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1 Introduction

Nonlinear differential equations are commonly used in various scientific and
industrial fields to model many intriguing and significant phenomena math-
ematically. These equations are inspired by challenges that arise in various
disciplines, including engineering, control theory, materials science, biology,
physics, fluid dynamics, economics, and quantum mechanics, as noted in ref-
erences [4,18] and others. Over the past ten years, a great deal of work has
been devoted to the study of Hopfield-type neural networks’ analysis and syn-
thesis (see [2,3,4,5,6,7,10,12,13,17]), as these networks have a wide range
of applications in optimization, associative memories, and engineering chal-
lenges [15,16,23]. In many cases, exact solutions for differential equations are
not available. In such instances, integral inequalities play a significant role
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in studying the existence, uniqueness, boundedness, stability, and asymptotic
behavior of solutions to differential equations (as discussed in [14,18]). In a re-
lated work [18], the authors introduced a new Gamidov inequality and analyzed
the stability properties of solutions of bilinear control systems. Local asymp-
totically stable equilibrium states acting as attractors in neuronal associative
memories store information and construct distributed and parallel brain mem-
ory networks. In these situations, the goal of qualitative analysis is to examine
state convergence to guarantee memory recall as well as the existence, asymp-
totic stability, and attractive regions of equilibrium for the networks’ capacity
to store information. Exponential stability is conservative in some concrete
applications (measurement noise and disturbances [1,8]). A practical property
of solutions that can be established for such models is ultimate boundedness,
which means that the solution remains in some neighborhood of the origin
after a sufficiently large time. In this study, we aim to analyze the stability
of a Hopfield-type neural network system within a small region, particularly
when the origin may not be considered an equilibrium point. This charac-
teristic is referred to as practical stability, as discussed in references [8]. Our
main theoretical contribution involves establishing new sufficient conditions for
the practical exponential stability of time-varying Hopfield-type neural net-
works using a novel nonlinear integral inequality framework. Unlike classical
approaches that heavily rely on Lyapunov functions, Barbalat-type lemmas,
or fixed-point techniques, our method generalizes and extends traditional re-
sults by relaxing structural constraints on the perturbation terms and network
parameters. Specifically, we generalize the stability conditions found in works
based on standard Lyapunov theory, and integral inequalities such as Gron-
wall’s and Gamidov’s approaches ([14,18]), by allowing time-varying coefficients
and more general nonlinear perturbations. Our integral inequality technique
can accommodate larger classes of bounded disturbances and less restrictive
growth conditions on nonlinear terms. Compared to classical Lyapunov-based
methods, which often require strict definiteness conditions and differentiability
assumptions on Lyapunov candidates, our framework relaxes these assump-
tions. For instance, we remove the necessity of constructing explicit Lyapunov
functions satisfying strong derivative conditions, instead relying on bounding
integral inequalities that are simpler and more broadly applicable. Moreover,
our approach expands the class of admissible systems by encompassing time-
varying neural networks subject to perturbations that may not satisfy global
Lipschitz or monotonicity conditions. This includes systems with coefficients
depending on both time and state in a nonlinear way, thus addressing more real-
istic models encountered in engineering and biological networks. Our method
uses integral inequalities techniques to explore the idea of practical stability
for such a model. Global exponential stability for time-varying Hopfield-type
neural networks refers to the condition in which the neural network’s state tra-
jectory converges exponentially to an equilibrium point, and the rate of this
convergence is uniform over time, despite variations in the system parameters
or external inputs. Determining if the equilibrium point of a nonlinear dy-
namics is (globally) asymptotically stable can generally be a very challenging
task. The primary challenge is that, in most cases, writing a solution to the
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differential equation explicitly is not feasible. Our method allows us to apply
weaker conditions on the network dynamics, namely that the condition im-
posed on the perturbation term generates a large class of systems that can be
stable. Our approach uses new integral inequalities that are simpler to use
compared to conventional methods. This flexibility opens a wider applicability
by offering stability constraints that cover a larger class of neural networks,
in contrast to Lyapunov techniques which give more restrictive results due to
the presence of nonlinear terms in the system. Lyapunov theory has been
the favored choice, even if some of the findings have been drawn from the
characteristics of fundamental matrices. We prefer to employ a novel integral
inequality in this work, which is widely recognized to produce more sensitive
and sharp outcomes. We mostly use Gamidov’s analysis method and provide
findings regarding exponential convergence and boundedness. Introducing a
more generic bounding structure, we relax the requirement on the finiteness of
the coefficients, which is typical for the perturbation term. Hopfield networks
are a type of recurrent neural network where neurons are fully interconnected,
typically with symmetric connections. These networks can be used for opti-
mization problems, associative memory, and pattern recognition tasks. Global
exponential stability for time-varying Hopfield-type neural networks provides a
mathematical framework for ensuring that these networks behave predictably
and robustly, even as their parameters change over time. In the presence of
bounded perturbations, this kind of convergence implies that, for any initial
state, the network’s state trajectory will converge to a small compact set with
an exponential rate.

In this paper, we establish new sufficient conditions that guarantee the
practical exponential stability of solutions for time-varying Hopfield-type neu-
ral networks, even in the presence of varying perturbation conditions. These
conditions are derived using a novel nonlinear integral inequality framework,
which generalizes and extends classical results, including those of Gamidov’s
and Gronwall’s types. Our analysis relaxes the usual constraints on perturba-
tion terms, allowing a broader class of systems to be covered and enhancing
the model’s robustness to small parameter variations. The theoretical findings
are supported by numerical examples, which demonstrate the applicability and
effectiveness of the proposed approach. Additionally, we provide a qualitative
discussion on the asymptotic behavior of solutions to nonlinear systems and dif-
ferential equations, in connection with the general theory of motion stability.
For further insights into this topic, the reader is referred to [19,20,21,22].

