B(i)(mkaz_1)s7 3> -+ h(l'k + UZS) _ h(xk,l—l)

holds for all s in R™ and fixed 2%~!, where 61" is the smallest eigenvalue of
Bi;)(a*71). Therefore, we can write

, O
+oo= lim (H(s)+<a,xk+Uis> + b—h(z® "+ Uk i —||s ||2) < lim gF(s),

llsll—o0 llsll—o0

which implies that g¥(-) is coercive, thus ensuring that each Subproblem in
(3.2) has a solution. Therefore ensuring the well-definedness of Step 2.

In the following section, we analyze the satisfiability of (3.3) in Step 4. To
this end, we consider the following assumption.

Assumption 1 There are L, M € (0,400) and 8 € (0,1] such that

£0) < F@)+(Vf(@)y=a)+ Fly =l + 5o ly—al P Vo e RY (3.0)

and

\FL */EM N

IV 5(@) - s Ml < YA+ 50

(3.5)
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Remark 2. If f := g1 4+ g2, where g1 has a continuous L-Lipschitz gradient and
g2 has a continuous M-Holder gradient with exponent 3, we have that

L n
91(y) < g1(x) + (Vi (), y — z) + §Ily—ﬂcll2 Vz,y € R",

B+1
See e.g. [12, Lemma 1], which directly implies (3.4).

92(y) < g2(x) + (Vga(x),y — x) + ly — z||PT Yo,y € R™.

In the following Lemma, we will show that if f satisfies the same conditions
given in the Remark 2, then the condition (3.5) holds.

Lemma 1. The conditions (3.4) hold if f := g1 + g2, where g1 has a con-
tinuous L-Lipschitz gradient and go has a continuous M-Hdélder gradient with
exponent 5. Additionally, (3.5) is satisfied by considering pgq(x,\) as any of
the definitions given in Remark 1.

Proof. Considering g; with a continuous L-Lipschitz gradient and go with a
continuous M-Holder gradient with exponent 3, we can conclude that

L
7)< 1(2) +{(Var(2),y —2) + Sy - z||? Va,y € R",

B+1

By summing the two previous inequalities, we obtain (3.4). Furthermore, we
obtain

92(y) < g2(x) + (Vgo(a),y — ) + ly — z||°t! Y,y € R™

l91(y) — g1(x) = Vi (2)" (y — 2)|| < glly —z|?,

l92(0) = 92(a) = Vo) (g = )| < 51y = ol

1. Using y = x + Ae; in the last inequality, we have:

gile+re) —gi(@)  Ogi(w)| L,
A dx; |~ 277
g2(x + Aei) — ga(x)  Oga() < M 2\
A dz; |~ 14877
this implies that
nl nM
I¥61(0) = o )] < LA ¢ [950) = V] < S9N

2. Using y = = — Ae; in the last inequality, we have:

g1(x) —gi(x = Aei)  Ogi(x)| _ Q)M
A ox; -2

92(x) — g2(z — Aey)  Oga(x) M \8
A or;, |~ 145"
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this implies that

N
2

\/EM/\ﬁ.

I¥91(2) = o0 (2, )] < EES

Ae [[Vga(z) = g, (2, A)]| <

3. For the central difference, we obtain the following

gz +Aei) —gi(z+Aei)  Igi(x)| _Lgi(x+Aei) —gi(z)  9gi(x)
2\ ox; -2 A ox;
lgi(@) —gi(z —Ae;)  Ogi(x)| _1(vnL,  +/nL vnL
— — < — = .
3 A or; | ~2\ 2 At 7

From there, we have that

[Vg1(z) — @, (z, N)|| < 0.5/nL A

In a similar manner, we obtain

vy

[Va(a) — o (@ NI < 557

From which it follows that

IVg(z) —er(@, NI < [[Var() = @g, (2, )| + [ Vga(x) — ¢g, (2, M|

—\/HL/H— ﬁM}\ﬁ.

