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1 Introduction

In this paper, we consider the system of differential equations

%(x,t) =V (ag(ce(z, 1)) Vee(z, ) + V - (ag(ce(z, 1) Vo (z, ), (1.1)
%(m,t) =V (aglee(z,t)Vea(w, t)) + fles(z,t), ca(z, t), co(z,t), (1.2)
B 0,8) =~ (eslst), ale ), cule 1), (13
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for x € (0,R),t € (0,T]. In [10], the system equations (1.1) to (1.3) were
introduced with

Vo(x,t) = —/0 q(s,t,ce(x,s),co(x,t))Vee(x, s)ds, (1.4)

to describe the drug release from a viscoelastic spherical polymeric structure
of radius R containing a drug immersed in a spherical environment of fixed
radius, with instantaneous swelling. This differential system is complemented
by the following initial and boundary conditions:

ce(2,0) =0, c4(z,0) =0, cs(x,0) =cs0(x), € (0,R), (1.5)
Vee(0,8) =0, Veq(0,8) =0, co(R,t) = Cewt, ca(R,t) =0, t € (0,T]. (1.6)

The authors considered therein that the drug release is a consequence of the
following set of phenomena: (i) the solvent molecules are absorbed by the poly-
meric structure due to the solvent gradient concentration (solvent absorption),
(i) the polymeric chains relax, the structure swells and a stress gradient arises
(swelling), (4ii) the dissolution process occurs due to the contact of the solid
drug with the absorbed solvent molecules (dissolution) and (i) the molecules
of the dissolved drug diffuse throughout the platform and continue to diffuse in
the external surrounding medium (diffusion). A key aspect of this model is the
interaction between fluid absorption and the polymer’s mechanical response.
As the fluid permeates the structure, the polymer deforms and swells, gener-
ating internal stress. This stress creates a counter-acting flux, pushing fluid
from regions of high stress to regions of low stress. Consequently, the overall
fluid transport is driven not only by the concentration gradient but also by this
stress gradient.

While the polymer itself is initially free of solvent, the surrounding environ-
ment is not. The subsequent phenomena (solvent absorption, polymer swelling,
and drug dissolution/release) are also driven by the interaction between this
initially dry platform and the external solvent.

In this case, ¢4, ¢s and ¢4 represent fluid, solid and dissolved drug concen-
trations, respectively, f denotes the dissolution function and o represents the
polymeric chains’ stress. This stress is opposite to the solvent uptake and rep-
resents the response to the deformation induced by the solvent concentration.
In this context, the fluid flux is given by Jy = —ay(c)Ver — aq(ce)Vo. In [10]
the authors considered that € = g(c¢) and o defined by the Boltzman integral
oz, t) = — fot E(t— s)%(x, s)ds, where E(-) is the kernel function associated
with the generalized Maxwell-Wiechert model, E(t) = FEo + i, Eje_*%f,
where F; is the Young modulus, 7; = ]’;—Jj and p; is the polymeric viscosity.

The initial boundary value problem (IBVP) defined by Equations (1.1)-
(1.6), is based on the 3D model originally proposed in [10]. The framework is
simplified here to one dimension to enable a more detailed and rigorous mathe-
matical analysis than was feasible for the full problem. Furthermore, while the
work in [10] focused on a spherical domain, this set of differential equations can
be made more general and applied to any domain whose boundary is divided
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into two parts: one with a constant fluid concentration and one that is isolated.
The original problem was studied from a numerical point of view in [4,5] for
smooth (C*) and nonsmooth (H?) solutions with respect to space. In these pa-
pers the authors propose second order approximations in space. The presence
of the Neumann boundary condition at * = 0 lead to several challenges that
were solved in these papers for both scenarios of smoothness. Moreover, in [4],
an Euler implicit-explicit numerical method combined with a uniform grid for
the memory term was studied. In order to prove convergence for the solid and
dissolved drug approximations it was sufficient to guarantee uniform bounds
for the numerical approximation for the fluid. Such property was concluded
assuming a certain quasiuniformity for the spatial grid and a stability condi-
tion similar to the well known stability relation for uniform grids At < Csh2.
In [11] a numerical method similar to the one considered here for a diffusion
equation with a memory term defined with an exponential kernel function was
also studied.

The presence of the memory term in Equation (1.4) leads to several chal-
lenges in the computation of the numerical approximation for the solution of
the initial boundary value problem (IBVP) defined by Equations (1.1)—(1.6), if
our goal is to compute second order accurate approximations for ¢y, ¢g and cs.
In this case we should apply second order approximation quadrature rules to
discretize the integral term and we need to store information for all timesteps
during the release process. Moreover, the presence of the integral term replac-
ing the stress o makes it more difficult to construct stress estimates depending
on the data of the problem.

The goal of this paper is to consider the special case of the generalized
Maxwell-Wiechert model with one fluid arm. In this context, we modify the
definition of stress, o, given by Equation (1.4), to the following differential
form:

8—J+B0:faef

= (1.7)

€
LT
where § = %,a = %, v = Ey + E; and p represents the viscosity of the
polymer and Ey and E; are the Young’s modulus (see [7]). The minus sign in
Equations (1.4) and (1.7) arises to take into account that the stress is devel-
oped by the polymeric chains as a response to the fluid entrance generating an
opposite convective flux to the standard Fickian diffusion process. To simplify,
we take € = ¢y, instead of the nonlinear relations considered in [10].