The remainder of the paper is organized as follows. Section 2 introduces
the Hopfield-type neural network model. The main results are presented in
Section 3. Section 4 provides numerical examples. Conclusions are drawn in
Section 5.

2 Hopfield-type neural networks model

Let R denote the set of real numbers. The set of all non-negative real numbers
is denoted by R, and R* = (0, 00) represents the set of strictly positive real
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numbers. The space R™ refers to the n-dimensional Euclidean space, equipped
with its usual norm || - ||. Additionally, the ball centered at zero with radius r
is defined as B, := {z € R" : ||z|| < r}.

Consider the following system that models a Hopfield-type neural network
in continuous time:

. 1 n .
Cié; = —@gi—l—;ﬂkvk—i—lf(t), i=1,..n, (2.1)

where C; € R% denotes the capacitance, and the parameter % is defined by

1 1<
===+ |Tul,
Ri R ;‘ g

with R; > 0. The coefficient T}, = R%k € R is associated with the intercon-
nection strength between neurons, where R;; denotes the resistance (possibly
adjusted to account for a sign inversion due to amplification effects). The term
vy = F (&) represents the output of an amplifier, where Fj, : R — (—1,1) is
a nonlinear function. While our analysis assumes that each activation func-
tion F} is smooth, bounded, and differentiable, this assumption is introduced
primarily to guarantee analytical tractability and to rigorously apply the the-
oretical stability framework. We acknowledge that this may restrict the direct
applicability of the results to practical scenarios where activation functions
could exhibit discontinuities or nonsmooth behavior.

The function If (¢) is a continuous external input defined on R, where e > 0
is a small parameter. The above system (2.1) can be expressed equivalently as:

éi = _C’ig’i + ZszFk‘(fk) + U’f(t)a 1= 1a ey N,
k=1

where ) T I (8)

Ci = Riciv sz = (;1 ) Uf = ’LCi .
For improved clarity, we rewrite the system in vector form as follows:

o(t) = Ao(t) + f(o(t)) +U(1), o = (01,.s00)", (2.2)
where
—(1 - 0
A= . s US(t) = (ui(t), ,qu(t))T,
0 - —(n

f(o) = (fi(o), -~-afn(0'))T7 filo) = ZBika(O’k), t=1,...,n.
k=1

The associated nominal system corresponding to (2.2) is:

5(t) = Ao(t) + f(o(1)).
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Thus, the equilibrium states of system (2.2) satisfy the nonlinear algebraic
equations:

fi =0, orequivalently (& — ZBika(fk) =0, i=1,...,n.
k=1

Building on the results in [11] and [12], the authors in [15] provided new
sufficient conditions ensuring that a system of the form (2.2) admits a unique
equilibrium point. We assume henceforth that the nominal system has a unique
equilibrium point z*. Without loss of generality, by a suitable change of vari-
ables, we assume that the origin corresponds to the unique equilibrium point
of the nominal system. Extending the theoretical framework to accommodate
piecewise-smooth or discontinuous activation functions entails significant tech-
nical challenges, including establishing the existence and uniqueness of solu-
tions, managing nonsmooth trajectories, and the limitations of classical stabil-
ity methods such as Lyapunov functions in this context. These issues constitute
avenues for further research. In the presence of external inputs, the nonlinear-
ities must satisfy sufficiently small bounds, generally related to the nominal
system’s dynamics, particularly its linear component. The functions f(c) and
U*(t) may be subjected to additional constraints, which enable the study of
the asymptotic behavior of solutions under these nonlinear perturbations.

Observe that the linear subsystem

5(t) = Ao(t)

is asymptotically stable, as the matrix A is diagonal with strictly negative
diagonal entries. Furthermore, since ReA(A) < 0, there exist constants § > 1
and v > 0 such that

et < e, vt >0,

where ReA(A) denotes the real parts of the eigenvalues of matrix A.
Practically, empirical approaches such as smoothing discontinuous activa-
tion functions or using approximations with continuous differentiable functions
may bridge the gap between theory and real-world nonsmooth behaviors. These
approximations allow us to maintain analytical tractability while better cap-
turing practical scenarios, and form a promising direction for future extensions.

3 Generalized practical stability

For dynamical systems, we first introduce the notion of generalized practical
exponential stability following the approach in [1]- [8].
Consider the system described by:

o(t) = A5(t, 0 (1)), (3.1)

where A° is a smooth function, ¢t € Ry denotes time, o € R is the state vector,
and € > 0 is a parameter. We assume the initial time ¢y, = 0 and denote by
o(t) the solution of system (3.1) with initial condition (0, c(0)).

Math. Model. Anal., 31(1):149-171, 2026.
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DEFINITION 1. System (3.1) is said to be globally uniformly practically expo-
nentially stable with respect to the small parameter € > 0 if its solution o(t)
satisfies the inequality

lo@)] < 0llo(0)[le™" +r(e), Vt=>0, (3.2)
for some positive constants 6 > 0, v > 0, and r(g) > 0.