<
= 2 B+1

Concluding the proof of the lemma. 0O

One of the main motivations for this work is the problem of minimizing a
nonlinear least squares function, penalized by a norm L, with 1 < p < 2. This
problem is associated with a data assimilation context, as defined below:

min F(2) = 5|A(e) = o + 5 |20l (36)

where A : R® — R™ is a differentiable function that is not necessarily linear,
b€ R™, and @ is a linear operator. For more details and motivation regarding
the above problem, see [3].
As we can see, if 0.5]|A(x
a special case of problem (1.

) — b||3 is a convex function, then problem (3.6) is
1) with

2 A P
h(z) = 05[|A(z) = bllz, and f(z) = Zl|P(z)][;.

It is shown in [3] that g(z) = %H@(x)”? has a continuous gradient (p—1)-Hélder
in z. Another important observation is that in the case where A is linear, we
have a special case of the problem (1.1) with

A
g = g1 + g2 where g1 (2)=0.5||A(z) — b||§, gﬂx)z;”@(x)\\g, f=h=0.

Math. Model. Anal., 30(3):535-552, 2025.


https://doi.org/10.3846/mma.2025.23064

m V.S. Amaral

For, in this case, g; has a Lipschitz gradient and g5 has a Holder gradient, thus
satisfying Assumption 1.

In the following remark (Remark 3), we will provide a choice of parameter
Ak such that the stopping criterion Z**1 — z* = 0 implies that

d(0,0h(z*) + V f(z")) <.

Remark 3. Since s’(“i) is a solution of the (3.2), then there is wf € Oh(z*7)
such that

Uz'T@f(mk’iila k) + B(i) (J?k’i*l)sé-) + U)zk + 201@8@) =0,
therefore SZ‘) =0,i=1,...,q implies that
Ul p(z® = M) +wkf =0,i=1,...,q. (3.7)

By (3.7) and Assumption 1 we have

Vo fh) +wfll < U er(a, M) +wf| +

\fL VM 5
A =1,...,q.
D) B+1 ko ¢ ) »q

vl | WMW
oM ﬂ+1

<

€ <(6 + e
qLy/n’ \ 2¢M+/n

HW@(HWH_*+

If A\ < min {
that

B
> }, then from the inequality above we have

< =1,...,q.

£ <&y
2qq

This implies that

q

d(0,Vf(z*) 4 oh(z Z (0, Vi f(2F) + 0z 9) ;)

q
€
< Z IV ) +ufll <)~ =
=1

By Step 2 we have that s’(“i) =0,i=1,...,q implies that %9 = zF. Thus,

qLi/ﬁ’ ((251\;\1/);)}3

Ar < min

and s* = 0 implies that

d(0, V() + Oh(zF7)) < e.

The previous inequality shows that s* ~ 0 implies that 2* approximates an
e-stationary point. This suggests that we can adopt o1||s¥||ec < €, for some
€ > 0, as a stopping criterion for the Algorithm 1.
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The following Assumption and the next Lemma are useful for demonstrating
that the sufficient descent condition in Step 4 of Algorithm 1 is satisfied for all
o} sufficiently large, as established in Theorem 3.3.

Assumption 2 There is B > 1 such that | By (z®~1)|| < B for all i €
{1,...,q} and k.

Lemma 2. Let %9 be obtained in Step 2 of the Algorithm 1. If Assumptions 1
and 2 hold, and ||s*||o > <. Then,
Ok

q(Mn% +M)

F(zk’q) < F(xk)Jr 511

I+ (a2 25 Y IsH - 1 I
Proof. By Assumption 1 we have
P+ hat)
< F@H) + R T F ), sy el P
SFERI) 4 g (P 0e), sl 5 By (@)l o) Hh(a ) (e )

Ok i— i
JF?HS’&)HQJFh(Jﬂk’ 1)+<V(z‘)f($k’ 1),51(2)>+

Iy 17+

3 ||56) ||2+m ||5?¢) e

i— i— Ok
(g (@™ M), s6y) — <B(z)( ) 5() — 5 sty (3-8)
Since s’(“i) is a solution of the Problem (3.2), we have that
i— 1 i— i i— Ok
(P (170 M)t 5 By (@™ 1)s(yy, (i) +h(a ) =™ ) + sy 17 < 0.