It is worth noting that Equation (1.7) can be derived directly from the Boltz-
mann integral representation for ¢ and the aforementioned linear relationship
between € and ¢, through a straightforward calculation. Conversely, integrating
Equation (1.7) to obtain an explicit solution for o and taking its gradient yields
an expression analogous to Equation (1.4). We aim to present a numerical
scheme that leads to second order approximations using an implicit midpoint
approach in time for the differential system defined by Equations (1.1)—(1.3)
and (1.7) and

Vo(0,t) =0, o(R,t) = ez, t € (0,T], 0(x,0) = og(x), x € (0,R). (1.8)

Math. Model. Anal., 31(1):1-25, 2026.
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We point out that in the nonlinear system of Equations (1.1)-(1.3) and (1.7),
the concentration ¢, is defined by Equations (1.1) and (1.7) and it is included
in (1.2) and (1.3). Our goal is to propose a finite difference method that can
be seen as a fully discrete piecewise linear-constant finite element method fol-
lowing a midpoint quadrature approach that is simultaneously locally stable
and unconditionally convergent with respect to a discrete version of the usual
norm in H'(0, R). The key ideas and challenges to prove stability and con-
vergence followed throughout the paper are summarized as follows. To prove
the stability of the numerical solution we will follow the approach considered,
for instance, in [18,19,21,22]. This technique imposes the uniform boundness
of the numerical approximations using a discrete version of the W1°°(0, R).
Regarding the unconditionally second convergence order of numerical methods
for quasilinear parabolic equations, we refer the papers [17,25] and the refer-
ences therein where the convergence analysis requires the uniform boundeness
of the numerical approximation with respect to a suitable norm. In our con-
text, we establish unconditionally second convergence order with respect to
a discrete H'-norm and no uniform bounds for the corresponding numerical
approximations are required. The coupled and nonlinear nature of the system
of Equations (1.1)—(1.3) and (1.7) increases its complexity. Furthermore, o is
defined by an ordinary differential equation and we would like to obtain for this
variable a second order approximation with respect to a discrete H'-norm. Fi-
nally, taking into account the convergence estimates with respect to a discrete
H'-norm, we are able to verify that the uniform boundness assumptions im-
posed to conclude local stability hold provided that the initial approximations
are in balls centered in the initial conditions of the differential problem with
mesh dependent radius.

The a priori error analysis conducted in this paper is not based on the
usual approach introduced in [26] that was largely followed in the literature.
For instance, recently, the results of [26] have been considered in [16,27,28,29].
Instead, our approach is based on the error analysis for the error equations.
Our results can be seen in two different perspectives. As mentioned before, our
method can be seen as a fully discrete piecewise linear-constant finite element
method and the second order estimates with respect to the discrete H!-norm
are unexpected because piecewise linear finite element method lead to a first
order error estimate with respect to the usual H'-norm. The unexpected con-
vergence orders obtained for finite element approximations are known as super-
convergent results and recently the literature has been fruitful for this type of
estimates. As an example we mention [23] where a mixed finite element method
in space is combined with a second order backward formula for a quasilinear
parabolic equation is studied. However, within finite difference methods, our
convergence estimates allow to conclude that the order of the global error is
greater than that of the truncation error. In fact, the latter is of first order
only in space with respect to norm || - ||, while the former is of second order
in space and time. This unexpected convergence behavior is known as supra-
convergence phenomenon and it was widely studied in the 80’s in [8,14,15,20].
More recently, we also mention the following contributions [1,9, 24].

The paper is organized as follows. In Section 2, we present some notations
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and basic results related with the finite elements scheme proposed. In Section 3,
we introduce a fully discrete (in time and space) numerical method using an
implicit midpoint time integrator and nonuniform grids in space. The stability
of the method is established in Section 3.1 provided some suitable uniform
bounds on the solution of the numerical problem. To establish such bounds,
the convergence properties of the method are studied in Section 3.2. The
final proof of the stability of the numerical scheme is a consequence of the
convergence result. In Section 4, we illustrate the convergence properties of
the method w.r.t. both h,,,, and At. Finally, in Section 5, we present some
conclusions.

2 Definitions and basic results

In this section, we present the basic definitions and tools needed to provide the
mathematical support for the proposed numerical method and the upcoming
sections. By A we denote a sequence of vectors h = (hi,...,hy) such that
h; > 0,2 =1,...,N, Zivzl h; = R, hmaz = max;=1,... N h; — 0 and h,in =
min;—1,... ~ h;y — 0. We recall that a sequence of grids is said to be quasiuniform
if there exists a constant C' > 0, independent of h, such that Zm—“i < C. The

sequence A is used to introduce in 2 = [0, R] a sequence of grids
ﬁh :{xiv ’L:O7 aNa‘Ti :zi—1+hi7i: 1a ,N,I'O:O,JZN :R}

Let r_1 = —a1 and ho = hl.

As we are dealing with Neumann boundary conditions at xg, to discretize
the boundary conditions, we introduce a fictitious point x_; = —x; and the
corresponding set of grids ﬁ; = 2, U{z_1}. The numerical approximations
that we compute are defined in all grid points. They will naturally belong to
the space of grid functions V* = {vy, : 2, — R}. To study the behavior
of the error, as we are considering Dirichlet boundary conditions at z = z,
we also introduce a new vector space, V;' = {vn € V}¥ : vp(xzn) = 0}. The
errors for the numerical approximation for the solvent, dissolved and solid drugs
concentrations will be measured on the grid points of [0, R] and these errors are
null at z. Consequently, we need to introduce V30 = {vp, € Vj, : vp(xn) = 0},
where Vj, = {wy, : 2, — R}. The norm || - ||, used in measuring the errors is
induced by the inner product

I

N-1
ha
(un, vn)n = S un(wo)vn (o) + D hipajoun(@i)on(:),  un,vn € Vo,
i=1
where h; 11/ = % (hi + hit1). Another useful norm is the discrete counterpart
of the L>(0, R) norm, defined as thHh o = MaX;—o, N lon(x;)|, vn € Vi. We
also use the notation

N
(wn, o) = D haun(@:)on (i), Junl|, = v/(un, un)+,
i=1
and th||+ o = MaXi=1,.. N |up (x;)], for grid functions defined in x4, ..., zyN.