Inequality (3.2) implies that trajectories approach a neighborhood of the origin
of radius r(¢), since we can rewrite it as

lo@®)] = r(e) < 0llo(0)e™", vt >0,

where the initial conditions are assumed outside the ball B, (). Hence, the
solutions are globally uniformly bounded and converge exponentially to the set
B,(c). Moreover, if 7(¢) — 0 as ¢ — 0, then the states approach the origin
exponentially as ¢t — +oo.

Denote

As(t,o0) = Ao + Fe(t,0), F*°(t,0) = f(o)+U"(t),

and suppose the following system is considered for the convergence and bound-
edness analysis:
o(t) = Ao(t) + Fe(t,o(t)). (3.3)

Note that ReA(A4) < 0.

We will investigate various assumptions on the perturbation term Fe(¢,0)
necessary for ensuring boundedness and convergence of solutions to system
(3.3). The perturbations appear as an additive term on the right-hand side of
the state equation; consequently, the origin is not necessarily an equilibrium
point of the perturbed system. Based on the stability of the nominal system
generated by matrix A, which admits the origin as an equilibrium point, we ex-
pect that the solutions of the perturbed system approach a small neighborhood
of the origin as ¢t — o0o. The best achievable outcome is that for sufficiently
small perturbations, the trajectories remain close to a small set containing the
origin. It is noteworthy that the desired state may be mathematically unstable,
yet the system can exhibit oscillatory behavior near this state with acceptable
performance. In typical applications, the exact perturbation function F' may
be unknown, and only bounds on its norm are available.

Remark 1. If the activation functions Fy (o) are only continuous and piecewise
smooth (e.g., possessing a finite number of jump discontinuities in their deriva-
tives), the right-hand side of the system (2.2), A°(t,0) = Ao + f(o) + U5(),
becomes discontinuous. For such systems, the solution concept must be gen-
eralized. We will define the dynamics using a Filippov differential inclusion:
o(t) € K[A%](t,0(t)), where K[| denotes the Filippov set-valued map. This
map convexifies the vector field at the points of discontinuity, providing a rig-
orous mathematical foundation for analyzing solution trajectories. Moreover,
we can explicitly relate the Filippov inclusion to Clarke’s generalized gradi-
ent for the potential functions associated with the activations. Specifically, if
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we consider f;(0) = Y.}_, BirFi(ok), the set-valued map K|[f;](c) can be ex-
pressed in terms of the generalized gradients 0F (o). For a scalar function
like F, OFy(x) is the interval between the left and right derivatives at z. To
bridge the gap between the smooth and nonsmooth worlds and add practical
relevance, we can use a smoothed approximation which can be illustrated by a
canonical example with discontinuous activation like the hard sigmoid:

-1, forzx < -1,
H(z)=qxz, for —1<x<l,
1, for z > 1.

We can approximate it with a smooth function H,(x), for instance, a high-
gain sigmoid tanh(z/p) or a smoothed piecewise function, where p > 0 is a
small smoothing parameter. We will then analyze the system using the smooth
function H),(z) under our existing framework. We can show how the stability
bounds (e.g., the term r(e) in Definition 1 might depend on the smoothing
parameter u. The key point would be that as u — 0%, the smoothed system
converges to the nonsmooth Filippov system, and the practical stability prop-
erties are recovered in the limit. The stability analysis for the Filippov system
would follow a nonsmooth Lyapunov approach. While the technical details will
be expanded in the revision, the core idea is that the exponential convergence
of the linear part and the boundedness of the generalized gradients of the ac-
tivations would allow us to derive an inequality for the time derivative of the
Lyapunov function V(o) = 1|o||? in a differential form, leading to a similar
practical stability conclusion.

We begin by recalling several preliminary lemmas that support the subse-
quent analysis.

Lemma 1. Let 7 : Ry — R be a continuous, nonnegative, and locally integrable
function on R satisfying

t+1
sup/ 7(s)ds < +o0. (3.4)
>0 Jt

Then, for allt > 0 and any v > 0, the following estimate holds:
¢
e_“t/ e’ m(s)ds < +oc.
0
Proof. Fort >0, let N = E(t), where E(-) denotes the integer part function

that satisfies t —1 < E(t) <tor N <t < N-+1. Therefore, for s € [0,t), t >0,
one has

t N ¢
/ e V=) x(s)ds z/ e =7 (s)ds +/ e "7 (s)ds.
0 0 N

Then,
. N—1 N—k t
/ e =) (s)ds = Z e’”t/ e“SW(S)ds—l-e*vt/ e m(s)ds.
o pars N—k—1 N
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It follows that,

t N-1 t+1 t
/ e V= (s)ds < Z e Vkev(t=N) sup/ m(s)ds + e_“t/e“sw(s)ds.
0 ¢

Pt t>0 N
Thus,
. 1_ e*N’U t+1 t+1
/ efu(tfs)ﬂ(s)ds e sup/ m(s)ds + sup/ m(s)ds.
0 1—e ™ >0y t>0 J¢
Therefore,

t t+1
efvt/ e’ r(s)ds < ¢(v) sup/ m(s)ds,
0 t

>0

where ¢(v) is a certain nonnegative constant. Thus, for all ¢ > 0, we have
¢
e’“t/ e’ m(s)ds < +oo, v > 0.
0
0O
Lemma 2. Let 7 : Ry — R a continuous nonnegative function on Ry satis-

fying:
i)

tliglo m(t) =0, (3.5)
or
/ 7(s)ds < 00, (3.6)
0
here 7 is supposed an integrable function on R4, then
t
. —vt vS _
tlggoe /o e’ m(s)ds =0, v>0. (3.7