Replacing the last inequalities in (3.8), we have

F@®) + (")
<FETN) + R [V £ = g6 (@5 X0 lllsgy
L.y 2 M A1 4 1 k,i—1 k2 9k .k 2
+ *||5(¢ I” + B+1H ()|| *||B(z‘)($ )HHS(i)H - 7“%@”
l ’L L
<SS + b2 1)+\f /\klls()||+\f ABHS?@\H*IlS@)IF
5+1 2
B+1 k,i—1 k2 _ %k .k 2
+ m” Wl + §||B(i)(x syl 9 ||3(i)|| .

By Assumption 2, this implies that

, . M L
ki k,i—1 2
F(z™") <F(x )+\/ﬁ( Ak+ﬂ+1 )|sl)|+( + B) ||s()||

B+1 _ Tk k 12
+ o lsty 1P = sty I

Math. Model. Anal., 30(3):535-552, 2025.
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By previous inequality we have

Fh) <FH0) 4 Vi (04 500 ) Byl + (5 + 5B) sk

B+1
M
+ ﬁ\\sﬁmllﬁ“ - §||5?1)||2,
M L
Fh) <P + Vi (3hut o) syl + (5 + 5B sy

M
+ m“sl(cz)ﬂml - 7”5?2)”2,

F(ab9) <F(z*4 1) + (2 5o 1AB> st 1l + < + B) It I

M
B+1 2
+ sl = Flsty I

Adding the previous inequahty with ¢ ranging from 1 to ¢, we have that

F(z™9) SF(J?k’O)+\/ﬁ( /\’“+ﬁ+1 )Z|S ol

L 1 NS k2. M OS| k a1 Tk Ny ok (2
+ 5"‘53 ZH%)H +m2”5(i)” —7ZHS(¢)H
i=1 i=1 i=1
F(z"%) +v/n )\k—i-i)\’g qlls* o + E—i—l? qlls*1?
B+17k 279 o0
kB+1 _ Tk k2
+ gl - 2
in other words
L 1—=
Pk) <)+ Vi (] ) st + (5 + 5B alsHIE
ok
+ a1 - B (5.9)
By op[|s"[loc > € and Ap < - -5, we have A, < ”\/% . Hence and from (3.9)
we obtain
1— ;3 —
L qMn™=z L B
Fzkay < F(g* qL . k)2 TR i k2
(a0) <Pt + Dt + LI M+ (545 ) als I
O
b a2 - s
1-8 _
g(Mn=" + M), qB Ok
< k A s B+1 9o k2 _ Tky k2
<r(eh)+ L2 T et o (gn+ ) ot — 2812

This concludes the proof of the Lemma. 0O
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The following result (Theorem 1) establishes the existence of a @ such that
oy > @ is sufficient to ensure the satisfiability of (3.3) in Step 4.

Theorem 1. Let 2% be obtained in Step 2 of the Algorithm 1. Suppose that
Assumptions 1 and 2 hold, and ||s*||s > €/ow. If

2L+¢B | 2q(Mn = +M) 4|7
Ok Z + € )
(1-a) B+1)(1-a)
then
P(a*) < Fab) - aZt 5|2, (3.10)
Ffth)ﬁ‘F(xk)—-££e2 (3.11)
Ok

Proof. In Lemma 2 we obtain

B —
q(Mn—= + M qB Ok
Flat) < Fa) + B2 22D ke <qL + L) 2, - T2

Thus, taking this inequality into consideration we can conclude that to prove
inequality (3.10) it is necessary to show that

a k|2 > (MWZJFM) k|| B+1 aB\ | k2 Ok kg2
= A B el I+ = _Zk
Soulst P > L2 E Mty (gr+ L) ¥ - 25

which is equivalent to prove the inequality

2L +¢B  2¢(Mn'z" +M)” b1
(l-a)  B+DHA-0a)

By < < ||s*|| we have that
ok

=: CO(s").