Math. Model. Anal., 31(1):1-25, 2026.
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For vy, € V¥ we introduce the operators D_, and D} defined by

x

D—xvh(xi) = Uh(xi) _hi.}h(xi_l)7 i= 17 LR N,
Do () = o) Zon(@s) 0y
hivi/2

respectively. By M}, we denote the average operator

Mo (x;) = on(:) +20h(xi_1), i=0,...,N—1,

for v, € V. We also introduce the following discrete version of the usual norm
in H(0,R) :

)1/2

lunlltn = (lunllh + 1D—zunl?) ", un € Vio.

We now recall some useful result regarding these discrete operators.

Proposition 1 [Discrete Friedrichs-Poincaré inequality]. For all v, €
Voo,
lonll, < RID—oon]l,-

Proposition 2 [Discrete inverse inequality]. For all v, € Vj, 0, it holds

1D

232 H“hHh'

min

*l’vhH+,oo S

Proof. From the definition of H : ||+ . there exists k € {1,2,..., N} such that

2 4
||DimUth_7oo = |D_,vp(zp)|* < =N (vn(2k)? + vn(zr-1)?) < hTH“hHi
0

Proposition 3. For all v, € V}, 0,
VR
ol < 72 ol

Proof. The proof follows similar steps as the one for Proposition 2. O
Proposition 4. Let A: R — R, up, € V7 and v, € V0. Then,
(D;(Athzuh)mh)h = — (Athxuh, szvh)_i_ — DA’cuh(.%'o)Uh(LL'()),

where D acup (o) = 5 (A(Mpun(0))D_un (o) + A(Mpup(z1))D_jup (1))
and Ah = A(Mhuh).

Remark 1. If A is constant then we have Dy cup(z9) = ADcun(x0).
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To simplify the presentation of the numerical methods that we study in
what follows, we consider the following notation: if vy, : 2, x [0,T] — R, by
vn(t) we represent the following grid function vy (t) : 2; — R, vp(t)(z;) =
vp(z,t),4 = —1,...,N. By v} (t) we represent its time derivative. For grid
functions vy, defined in others grid sets the definition is similar. Finally, we in-
troduce the notation C™(H") = C™([0,T]; H"(0, R)) for the space of functions
v:[0,T] — H"(0,R) such that v : [0,7] — H"(0,R), i = 0,...,m are
continuous, imbued with the norm [[v]| gm ) = maxiejo7) ||v(t)||HT(O’R) .Ina
similar fashion we introduce the simplified notation H*(H") for the Bochner
space H'(0,T; H"(0, R)), i,k > 0.

3 Fully discrete approximation

Let M € N and At = L. We consider in [0,7] the uniform time grid
{tm = mAt, m = 0,...,M}. We introduce now a full discretization scheme
for problem defined by Equations (1.1)—(1.3) and (1.7)—(1.8) based on an im-
plicit midpoint integration approach in time

+1 _ oy m+1/2 m+1/2
D_e/y =D} (ag (thz,h D_,cpp

+ Dy, (ag (thzl,jl/z) DIO}TLnHm) ) (3.1)
D_,op ! + Bahm+1/2 = —acZﬁl/Q — 'yD_thlgrl, (3.2)
D_,mit = Dy (ad (th;’;j” 2) D_e 2) a2 (33)
S (3.4)

in 2,\{rn} and m =0,1,..., M — 1, with
n(@i) = coo(wi), qp@:i) =0, & p(xi) = coo(wi), op(x:) =oo(zs), (3.5)

fori=0,...,N—1, and

Da, W2 (20) =0, j=0,...,M ~1, p={,d,0, (3.6)
c;’h(xN) = Ceut, O'ZL(Z‘N) = Ceuts cfi’h(xN) =0, j=0,...,M. (3.7)

In (3.1), D_, denotes the backward finite difference operator in time,

+1 +1

o tCp, fr

m+1/2__ “p,h p,h _ m__ m m m m+1/2 _ Jp h
Cp7h - 2 ) p*& d,S, fh *f(cs,hvcd,hvcl,h), h - 2 .

Following [5], throughout this paper we always assume that:

(Haige) for p = ¢,d,0, a, : R — R is differentiable, its derivative is bounded
and there exist constants ag ,, M, > 0 such that

0 < apy <au(r) <My, la,(z) < M, forallzcR,

Math. Model. Anal., 31(1):1-25, 2026.
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(Hg) there exists a constant C'y > 0 such that, for all z,y, 2,%,9,Z € R,
[(F @,y 2)=F (@5, 2)] < Cr (12lly = 51+ (1 +1yl) (12 = 21 + |2l = al))

Remark 2. The last condition generalizes the condition that holds for the par-
ticular dissolution function f(cs,cq,ce) = ﬁ(cs)K(C’sol — ¢q)cp, Where His a
smooth approximation of the Heaviside function H(cs), Cs0 is the solubility
limit of the drug and K is the dissolution rate.

Remark 3. The numerical scheme defined by Equations (3.1) and (3.4)—(3.7)
can be seen as a fully discrete piecewise finite element method: piecewise lin-
ear for ¢y, 0,cq and piecewise constant for cs, with a suitable midpoint time
discretization scheme. Although this numerical method is defined as a finite
difference scheme, this duality of point of view allows us to circumvent the
typical Taylor expansion analysis to analyze the consistency and error associ-
ated with the method and use tools such as the Bramble-Hilbert lemma. In
the process, we are able to prove second order convergence results using less
regularity of the solutions.