Proof. To verify i), we use the fact that lim 7(t) = 0. We have, for any n > 0,

t—o0

for vn > 0, 3T > 0, such that for all t > T, w(t) < vn. Let
T
M = / e’ r(s) ds.
0
For t > T, one has
Thus, for t > T,

Then,
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It follows that,

t
e*“t/ e’ m(s)ds < e V'M + e*“tﬁ(e“t — V7).
0 v

So,
t
efvt/ e“sﬂ(s)ds < efvtn(evT _ 1) _|_efvt,r](€vt _ GUT).
0

Hence,
t
e_“t/ e’ m(s)ds <n—mne vt <.
0

We have, for any n > 0, 3T > 0, such that for all ¢t > T,
t
e_”t/ e’ (s)ds < n.
0

Therefore, the last expression implies that: lim;_,.o e~ fot evsm(s)ds = 0.
To verify iz), one can use the fact that 7 is integrable, then given any € > 0
there exist 77 > 0 and T > 0, such that

/ 7r(s)ds<£, vt > 11, e*“%/
2 0

[SIES

m(s)ds < %, vt > T,
Then,

t t
2 2 £
e_“t/ €7 (s)ds < e Vles / m(s)ds < =,
0 0 2
o

m(s)ds < =

t
vt vs ds <
/e m(s)ds < 5

t
2

Thus, V¢ > sup(T1,Tz), one has

mﬁ\.‘\
2

¢ L ¢ ¢
e*“t/ e’ n(s)ds = e*”t(/ e r(s)ds +/ e’ n(s)ds < / m(s)ds),
0 0 L L

hence

K €

e_“t/ en(s)ds < -+ - =e¢.

0

Thus, one gets (3.7). O

Note that the expression given in (3.7), implies that there exists 7 > 0, such
that

t
e_“t/ e’ m(s)ds <7, Vt>0.
0

This uniform bound plays a crucial role in deducing the asymptotic behavior
of solutions via integral inequalities.

Math. Model. Anal., 31(1):149-171, 2026.
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Furthermore, if 7w(t) < 7 for all ¢ > 0, with some 7 > 0, or if the function
7 is integrable over Ry, ie., |71 = [ m(s)ds < +oo, then the following
estimation holds:

¢
e_“t/ €’ 7(s) ds < min (W, |7r||1> < 400, Vt>0.
0 v

To establish the stability of system (3.3), we employ a generalized Gronwall-
type inequality, as detailed in [14].

Lemma 3. Let =, A\, and 1) be nonnegative continuous functions defined on R
satisfying the integral inequality

Zt)<a +/O [Z(s)A(s) +v(s)]ds, Vt >0,

where a > 0 is a constant. Then, it follows that

t
2(t) < <a+/ ¥(s) ds) elo AT dr g >,
0

To address the practical stability problem, we impose the following assumption:
(Ho) For all t > 0 and o € R™, the function F*° satisfies the inequality
[E=(t,0)|| < u(t)lo]l + £(e)m (),

where 1 : Ry — Ry is a continuous function such that

o
/ p(s)ds < 400,
0

£:R% — Ry is continuous, and 7 : Ry — R, is a continuous, nonnega-
tive, locally integrable function satisfying condition (3.4) for all ¢ > 0.

The above lemmas will be instrumental in analyzing the asymptotic behavior
of the system under less restrictive conditions on uncertainties. The following
theorem encapsulates the main result:

Theorem 1. Suppose that assumption (Hg) holds. Then, the system (3.3)
possesses bounded solutions and is globally uniformly practically exponentially
stable with respect to the parameter € > 0. Consequently, the Hopfield-type
neural network system (2.1) enjoys the same stability property.
Moreover, if

lim ¢(e) =0,

e—0t ( )
then the solutions of system (3.3) converge exponentially to the origin as t —
+o00. Accordingly, the solutions of the Hopfield-type neural network system
(2.1) also exhibit exponential convergence to zero as time tends to infinity.
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Proof. By the variation of constants formula, the solution o () of system (3.3)
can be represented as

t
o(t) =e4og + / e=9AF% (s, 0(s)) ds.
0
Taking norms and applying the triangle inequality yields

t
lo @1 < lle“lllool +/0 =2 E= (s, o ()]l ds.

Since Re A(A) < 0, there exist constants > 1 and v > 0 such that
le"4] < Be™v", Wt >0.

Utilizing assumption (Hg), we obtain

lo(®)|l < Oe™"[looll +/0 b= (u(s)l|o(s) ]| + £e)m(s))ds.

Define the auxiliary function Z(t) := e?||o(t)||. Multiplying the above inequal-
ity by e¥?, we have

Z(t) < 0ol + 9/0 wu(s)=(s)ds + 9[(5)/0 e’*m(s)ds.

Applying Lemma 3 yields

t
Z(t) < <9||ao|| + 96(5)/ e’ m(s) ds) ef Jo n(s)ds,
0
which implies
¢
o) < 0|oglle? Jo #)ds vt 4 9e(s)evf( / "7 (s) ds) ef o nls)ds
0

From Lemma 1, there exists a constant 7 > 0 such that

Therefore,
o ()] < 08 J5~ #E)s || golle ™t + 0p(e)Fe? Jo~ #(s)ds,
This establishes that solutions remain ultimately bounded within the ball
B, :={0c €R":|jo| <r.}, where r.:=00(c)Fe’ S0 #()ds,

Hence, system (3.3) is globally uniformly practically exponentially stable with
respect to the parameter € > 0.