Ok =

_ s 51
C’(sk)§2L+qB 2(Mn*=" +M)( )
Ok

- " GrDl-a

< |2L+dB 2(Mn3" + M) 4 1]% B < gBgl=h

i) " BrDa=a) © C

This completes the proof of (3.10). To obtain (3.11), we combine ||s¥|/o, > -
with (3.10). O

This concludes the well-definition of the Algorithm 1.

The inequality (3.11) shows that choosing a very large value for of may
result in unnecessarily small steps. Therefore, it is recommended to start the
first iteration with a small value of oy.

Math. Model. Anal., 30(3):535-552, 2025.
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4 Convergence and complexity analysis

This section is dedicated to analyzing the complexity of Algorithm 1. Where
our goal is to establish upper bounds on the number of iterations and the
number of evaluations of F' required to reach a previously defined optimality
tolerance.

In the previous section, we demonstrated that, for oy sufficiently large, the
reduction in F required in Step 4 of Algorithm 1 is achieved. In the following
lemma, we prove that the minimum expected reduction in F' corresponds to a
constant factor that depends only on the constants provided by the Algorithm
and Assumptions 1 and 2.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied, and let ¥+ be let
xFt1 be as in Algorithm 1. Then we have that

B+1
B

FaMhY < Fa®) — —e7 (4.1)

Qe

-

_ 1-8 1
2L+¢B + 2q(Mn 2 +M)} B}

where ¢ = 2 max {Umin» [ (=) B+rD(1—a)

Proof. In the Theorem 1 we show that

@l

Ok 2>

2L +¢B N 2q(Mn*=" + M) .
(1-a)  B+1)(1-0a)

then a decrease in the value of F' is achieved.

In other words, when o} is taken satisfying large, then it is no longer nec-
essary to increase oj. We can, therefore, conclude that o is upper bounded
by

- 1-8 1
o1 2L +qB  2¢(Mn'z" + M) ﬁ}
max:2 B mins

’ ‘ max{” =t Grva=a )

This implies that opax = e% c. By replacing omax in (3.10), we conclude that

F(zFy < F(ab) - L
c
This completes the proof of (4.1). O

A relevant consideration is that, when the constants L, M, and 8 are known,

— 1-8 B
we can fix the parameter o, as o = [%"’gf + 2q((2/in1)(21;;1)\4) 651] , which

eliminates the need to update it or perform the decrement test, as the stopping
criterion will always be satisfied.

By fixing oy in this manner, we ensure that the algorithm converges to the
optimal solution without the need to adjust the regularization parameter or
perform additional tests. However, it is important to note that this approach
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requires prior knowledge of the constants L, M, and 3, which may not always
be feasible.

The following theorem shows that the stopping criterion can be achieved
within a limited number of iterations. Specifically, the number of iterations
required to reach the stopping criterion is bounded by a multiple of 6_%.
This bound depends on the value of €, which determines the desired level of
accuracy. As e decreases or 8 = 0, the number of iterations may increase.
However, the bound also indicates a tradeoff between step size and convergence
rate, which can be optimized to minimize the number of iterations needed.

Theorem 3. Suppose the assumptions of Theorem 2 are fulfilled. Then, the
number of iterations required to reach the stopping criterion set in Algorithm 1
s upper bounded by

1 _ B+t

EC(F(xO) - Ftarget) € £ 9
where c is the same as in Theorem 2.