3.1 Stability analysis

Let ¢i,, i =d,{,s,and 03", m = 1..., M, denote fixed solutions of the discrete
problem defined by Equations (3.1)—(3.7) with initial conditions c? ni=dl,s,
and o)) and let W, = ¢}y, — &%, 0 = d, L, s, W, = ot — o3, where &7, i =
d,l, s, o) 1s another set of solutlons of the same discrete problem with initial
condmons cz7h, 1=d,l, s, and & O'h To simplify the exposure, we introduce now
two notations for p = ¢,0,d,s. If up, vy, wy € V¥, we define by, (up, vp; wp) =
(au (Mpwp)D_ up, D—mvh)+ . However, if these grid functions depend on time,
say, up', vy, wit € Vi, then we define by} (up, vp; wn) = by (up', vt wy').

We start by stating a result that will be used to bound specific terms in the
upcoming analysis.
Proposition 5. Let up, vy, tn, 0n € V)* such that up,—up € Vh*70 and wy, € Vi, 0.
If a;, : R — R satisfies Haige then,

16,0 (s whs w) = by (On, whi Gn)| < M, || D (vn — lez)HJrHD,gcwhHJr
M| Dol o llun = nl], [ D] -
Moreover, if w, = v, — Up, then,
by (O, wh; Un) — by (v, whsup) < MM’|D*$U’1H+,OOHU’1 - ﬂhHhHwawh’L

~ a0, D_pn[}

We are now able to establish upper bounds for a perturbation of the numerical
solution. Indeed, considering Proposition 4, it can be shown that

+1  m+1/2 _oam+1/2 L~ m+1/2 .
(D Wi Wep, L= b, (Ce,hywe,ns Con) — by (¢e,n,we,ns Con)

+1/2 +1/2 .
+ 0260, won; Eon) — O Y2 (04, wins con),
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m+1 m-+1/2 _ ygm+1/2,~ L~ m—+1/2 .
(D—twd noWan ), =ba T (Canwanien) —bg T (Can, wanicen)

m+1/2 rm+1/2 m—+1/2
+ ( h —Jn »Wah b’

1 mt1/2 +1/2  Fm+1/2  m+1)2
and (D tw:“; ,w:h />h:—<f};" / - /,w;rfh /)h
We now focus on Equation (3.1). Using Proposition 5, it is straightforward
to show that

1

m+1/2 m+1/2
! o0

D_w “e,h +1Hh<]\/[5||D CZT”Q —aWeh H+

Iy ol

m+1/2

_QO,ZHDfachh —zWo p

o+ Mo | Doy | 1Dy

[ [N B s R CR)

I3

+ M| Do e

From the expressions in the previous inequality, in order to obtain an upper
+1||h, we need an upper bound for ||D m+1/2’|+. With this

bound for Hwe %o n

in mind, we start by proving the following result.

+

Proposition 6. Under the previous assumptions, w.';~ and wm'H

satisfy
1

D (st i ) ] + AN 2+ ol

= —(a+ B7) (Dfme}jl/anmw:}jl/Z)Jr '

Proof. Taking each member of Equation (3.2) and applying the operator D_
we derive D_,D_ tw;",flJrﬂD w2 = aD_meZH/Qf'yD_mD_tw;"}j'l We

—x Uh
now apply the discrete inner product (~,~)Jr to each member of the previ-

. S . 1/2 1/2
ous equation considering two different elements: D_ wm: /2 and D_ w;n}j /2,

From the former, we obtain
+1/2112 +1/2 +1/2
+ﬁHD7I ;nh ||+ =-a (Dfrwzlh 7szwz:n,h >+

(DD D)
+

—x%o.h

SOl

and from the latter we get

7 (DoaDowi Do) 4y (Do :,”:”2,111@&»2?,?”2)
(3.9)

= —on|| Dy - D D

We conclude the proof using the identity
(0t ot (00 D)
+ ’ ’ +

z¥o,h

+ (D,ID tw?‘}fl,D me/Z)
+

—x%o,h

—z%s p

in (3.9) and replacing the common term, -y (D_xD_th oD mH/Q) .0
+

Math. Model. Anal., 31(1):1-25, 2026.
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We are now able to establish an bounds for the perturbations on ¢y and
Op-

Proposition 7. Let ¢, and 03", m = 0,..., M, denote fized solutions of the
discrete pmblem defined by Equations (3. 1) (32) and (3.5)~(3.7) and let wy’y, =
'y = Cps Wop, = Op' — Oy, where ¢, o' is another solution of the same
discrete problem with initial conditions &g’h, and 9. If the assumption Haig
holds, the coefficients satisfy

M, + a+ v < 2min (ﬁ,av—i—aM) (3.10)

and there exists Atg > 0 such that, for all At € (0, Atg), the corresponding
solution satisfies

max (HD - 2”;1/2 2

o Do 2R L) < (3.11)

for some C' > 0, independent of h and At, then, for all At < min {Ato, %},
the following inequality holds

m—1
el Doty D[ +A¢ 3 (]| Do}
=0

+ D a2 12] < Co (ol ally + 1D—anll} + [ D_afill})
form=1,2,... M —1, where Cp > 0 is a constant independent of h and At.

Proof. Let At < min{Ato, %} Combining Equation (3.8) with Proposi-
tion 6, it follows that for all € # 0,

D [l I+ 10wzt + v D

o+ Aol| DL+ Bo(o | D_ass 1

—z%s.h

M m o m m
S(JHD_wc@;l/zui,w€2||D_wah+“2u+m> it 22, (312)

where Ag = 28 — M, — a — B8~ and By(e) :2(a7+ao,g—62—%—%ﬂ”>.

From (3.10), it follows that Ag > 0 and we can fix € such that By(e) > 0. Let

1
Oeenson) = g g ME-_gos {IP—eet s 1P-000 ™I o}

With this notation, (3.12) leads to
(1= 0leanon)at) (ot | + Dt +9D_i )
+ At (Ao|| Dy 2|15 + Bote)|| Dt 22

%o h

(1 + 9@(0@ hsOh At) (Hwe hHh + Hwawa n+YD_ wy hH ) (313)
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From the uniform bound defined by Equation (3.11) and the inequality from (3.13),
applying Lemma 1 from [13] allows to obtain

m—1
il 1 D—as 4D _awifi | 428 Y [[ID e 2| 41D sy
=0

< Co(1+ € A (il + I1D_awSlly + 1 D_sesfill})
for some constant C, > 0. O

We have already dealt with calculating upper bounds for suitable norms in-
volving the perturbations of ¢y and o,. We now turn our attention to the
perturbations of the dissolved and solid approximations, i.e., wqp and wsp.
Employing a similar technique, we can prove the following result.