Moreover, as £(¢) — 0 when ¢ — 07, it follows that 7. — 0, and thus the
solutions converge exponentially to the origin. The same conclusion applies to
the Hopfield-type neural network system (2.1). O

Math. Model. Anal., 31(1):149-171, 2026.
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Remark 2. The system (3.3) has bounded solutions and is globally uniformly
practically exponentially stable with respect to a small parameter € > 0 when
we modify the condition (3.4) for 7 according to (3.5) or (3.6). Our condition
on the function 7 is more general as, previously, almost all functions consid-
ered were integrable, such as in [14]. Here is an example of a non-integrable
function that satisfies our new condition (3.4): m(t) = Smt(ii'{l) This class can
be extended to the case where the diagonal elements of the matrix A are time-
dependent. In this setting, assuming that the associated transition matrix is
globally uniformly asymptotically stable, the same stability result as in the
previous theorem holds. Moreover, this extension can be further adapted or
generalized to the case where the matrix A contains non-diagonal negative ele-
ments, provided that the norm of the corresponding transition matrix satisfies
an exponential decay estimate. Unlike Lyapunov-based techniques, a strict
Lyapunov functional that decreases along trajectories is not required. Instead,
the approach relies on explicit norm bounds and perturbation estimates. This
allows accommodating time-varying and nonlinear perturbations U¢(t) with
minimal smoothness and boundedness assumptions. Additionally, the class of
admissible nonlinearities f(-) is expanded beyond traditional Lipschitz or sec-
tor bounds to include more general nonlinear mappings with known growth
conditions. As a result, the method broadens the class of admissible systems
to encompass nonlinear, time-varying, and perturbed infinite-dimensional sys-
tems where classical Lyapunov constructions may be challenging or unavailable.
This flexibility enables the analysis and design of control strategies for systems
such as perturbed neural networks, delayed or distributed parameter systems,
and other complex dynamical models.

In the sequel, we consider the following hypothesis.
(H1) For all t > 0 and all o € R", assume that
I1F=(t, o)l < falloll + La(e)|lo]]” + (1),
where p € (0,1), £1, l2(e) are known nonnegative constants, and /. :
R, — Ry is a continuous function satisfying

(o)
/ e’ le(s)ds = Te < +00.
0

To establish the convergence and stability criteria, we present the following
lemma, which is a version of Gamidov’s lemma needed for the proof of the main
result (see [18]).

Lemma 4. If
t
I(t) < S —|—/ [09(s) + ce(lfp)vsﬁp(s)]ds,
0

where ¥ is continuous and nonnegative on [0,00), p € (0,1); S,¢ > 0 and v, J,
such that 0 < § < v, then

1
P We i-p
,19 t < 2m(\ at ’Ut.
(t) < Je® + (v — 5) e
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We have the following theorem.

Theorem 2. If assumption (H1) holds with £, < %, then the solutions of sys-
tem (3.3) are bounded, and there exists r- > 0 such that By is globally uni-
formly exponentially stable. This implies that the Hopfield-type neural network
system (2.1) is also globally uniformly practically exponentially stable.

Furthermore, if Te,l2(e) — 0 as € — 07, then the solutions of system
(8.8) approach the origin exponentially as t tends to infinity. Consequently,
the solutions of the Hopfield-type neural network system (2.1) also approach
the origin exponentially as t tends to infinity.

Proof. The solution of (3.3) can be expressed as:

o(t) = e ag + / =94 (f(o(s)) + U (s)) ds.
0

Thus,
t
o)1 < lle | lool| +/O =4 |1 f(o(s)) + U (s)] ds.

Since ReA(A) < 0, it follows that

t

o) < e™|lool| +/0 0= (| £ ()] + U (5)]]) ds.

Therefore, taking into account assumption (H;y), yields

t

lo(®ll < 0 lonll + 6 [ e (allo()] + (o) + () d.

0

The last expression implies that,
t
lo@ll < 8e™ ool + be ™" / e (o)l + L2()llo(s)]1”) ds
t
—l—Ge_“t/ e’ le(s) ds.
0
By multiplying both sides by eV?, it comes that
t e}
o ®l<Blo0l+6 [ e (61 los)|+eE o)) ds+6 [ et(s)ds.
0 0
Thus,
t
o] < Blooll +6 [ e (6 o) + o)) s+ br..
0

Let 9(t) = et||x(t)||, one gets

t

I(t) < 3. + / [50(s) + c.e0=PIvsgn (5)]ds,
0
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where 3. = 0||og|| + 07z, 6 = 041 and ¢. = 042(¢). Using Lemma 4 with the
fact that (1 < 4, it comes that

1
P 2P 1=p
I(t) < 2773 + ( C;) e’
v —

‘We have,
1
P 2p 1-p
eﬂdMS%P%W+(%> vt
—

Hence,
1
p ~ 2PQY T-p »
HdMSWmewm+<;@> +270 07,

where © = v — ¢ > 0. Then, the solutions of system (3.3) are bounded and
(3.3) is globally uniformly practically exponentially stable. As a result, the set

B.,_, where
1
2P0 - p
= () e,

is globally uniformly exponentially stable. Consequently, the Hopfield-type
neural network system (2.1) is also globally uniformly practically exponentially
stable.