Proof. In Theorem 2, we prove that if Algorithm 1 does not reach the estab-

lished stopping criterion by iteration k, then the condition
4 < o 8
F(a?) < F(ai) — 2%

c

hold for every j = 1,2,...k. From which it follows that

Q B+1 o B+1
k—1 = k—2 ==
Ftarget <F(1‘ ) - Ee s, Ftarget < F(:Z? ) - 226 B,
]
i.e.,

« B+1

0 2712

Forarger < F27) = kze E

This inequality implies that

k<

C(F((L’O) - Ftarget) 967%.
&

(0%

This concludes the demonstration. O

The Algorithm 1 involves evaluating various aspects at each iteration to test
the stopping criterion in Step 3. Additionally, the function ' must be evaluated
for different test points in each iteration. Thus, it is crucial to analyze the
number of times F needs to be evaluated, which corresponds to the number of
times the regularization parameter oj, needs to be increased.

Fortunately, Theorem 1 establishes that increasing the parameter oy is not
always necessary, provided that the following condition holds:

2L + ¢B . 2¢(Mn =" + M) oo 7 .
l-a) (B+1HIA-a)

Ok 2>
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Thus, we can conclude that the parameter oy is updated only a finite num-
ber of times. In the following theorem, we provide an upper bound for the
number of functional evaluations required.

Theorem 4. Suppose that the conditions of Theorem 2 hold. Then the Algo-
rithm 1 uses at most the following number of evaluations of F and its subdif-

ferential:
C(F(,’L‘()) - Ftarget) 67% + 10g2 (Umax) ,
(% Omin
where
2L +qB  2¢(Mn*z" + M)

;}

Proof. Since o < opmax, the parameter o, is increased a finite number of
times. Let r be the maximum number of times that o,;, is increased. Then,
we have:

B—1
Omax = 2€ 7 max {amin,

-  (GrD0-a)

2"0min < Omax, Wwhich is equivalent to 2" < 0ax/Omin-

This implies that:

r =log,(2") < log, (Umax)

min
From Theorem 3, we know that the maximum number of iterations is upper
bounded by:
C(F(J?O) - Ftarget) 6_%
- .

Therefore, the number of evaluations of f and its subdifferentials employed by
Algorithm 1 is upper bounded by:

0y _
(F@) = Frarger) - 21 + log, (Umax)
(6%

Omin
This completes the proof. 0O

We conclude that the proposed method presents a complexity compatible
with those found in the optimization literature in traditional methods, con-

sidering Lipschitz or Holder type regularity hypotheses for the gradient of the
objective function.

5 Numerical examples

In this section, we apply our proposed method to solve some problems where
both f were considered with a particular case of

1 ) A ,
f(@) = 51AG) = bz + l19(@)II5, (5.1)
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with 1 < p < 2, A is differentiable and @ is linear.
In the following examples, we consider B; = 0, n = 10, a = 0.5, € =
5x107°,  Fiarget = 0.5 and the function ¢ : R'Y x R — R'% defined by

Sﬁf(x,)\)z f(x+)\e;)_f(x)’“. ’f(x—i—)\ei\o)—f(x) '

Ezample 1. In this example, we illustrate our method for solving an academic
problem using different values for the initial regularization parameter, i.e., using
different values for .

It is important to note that the inequality in (3.11) shows that choosing
a very large value for og can result in very small decreases in the objective
function, thus requiring a large number of iterations to reach the desired ap-
proximate solution. This is illustrated in the following numerical example.

We consider the following linear least squares problem, penalized by a norm
Ly, with 1 <p < 2.

. 1 A
min F(z) = §||Am —bll3 + Ellﬁﬁ(z)llg (5.2)
where
(1 2 001 1 2 0 1 0]
2011220110
0102110121
1201100 2 21
210011210 2
A_002122111O,b_(1,1,1,1,1,1,1,1,1,2).
1110102210
00112122 21
200111110 2
11102210 1 1]

In the algorithm we use f(x) = 0.5]|Az — b||> +5 x 107° Z;il |23/ and
h(z) = 0 and z( the null vector of RC.