Proposition 8. Let ¢}, i = d,s,{ and o},', m = 0,..., M, denote fized so-
lutions of the discrete problem defined by Equations (3. 1) ~(3.7) and let W]}, =
&y — Gyt =dys,land wyy, = oyt — oy, where ¢y, 1 = d, s, L, andoh 18
another solution of the same dzscrete problem. If the assumptions Haig and Hg
hold and there exists Aty > 0 such that, for all At € (0, Aty), the corresponding
solution satisfies

[ nax {llcinlli oo 1Daciinll s el oos [Ehnll o} <€ 319)

for some C' > 0, independent of h and At, then, for all At < min {Ato, %},
the following inequality holds

’|wthh+HwShHh+AtZ | D_pw Zﬁh”QHi

=0
m
> llwkall?),
j=0

form=1,2,....M—1, where Cq s > 0 is a constant independent of h and At.

< Cuo (2 + 1t

Proof. We start by noting that using Equations (3.3) and (3.4) and taking

into account summation by parts and the boundary conditions for wzin,f b we

have
+1  m+1/2 +1  m+1/2 _gm+1/2 L~
(D—thlnh yWa h N + D—twgnh yWs b W by (Cd W, Co,h)

4 <f;ln+1/2 B f}1n+1/27wm+1/2 B wm+1/2>h B bzln+1/2(

d,h s,h Cd,h>Wd,hs Co,h)

- (ad(thm+ \D_ w2, D,mw;”,jl) . (3.15)
’ VS
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Considering the assumptions on the coefficient functions, using Proposi-
tion 5, for all € # 0, we have

m+1/2)2

by 2 (cans wans éen) = U T2 (cans wani cen) HD* wan s

2 2
+Cd4€2 _gnax Dl (H W I+ el

~m+1/2 m+1/2 m+1 m+1/2)2
_ < (th )D_de’h ,D_de’h < —a07dHD_wwd’h ||+,
+

where Cy > 0 is a suitable constant. Through a straightforward application of
assumption Hg, it can be shown that the following holds

mt+1/2  Fm41/2  m41/2 mtl/2
(fh = f s W n —Wsh N

éz,hHh,oo} (ngl + E?d)

+Cp ax (14 einllo) (Ifi  + lomly)

< Oy max {llcilly oo lcbnlly o

where C’f > 0 is a convenient constant and E; = Hw&”h”i + Hw;"hHi Consid-
ering the last estimates in Equations (3.15) and (3.14), we obtain

(1 — adt) B"F + 2(ag,q — €)||D_ 0 /? (1+ aAt) BT + Atz™

I5 <

where a = 4C;C, B = 2C;(14+C)?*+Cy i\g and 2™ = (me-s-th + |lwy h||h)
Choosing € # 0 such that Dy(e) = 2(ag,q — €?) > 0, Lemma 1 from [13] implies

’|wthh+HwShHh+AtZ |D_w fz+hl/2||i
1=0

m
< Chouna (14t ([[wSll+Hlw2nll} ) +284¢ D [[winll, )
i=0
with Cpoundg = exp(2Ta max {ﬁ(e), ﬁ })
The combination of Propositions 7 and 8 leads to our first main result. Let

T = Wil + il + ol + ||D—zw3?h+7D7mthhHi

m—1
+ 4t 3 ([P b2+ 1w+ 1D ]
=0

form=1,..., M.

Theorem 1. Let ¢}y, i = d,s, ¢ and o', m = 0,..., M, denote fized solu-
tions of the discrete problem defined by Equations (3 1)7(3.7) and let wihy, =
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iy — et =d, s, 0 and Wiy, = oy — oy, where ¢y, 1 = d, s, L, and G} is
another solution of the same discrete problem. If the assumptions Haig, He
and Equation (3.10) hold and there exist constants Csiap, Atg > 0 such that,
for all At € (0, Aty), the corresponding solution satisfies

D

—z%h H+7007

max {HDfmCZ‘h [

1D acinll oo Ndnll sor 8l s 62 1 oo b < Cotans

independently of h, then there exists a constant C' > 0, independent of h and
At, such that, for At sufficiently small, the following inequality holds

By < C ([wfally + Dol nll} + [ D_awlnll} + lodull? + Iw2nliZ)
form=1,2,... M—1.

Remark 4. We conclude this section remarking that the stability of Equations (3.1)-
(3.7)inc],,i=d,s,4,07,j=0,...,M,is concluded from Theorem 1 provided
that there exists a constant Cyqp > 0, h and At independent, such that, for
At small enough,

1D—acti I

I3 e < Cotas Do ™[]

4,00 < Cstab7

||D7IC{121/2H+700 < Cstab7 J =0,. M -1, h e /1,
||C§ﬁ“h,oo < Cgtab, czthh,oo < Cstab, 6§»h||h,oo < Cstaln j = 0 N7h c A.

3.2 Convergence analysis

Let ¢y, 1 =d,{,s,and 03", m = 1,..., M, denote fixed solutions of the discrete
problem defined by Equations (3.1)—(3.7). Let Egh = Rpci(t;) —czj wi=d s,
Ei,h = Rpo(t;) — afl, for j = 0,..., N, be the discretization errors, where

¢, = d,l,s,0, represent the solution of the initial boundary value problem
defined by Equations (1.1)—(1.3) and (1.7)) with € = Acg, Equations (1.5), (1.6)
and (1.8), and Ry, : C([0, R]) — V}, denotes the standard restriction operator
to the grid functions defined on (2,,. To establish error estimates we use the
approach introduced in [3] for elliptic problems and largely followed by the
authors and their collaborators in, for instance, [2,12].