Additionally, as ¢ approaches zero, the value of r. tends to zero, and the
solutions of the system (3.3) exponentially approach the origin as ¢ tends to
infinity. Consequently, the solutions of the Hopfield-type neural network system
(2.1) also approach the origin exponentially as ¢ tends to infinity. O

As a special case, when handling more general perturbations (sublinear
growth, time-varying bounds), explicit quantitative relationships between per-
turbation parameters and stability bounds can be estimated, and the solutions
of the system are bounded and globally uniformly practically exponentially
stable.

Corollary 1. 1. When ¥2(¢) = 0 and ¢.(t) = M (constant) in hypothesis
(H1), Theorem 2 reduces to the classical Gronwall inequality, yielding

practical stability with r = U@_]@Wg . In this case, the bound becomes:
1

lo (@)l < 6™ [|o(0)]] + 67 /5,

where 0 = v—0¢; > 0. This is precisely the form of a Gronwall inequality
with constant perturbation.

2. When £(g) = 0 in hypothesis (H1), so T = 0, which matches Gamidov’s
inequality for integrable perturbations, yielding practical stability with

r(e) = (2p9€2 (5)/17) 117’) In this case, the bound becomes:
1
T1—p

lo(®)Il < 275 0laole™ " + (2P0 (e) /5) 77

where o = v — § > 0 with § = 0.
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As a particular case, we consider the following hypothesis:

(Hs2) Assume that, for all t > 0 and all o € R™,
[1F=(t, o)l < ullofl + L) (2),

where /; is a known nonnegative constant, £: R} — R, is a continuous
function, and 7 : Ry — R is a continuous nonnegative function on R
satisfying (3.4).

We have the following result.

Theorem 3. Suppose that the assumption (Hz) holds with €1 < §, then the
solutions of system (3.3) are bounded and there exits r- > 0 such that B, is
globally uniformly exponentially stable.

Moreover, if £(g) — 0 as e — 0T, the solutions of system (3.3) approach the
origin exponentially ast — +o00. As a result, the solutions of the Hopfield-type
neural network system (2.1) also approach the origin exponentially ast — +oo.

Proof. The solution of (3.3) can be expressed as:

o(t) = ot [ eI (Flo(s) + U (s) ds.
0

By using the same argument as in the proof of Theorem 2, and from (H;),
yields

lo(®)l] < Be o] + e / e (allo(s)ll + e(e)m(s) ) ds.
The last expression implies that,
o ()] < e |oo|| + B /O "ot flo(s)ds + fet /0 e ey (s) ds.
Since 7 verifies Equation (3.4), Lemma 1 ensures
lo(®)]l < e~ oo + O /Ot ety |lo(s)||ds + 0¢(e),

where ,
T = e_“t/ e’ 7(s)ds.
0

By multiplying both sides by eV?, it comes that
t
e llo®) < (@llooll + 0e(e)Te™) +519/ e [lo(s)| ds.
0
Let 9(t) = et||x(t)||, one gets

() < (6]|o0]| + 60()7e") + 010 /0 9(s) ds.
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Let A:(t) = 0]|oo|| + 04()7e. One has,
t
I(t) < A(t) + 120 / 9(s) ds.
0
Then, using a modified Gronwall Lemma [9, Theorem 1], one has
t
9(t) < A(¥) +€19/ Ae(s)efrt=9) ds.
0
It follows that,
t
o) < (0]|ool| + 0L(e)Tet) + €16 [ (0]|oo]| + 0L()7ev) €209 ds.
lo@)] < (Bllooll + 6é(e)Te™) + €260 | (Blloo]| + 0L(c)7e"”)
0
Thus,
t
lo@)| < e||go||e*vt+9e(5)fr+zlee*vt/ 0)joo e =*) ds
0
t
—l—éle_“t/ 020(c)mevs 1909 g,
0
Then,
t
lo(t)] < 0l|oolle"" 4 04(e)7 + £192H00H6_“t/ e10t=9) (g
0
t
+€192€(5)7~76_“t/ ehft=s)+vs g
0

Let © = v — £10. Since by assumption ¢; < ¢, one has © > 0. Setting

ROk

v

)

re = 00(e)T
a simple computation gives:
lo(@®)]l < Olloolle™" +re.

Then, the solutions of system (3.3) are bounded and (3.3) is globally uniformly
practically exponentially stable. Hence, the Hopfield-type neural network sys-
tem (2.1) is also globally uniformly practically exponentially stable.

Moreover, as ¢ approaches zero, the value of r. tends to zero, and the
solutions of the system (3.3) exponentially approach the origin as t tends to
infinity. Consequently, the solutions of the Hopfield-type neural network system
(2.1) also approach the origin exponentially as ¢ tends to infinity. O

4 Numerical examples

In general, the equilibrium point of the perturbed system may not coincide
with the origin. Consequently, one cannot analyze the stability of the origin
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as an equilibrium point, nor expect the solutions of the perturbed system to
converge to the origin as ¢t — +o0o. Instead, the best attainable property is
that the solutions approach a small neighborhood containing the origin when
the perturbation is sufficiently small. We present numerical examples using
a Hopfield-type neural network model to demonstrate the new perturbation
conditions developed in this work.

Ezxample 1. Consider the stability of the following system:

2
. g
g1=
! 1+t2 1+\/a o7 (14e2)(142) 2 (t 1 2)(1402)

(4.1)

1 o3
1+t21+\/01 +J2

where 0 = (01,02) € R?2, t € Ry, and € > 0.
The above system can be written in the form of (2.2) with (; =1, (; =1,

Gy = —03

T
)= o : 0
g Y ?
1+t21—|—\/01—|—02 (1+e2)(t+2)In*(t +2)(1 4 0?)