In Table 1, we report the number of blocks (N. Blocks), value of o(, number
of iterations (N. Iterations), and the function values at termination (Approxi-
mate ™).

Table 1. Behavior of Algorithm BCDC-Dfree for different og.

Ak N. Blocks g N. Iterations Approximate F™*

10 1 10 0.4731311217358947
€
10 500 40 0.30211898002262805
ak\/ﬁ
10 1000 83 0.30027806919970645

Math. Model. Anal., 30(3):535-552, 2025.
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Figure 1 illustrates the behavior of the method in the scenarios presented
in Table 1.

—— sigma_0=1
—— sigma_0=500
6 —— sigma_0=1000

Objective Function Value

[ 20 40 60 80
Iteration

Figure 1. Evolution of the Algorithm BCDC-Dfree for different values of og.

Ezample 2. In this example, we consider the Problem (1.1) with f defined ac-
cording to Equation (5.1), where A € R!0X10 p € R0 are randomly generated,
@ is the identity function and h is a null function. In this case, the problem
considered is the same as (5.2), with the difference that A and b were taken
randomly. We considered 100 distinct instances, all with 2° generated ran-
domly, and compared the approach using 10 blocks with that based on a single
block. Table 2 presents the number of blocks used in the method, the initial
parameter value gg, the average number of iterations, and the average values
of the objective function at the end of the runs (Average-F'). In Table 3, the
only change with respect to the test in Table 2 is that og is randomly chosen
within the interval [1,1000] (rand () * 999 4 1), while the other data from the
previous case were kept unchanged.

Table 2. BCDC-Dfree for Example 1 with random A and b.

Blocks o0¢ Average Iterations Average-F
10 1 11.55 0.4329204306366679
1 1 17.56 0.4682053114984191

Table 3. BCDC-Dfree for Example 1 with random A, oo and b.

Blocks o Average Iterations Average-I

10 rand() * 999 + 1 805.45 0.4987648957425285
1 rand() * 999 + 1 809.02 0.498824397642592
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Ezample 3. In this example, we consider the case where A in (5.1) is nonlinear.
We assume A(z) = (A1 (x),..., An(x)), where 4;(z) = —%%—fori=1,...,n—
i+1

14+x
1, with ;41 := 1, and ¢(z) = Bz, with B € R™*".

In the tests, we considered B and b generated randomly, with B containing
entries composed of 0 and 1. A total of 100 distinct instances were considered,
all with 20 generated randomly. Additionally, we assumed o to be randomly
chosen in the interval [1,100] (rand() * 99 + 1). Table 4 shows the number
of blocks used, the average number of iterations performed, and the average
values of the objective function at the end of the runs (Average-F'), obtained
from 100 randomly generated instances.

Table 4. BCDOC-Dfree for case where A in 5.1 is nonlinear.

Blocks 0o Average Iterations Average-F
10 rand() x99 + 1 648.96 0.500757739540928
1 rand() * 99 + 1 664.61 0.5008468045728981

6 Conclusions

We present a new block coordinate descent method for solving composite op-
timization problems, where the objective function combines a gradient term
that satisfies a Lipschitz—Holder condition and an additional convex term. The
proposed method was designed to operate without the use of derivatives, consti-
tuting an adaptation of the proximal method. The analysis performed ensured
the convergence of the algorithm under the hypothesis of cyclic selection of
coordinates (or blocks of coordinates), providing clear bounds on complexity
in the worst case. These results reinforce the robustness and applicability of
the method in different optimization contexts.

Additionally, we include numerical examples that validate the practical ef-
ficiency of the algorithm in academic situations, demonstrating its viability for
real problems. As future directions, we highlight the possibility of investigating
variations of the algorithm, including random coordinate selection strategies, as
well as its application in broader and larger-scale problems. These extensions
can further expand the scope and efficiency of the proposed approach.
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