Let g € C([0, R]). We introduce (g)p € V}, defined by

2

(onteo) = = | o, @ew) = 1 / T gw)de,

1 i+1/2 )
e = [ gdni =1 N -,
i+1/2 Ti—1/2

and g : Vi\{zo} — R defined by g(z;) = Rnrg(x;—1/2), i = 1,...,N. We also
define the space V. = H?(0,T; H*(0,R)) N C°(0,T; H3(0, R)), and the error
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Bl = |BLul + D (B +7ELs) I3 5 = 0., M. The first result on

convergence, estimating the error for approximations ¢y, and oy, is as follows.

Proposition 9. Let ¢y, 0 € V denote a solution of the problem defined by Equa-
tions (1.1) and (1.5)—(1.8) and cqp, 05 € V), denote the solution of the problem
defined by Equations (3.1),(3.2) and (3.5)—(3.7). If the assumptions Haig and
(3.10) hold then there exists a constant Cy > 0 such that for At small enough,

m—1
By, + Aty Y [D B

j=0 p=L,0

< Ce(I1EL I3 + I1D_o B2 413 + 1D {3 + T

form=1,2,...,M — 1, where

2
Terz—hfnaw( Z (”p”CO(H?)HCfHCO(H?)+||p||CO(H3)+||pHC1(H2)> )
p=cC¢,0
4 2
a0 ( 5 (ohescrs oy +Hlplsey) +Iolsgory )
pP=C¢,0

Proof. This proof follows the reasoning behind the one of Proposition 7.

We start by establishing estimates for D tHEE hHh and HD Em+1/2H+.
straightforward, although tedious, calculation allows to show the following
equalities

m m—+1/2 m—+1/2 m m—+1/2
(D Eﬁfjl E + / >h (( Z( m+1/2)>h7E£Jj_ / )h_ (thcl,iirlvEZ,}j_ / )h

+ Y (b;n+1/2<ph>E£,h§Cé,h> — by "2 (Rup, Ee,h;RhCe))

p=ce,0

n (Tflﬂ’EZIjl/z)h"" Z (Tm+1/2 D Em+1/2>+, (3.16)

1,p
p=ce,0

where

T =Ry (tms1/2)— (Cz(tm—k—l/Q))h+D7tRhC£(tm+1) = Rncy(tm+1/2);
m ~ m é;
T p+1/2 - ((ap (Cé(tm+1/2)) — ap (MhR +1/2)) %(tmﬂm)

m 5\ m
- ( (MthC H/Q)) (ai(thrl/?) — D_,Rup +1/2> ,

for p = ¢y, 0. Following the proof of Equation (3.8), it can be shown that,
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from (3.16), for all € # 0, we have

m 1
DR + (ane — 26— M) D BRI < 4 S
pP=cy,0

< (2D R V22 ) B2 4 | D B

+ (T{“*HE;?,L“/Q)}L + Y (T{f‘p+1/2,D,zEg‘;1/2)+, (3.17)

p=L,0

where € # 0. Using the Bramble-Hilbert Lemma (see [6]) and the proof of Theo-
rem 1 of [3], it can be shown that there exist constants C7, Cy > 0, independent
of h and At, such that the following inequalities hold

(74, 5 <c (h?n
AL oy 1B )

(2732 D BT ) <Calpoce) (Whaw + A82) | DB

” m+1/2

c;(tm+1/2>‘ —x0h H+

H2(0,R)
[
for p = ¢y, o, with L?W(Hl) = LZ(tmatm+l§H1(0aR>) and

Cs(p, ce) =Ca (Hgﬁ(tm+l/2) Hcl(tm+1/2)H

Lo (0,R) H2(0,R)

+Hp(thrlﬂ)H +||p(tm)||H2(O,R) +||p(tm+1)HH2(O,R)

@ 1
ox

Inserting the previous inequalities into (3.17) we obtain

H3(0,R)

Ip
+ Hax(thrl/Q)

L>=(0 R)HCZHLfn(Hl) T

L2,(HY)

D_ || B2 + (20,0 — 3¢ — M,)||D_ E7 213

1 m 2 1 m 2
S S A A Pl

p=ce,0
+ M, || D_ BRI + 1y, (3.18)
where, fori=1,...,N — 1, |T21—+1/2($i)| < élhi@aaj + C~’2At37 with
. Sl 2
Ch = C(e Hcf(tm+1/2)HH2(o7R) +p:zm;g (|p||CU(H2) Ce(tm+1/2)HH2(O,R)

2
ot 12 gy ) 0+l ) )

B 9 3]) " 2
CQ_C<HCZIHL%,L<H1>+Z (””“C“(H%||C'£/||LaL(H1>+H <(‘3x) 2 <H1>> )

pb=cCe,0
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for some € # 0, and C' > 0, independent of At and h.
We now focus on obtaining estimates for HDﬂc (Egl;[l + 'yEZ;jrl) ||i,
’|D7ZE7;1/2 Hi and ||D7IE;“h+1 ||j_ Taking the error equation associated with

Equation (3.2), a simple calculation reveals that, for Efj , and Ez h» it holds
D_E + BENTY? = —aB] P —AD_ B T, (3.19)
where
75 = (D R (b 1) = R (b1 /2) ) = (Bnch(tm1/2) =D Bnceltm) )
— (Rhcg(tm+1/2) - CZH_l/Q) - ﬁ (RhO’(tm+1/2) - O'm+1/2) .