T
1 o
ust)= 1|0, 2 .
( L+ 81+ /0 +03
Since ReA(A) < 0, there exist # > 1 and v > 0 such that
e < fe~vt, vt > 0.

(ReA(A) denotes the real parts of the eigenvalues of matrix A).
Furthermore, condition (H) is satisfied with

1 € 1
m, é(é‘) = and W(t) =

ut) = e T2

Specifically,

t+1 t+2 du 1n(t+2) dw
sup/ w(s)ds = sup/ — = sup/ —
t 1

3
>0 t>0 Ji+1 uln®u >0 Jiner1) W

1 1
— s (ln(t—|—1) In (t+2)> < foo.

By Theorem 1, the solutions of system (4.1) are bounded and globally uni-
formly practically exponentially stable. Thus, for initial conditions outside the
ball B,(.) centered at the origin with radius 7(g), the solutions tend toward
zero as € — 0 and t — 4oc0.

To validate the robustness and general applicability of the theoretical re-
sults, we conducted extensive numerical simulations encompassing various per-
turbation magnitudes (both smaller and larger values of €), a range of initial
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conditions (including o9 = (1,2), (3,1), and small random perturbations), as
well as modifications in the nonlinear terms to represent diverse network con-
figurations. These simulations consistently demonstrate practical exponential
stability, with trajectories confined within bounded neighborhoods of the ori-
gin irrespective of the variations considered. Additionally, sensitivity analy-
ses indicate that the solutions maintain practical boundedness under parame-
ter changes, thus underscoring the flexibility and reliability of the theoretical
framework.

Figures 1(a) and 1(b) illustrate the evolution of the state o(t) of system
(4.1) with initial condition o9 = (1,2) for e = 0.001 and £ = 0.9, respectively.

These simulations highlight two essential aspects of the practical stability
result established in Theorem 1. For small € (e.g., € = 0.001), the radius of the
practical stability ball r(e) is correspondingly small, resulting in solutions that
asymptotically converge to the origin, which aligns with the theoretical asymp-
totic stability prediction. Conversely, for larger € (e.g., ¢ = 0.9), the radius
r(g) increases, ensuring that solutions remain confined within a neighborhood
of the origin. Although exact convergence to the origin is not guaranteed in
this case, the boundedness of trajectories confirms the global uniform practical
exponential stability for higher perturbation levels.

State Evolution for = = 0.001 State Evolution for ¢ = 0.9

Timet Timet

(a) Evolution of the state o(t) with (b) Evolution of the state o(¢) with
e =0.001 e=0.9

Figure 1. (a) e = 0.001: solutions converge to the origin, illustrating asymptotic behavior
for small perturbations; (b) e = 0.9: solutions remain bounded within a neighborhood of
the origin, demonstrating practical stability for larger perturbations.

Example 2. To demonstrate the scalability of the result given in Theorem 2, we
consider a 4D Hopfield network. We define a stable matrix

A =diag(—1,-1,—-1,-1)(0 = 1,v = 1).

The activation function remains f(o) = tanh(o). The perturbation is chosen
to be more complex, satisfying the more general assumption:

[E=(t, o)l < bullo]l + La(e)|[o]|” + £ (2).

We select ¢1 = 0.4, p = 0.5, lo(c) = ¢, and £.(t) = ce~ 7. A specific pertur-
bation that satisfies this is

Fé(t,0) =040 +co/(V/||o]l +1) + ce 05t



Generalized practical stability of Hopfield-type neural networks

where 1 is a vector of ones. The complete system is:

6(t) = —0.60(t) + tanh(o(t)) + 5(

-7 + eO'5t1>.
Vel +1

4D Hopfield Network: State Norm vs Time (¢ = 0.1) 4D Hopfield Network: Individual State Variables
— lo(t)l
4

—10)
0.0 o.2(t)

— a3
05 — o4

llo(t)]
5 85 &
State Values

o T T T 1

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Time (t) Time (t)

(a) Phase portrait (b) Phase norm vs time
Figure 2. (a) Phase portrait; (b) Phase norm vs time for the 4D Hopfield network.

Practical exponential stability of the 4D Hopfield network, demonstrating
the scalability of the theoretical results. All four neuron states in the 4D net-
work remain bounded and converge to a small region around zero. We simulate
this 4D system with e = 0.1 and initial condition o¢ = [1,—2,0.5, —1.5]7". Fig-
ures 2(a) and 2(b) show that the trajectory converges exponentially to a ball
near the origin. The behavior of all four individual neuron states is shown in
this figure illustrating their coordinated stability under perturbation.

Ezample 3. To substantiate the theoretical findings of Theorem 3, we present
comprehensive numerical simulations. We consider a Hopfield Neural Net-
work with external perturbations satisfying assumption (Hs): F¢(t,0) = l10+
l(e)m(t), with 7(t) = e %5, We set ¢; = 0.4, which satisfies the critical con-
dition ¢; < v/6 = 1. The function 7 (t) is exponentially decaying, ensuring

(oo} oo (oo}
/ e’ m(s)ds = / et e 055 s = / %P5 ds = 2 < 0.
0 0 0

We define £(¢) = e. The complete perturbed system is:
o(t) = —Ac(t) + f(o(t)) + 0.40(t) + ce 5,
This simplifies to the following equation:
o(t) = —0.60(t) + flo(t)) +ee 05t

According to Theorem 3, the solutions converge to a ball of radius r.. With
our parameters (0 = 1,v = 1,¢; = 0.4, 7 = 2), the radius is given by

GO
v

re = 00(e)T

,  where 0 =v — {10 = 0.6.
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Substituting the numerical values, we obtain

0.8
re =2 + O—GE = 2+ 1.333¢ = 3.333¢.
For ¢ = 0.1, we expect the state to converge to a ball of radius r9.; = 0.3333.
We simulate the system for two different initial conditions: a(()l) =[2,-1]T and

0((32) = [-0.5,3]T. The results, shown in Figure 3, confirm that the system
is globally practically stable, as the trajectories from different starting points
converge to the same neighborhood of the origin. We vary the perturbation
magnitude € € {0,0.05,0.1}. Figures 3(a) and 3(b) show the Euclidean norm
lo(t)]| over time. For € > 0, the trajectories converge to a ball around the
origin. The final steady-state error increases with e, and the empirical conver-
gence radius aligns closely with the theoretical bound r. = 3.333¢, validating
Theorem 3.

As perturbation ¢ increases, the convergence radius 7. increases. The nu-
merical solution is insensitive to solver tolerance variations. For ¢ = 0 (no
external perturbation), the system converges exponentially to the origin (see
Figure 4), as predicted by the theory when r. = 0.

Phase Portrait: 2D Hopfield Network (€ = 0.1) State Norm vs Time: Different Initial Conditions

3 — 0=2,1 30 — =21

— 0 =[05,3] — 0 =105,3]

-~ Theoretical bound (r_ = 0.333) ==+ Theoretical bound (r_¢ = 0.333)
2 25

o
llo(®)l

-3 -2 -1 [ 1 2 3 00 25 50 75 100 125 150 175 200
o Time (t)

(a) Phase portrait (b) Phase norm vs time

Figure 3. (a) Phase portrait; (b) Phase norm vs time.

Exponential Convergence Verification (¢ = 0)

— ()] (e=0)
-+ Exponential fit (a=0.157)

llo(t)] (log scale)

00 25 50 75 25 10 15 200

100
Time (t)

Figure 4. Exponential convergence for € = 0.

The numerical results strongly support the theoretical claims. The system
exhibits global uniform practical exponential stability, with the convergence
radius scaling linearly with the perturbation magnitude €, as predicted.
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5 Conclusions

This work has examined the stability analysis of a novel class of neural differ-
ential equations motivated by continuous-time Hopfield-type neural networks.
It has been demonstrated that, in the presence of a perturbation term, the
Hopfield-type neural network can be modeled as a dynamical system possessing
a global practical exponential stability property around zero. The applicability
of the main results has been illustrated through numerical examples and simu-
lation results. Previous studies have employed the Gronwall approach to study
stability under perturbations for various classes of differential equations. In this
context, the perturbation term ensures consistency with the associated linear
equation and facilitates the study of convergence by expressing the general solu-
tion in integral form. The novelty of this work lies in imposing a Gamidov-type
restriction on the bounds of the uncertainty term, which significantly enlarges
the class of systems that can be rigorously proven stable. Despite these ad-
vances, several theoretical challenges remain. Extensions to systems with non-
smooth or discontinuous nonlinearities and infinite-dimensional systems with
unbounded operators require further investigation. Robustness against broader
classes of perturbations and uncertainties also presents open problems for fu-
ture work. Moreover, the framework can be adapted to neural models with
time-varying structures, allowing system matrices and nonlinearities to explic-
itly depend on time, provided that suitable uniform stability conditions are
satisfied. This represents a promising direction for ongoing research. This
work has established a framework for the global practical exponential stability
of a class of perturbed Hopfield-type neural differential equations. The key nov-
elty lies in applying a Gamidov-type condition on the perturbation term, which
significantly expands the class of admissible systems, particularly those with
unbounded coefficients, for which stability can be rigorously proven. While the
results demonstrate robustness under significant uncertainty, they open several
compelling avenues for future research. The following open problems represent
critical steps toward broadening the theory’s applicability:

- Extending the analysis to systems with nonsmooth activations is essential
for aligning the theory with modern deep learning architectures. This requires
tools from differential inclusions and nonsmooth analysis.

- A natural and impactful extension is to systems with discrete or dis-
tributed time delays, which are inherent in biological neural networks and
hardware implementations. Furthermore, formulating the stability conditions
within an infinite-dimensional setting (e.g., using partial differential equations)
would allow the modeling of neural fields, a crucial tool in computational neu-
roscience for understanding large-scale brain activity.

- Modeling environmental noise and synaptic variability necessitates a stochas-
tic formulation. Investigating almost sure or moment-based practical expo-
nential stability under Brownian motion or jump-process perturbations would
greatly enhance the model’s realism.

- Linking these theoretical challenges to specific applied domains will be
vital. For instance, applying the extended theory to stochastic delay equations
could provide new insights into the robustness of biological rhythm generators
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in computational biology, while the infinite-dimensional analysis could offer
novel stability criteria for continuum models of cortical dynamics. Addressing
these problems will not only generalize existing results but also firmly bridge the
gap between abstract stability theory and cutting-edge applications in machine
learning and biological modeling.

These research directions not only represent theoretical advancements but
also address pressing challenges in biological system modeling. The framework
established herein provides a mathematical foundation upon which these exten-
sions can be systematically developed, potentially leading to unified stability
criteria for complex biological networks across multiple spatiotemporal scales.
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