Following the proof of Proposition 6, it can be shown that

1
DD (Bt +E ) 12+ 81D |

+ a’yHD_zEZfl/QHi + (a+ B7) (D_EEZ,:FUQ,D Emﬂ/g)+

—xo,h
- (D_wTfol,D_x (ng,jl/z + 7E;7}j1/2)>
+

Using again the Bramble-Hilbert Lemma, it can be established for i =
1,....N,m=0,...,M — 1, that

3
PRI Sy

p=cy,0 k=2

Lz(tnutm+1;H2(07R)) ’
where C' > 0 denotes a suitable constant. This implies the bound

(D—xTﬁHﬁD Em+1/2+D—xEZ:1/2>

—x o h

2 m+1/2(2 2 m+1/2(2 ’ S (3.20)
SE?HD—xEZ,h ||++€3||D—xEo,h ||++TZzLT ’

with

3
TZ?;LI SCAt?’ Z ZHp(k)’

p=ce,0 k=2
and €; # 0,7 = 2,3. Combining Equations (3.18)—(3.20) we get

L2(tm tm+1;H?(0,R))

D_, “‘Ezn;lei + HD_wE[Tf”lhﬂ/z +7D—zEZlh+l/2Hﬂ
+ Aoles) | D_ BT+ Bt B

1 1 m m m
<2 X (Mmoo

p=ce,0

where By(e) = 2(ay + ao ) — (My + o+ B7y) — 4€?, Ag(es) =28 — (My +a +
B7) — 263 and 2¢% = €%
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Considering the assumption (3.10) on the coefficients «, 8,7, ag¢ and M,,
we conclude the existence the coefficients €, e3 # 0, such that Ag(es), Bo(e€) are
positive and

(1 — At@g(Cg,U))EZLJrl
+ At min{Ag(es), Bo(e (HD Em+1/2H + ||D_xEm+1/2H )
g(1+4uw@banEg,+At@ﬁgjl+7ﬁj§, (3.21)

where 6¢(cy, 0) = 55 maxy—s o M), - maxp—r,o [|pllco g2 -
Assuming that At max,—¢o{ M} - maxy—¢,c[|pllco(zrz)}t < 2¢2 and applying
a discrete Gronwall Lemma to Equation (3.21), we conclude the proof. 0O

We finally turn our attention to the error associated with the concentration
of solid and dissolved drugs, ¢4 and ¢;. Let X = X; N X5, where X; =
C°(0,T; H3(0,R) N H&R(O,R)) N H?(0,T; H*>(0,R) and Xy = H&R(O,R)) N
H3(0,T; H&R(O,R)).

Proposition 10. Let ¢p,0 € V, ¢4 € X and ¢s € H?*(0,T; H (0, R)) de-
note a solution of the problem defined by Equations (1.1) and (1.5)—(1.8) and
cah € Vho and csp, € Vi, denote the solution of the problem defined by Equa-
tions (3.1)~(3.7). If f(cs,ca,ce) € C°(H?) and the assumptions Haig, He and
Equation (3.10) hold then, there exists a constant Cq s > 0, such that for At
small enough,

1E2 2 lh+At§:Hl’ B8 <Cas (NS IZ + IES A3 + Teras )
7=0

where Tepr.qs < C1h 4+ CyAt?,

max

2
Cr="3" (IPlooslicel oo +Ipllcogas) +pllcr e )

pP=cCy¢,0
9 2
+Hf(0570d,cz)HCO(Hz) <||Cd|01(H2) +lleallcogrey (HCZHCO(H?) + 1)) ;
2
Co= 3 (IPleors)licellsaqay +IPlmagae) +Iplms ey

p=ce,0

2 2 2 2 2
Hllcallco ) lleellar ey +leallar azy +leallars ey +leslas gy -

Proof. We follow the steps of the proof of Proposition 9. We start by noticing
that from Equations (3.3) and (3.4) we easily establish, for all e # 0, that

1 m m m
DL, (2 + ) + () DB

<

M +1/2
= 2||cd||C°(H2) ||Em /

12 4+ 11 + To + Tus,
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where

)

— ((Rhferl/Q)h _ Rhfm+1/27EgL]:rl/2>
Ty = (Rhfm—i-l/Z . fm+1/27Em+1/2 +Em+1/2> :
h

Tos < DiAPP||D_EFT? | + Dab2,,,||D_ BT

+ Dy t3/2HEg?hH/2Hh + D4At3/2HE::f1/2

I

In

with Dy = 4 (HCdHcO(m)||Cé||H3n(H1) +Hcd||an(H2)) ; D2 = Ci(leall cr g2y +
lcall o=y (leell o=y + 1)), Ds = Cl||cd||H§n(H1)’ Dy = ClHCS||H§n(H1)7 and
Hi (H") = H"(tm,tms1; H"(0, R)), for some constant C; > 0, independent of
h and At. Both terms 77 and 75 can be bound using the Bramble-Hilbert
Lemma. For Ty we get, |T1| < Csh max”f(cs,cd,c(g)HCG(HQ) HD_xElT;[lmHJr,

for some constant Cy > 0, independent of h and At. Regarding T3, using
assumption Hg, it holds, for all i # 0,

(€501 +e ducoml )

ITo| < 725 + DB 1
i CfRH m+1/2Hh N Cf||CZ||CO(H1))(1 +||Cd||CO(H1)) HEerl/QH
2 2¢2 2 h
2 C RH m+1/2H 3C|lcellcocgay (1 +leall o grry) .
+ ?_,_ f oo hoy coH )2 CO(H1) HE +1/2Hh'

From Proposition 9, we know that ||cm+1/2Hh is uniformly bounded, w.r.t,
h and At, which means that there exists a constant Cgonye > 0 such that

6572 < G

ad

. . C2RC, , Chlleellcogry(AHlcall cogr1y)
Choosmg €2 = % and 772 — 3m1n{ f comx,i7 f cYH )2 cOHD ,

it follows that

(1 — aAt) (}|Em+1||h+"E?J1||i) JrAtCLo,dHD_xEZL;UQHi
M? m
<At" + 248 ((1 leal)” + 55 leallEn ey ) [

+ (14 aAt) (HEthh"'HE lln )
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where
{SC?RCCOTL’U,Z 3Cf||cl||00(H1) (1 +||Cd||CU(H1)) }
a = 2max , 5 .
aq

2
2" = Cahinas <(||cd||Cl(H2) +lleallco sy (HC€||CO(H2) + 1))
2
+Hf(cs, Cd,Cg)HC(,(HQ)) + C3 A3
2 2 2 2 2
X (HCdHCU(H2)”Cf”an(Hl) Flcallez, (ar2y +lleallgs, ) +||CS||H§n(H1)) )

for some constant C5 > 0, independent of h and Atf. Assuming At < é, we
finally conclude the proof. O

We can now state our final convergence result for the error

m—1
= Bl HID_s (BB +2e > 7 DB
p=£,d,s j=0 p=L,0,d

Theorem 2. Let ¢y,0 € V, ¢g € X and ¢s € H3(0,T; H (0, R)) denote a
solution of the problem defined by Equations (1.1) and (1.5)~(1.8) and cq,5€ Va0
and cg p,0n,cs n€V), denote the solution of the problem defined by Eq. (3.1)-
(3.7). Under assumptions f(cs,cq,ce) € C°(H?), Haige, He and (3.10), there
exists a constant C' > 0, independent of h and At, such that for sufficiently
small small At, the following inequality holds form=1,... M,

Ezn < C(hfnaz + At4) Z ||E0,h||}2l + ||D7wE2h||i + ”waEg,h”i
p=£L,d,s

Remark 5. Let us suppose that the initial errors are null. In this case Theo-
rem 2 establishes that the fully discrete piecewise linear-constant finite element
method presents second convergence order

m—1
m m m +1/2
IEZ 17 + 1 EZ +YED 1T, + At Z Z £ / 134 < C(hae + AtY),

=0 p=t,0

m—1
m +1/2
STUIERIZ + A>T E213, < C (g + ALY).
j=0

p=d,s

As mentioned before, these upper bounds were established avoiding the
approach of Wheeler [26]. Furthermore, as the fully-discrete Galerkin method
is obtained considering linear piecewise approximation for ¢y, o and ¢4, the
second convergence order with respect to the norm ||.||1,5, which can be seen as
a discrete version of the usual H'-norm.
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Remark 6. As mentioned in Section 3.1, the stability of the fluid discretization
cH_l/QH and HD J+1/2
+,00 -

can be established showing that ||D <Crh are
uniformly bounded, w.r.t. h and At. Let cz’h, o) be such that

||+ oo’

1EE ulln < Ch3

max?

1D B pll+ < Ch;

max)

||D7xE2',h||+ < Ch%@az
From Proposition 2 it follows that

Dl

o |l S 2HD7 B

HJNX} + QHD%RhCZﬂm 2

||+,oo
HEm+1/2

2
h3 Hh+2||cfHCU(H2)'
min
Using the estimate from Proposition 9, there exists a constant C' > 0, indepen-

dent of h and At, such that

j maz +At
”D*wdﬁlmﬂi,m < Chi + 2||ceHé0(H2) .

min

Therefore under the assumption of the grids being quasiuniform, the stablhty

in a ball centered around the numerical solution and with radius such that

< Cht

max?

1 2+ |1 D_awQall% A+ D g2 + oS allZ + 2 4112

we can conclude that for At small enough, the bound given by Equation (3.11)
holds and the stability is ensured in the mentioned sense. Regarding the sta-
bility of the scheme w.r.t. cqp and cs p, using Proposition 3, similar uniform
bounds can be obtained for Hcp hHh with p = d, s and Héthhm, under the
same requirements for the grids and At.

Theorem 1 can now be reformulated as follows.

Theorem 3. Under the assumptions of Theorem 1, the numerical method is
stable, provided the perturbations wiy, = ¢}y — &, i = d,s,{ and wy’), =
opt — oy, where ¢ RRES d, s, and &}" satisfy the same discrete problem with
perturbed initial data and

<Ch;

max?

bl + 1 Dol sl + ID_awlill + Il 12 + 1211

for some constant C > 0.

4 Numerical simulation

This section aims to illustrate the main convergence result of this work, The-
orem 2, for the fully-discrete approximation defined by Equations (3.1)—(3.7).
The theoretical solutions cp,0 € V, ¢q € X and ¢, € H3(0,T; H'(0, R)) of
Equations (1.1) and (1.5)—(1.8) used in our numerical test solve a modified
problem obtained by adding in each partial differential equation a source term
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R;, i = £, d, s,0. We highlight that these solutions aim at reproducing the
qualitative behavior of the system. In our test we run the simulation in the
time interval [0, 7] with T' = 5 s and in the space interval [0, R] with R = 1 mm
representing the radius of Maxwell-Wiechert polymeric platform with Young
modules Ey = E; = 1 Pa, viscosity p = 10° Pa - s, and relaxation time
T=4 = =10° s

The solvent concentratlon ¢y used is defined by

co,t) = e 5 (x) + ¢(t), (w,t) € [0, B] x [0, T,
with ¢(t) = et (1 — e~ 15), and

_ 1 2% Cept—1 |az—R[PT +aRP(p+1)(z — R)
C(-’L') < ) (Cewt )R2+ m + (aR — R)p+1 y

where ce.t = 755.74 kg/m? is the exterior solvent concentration, a = 3, m = 10
and p = 1.7. Note that z = £ is a point that guarantees that c,(-,t) € H3(0, R)
(and not in C3(0, R)), in order to satisfy the hypothesis of Theorem 2.

We also define cq(z,t) = g(x,t) ¥(t), (z,t) € [0, R] x [0,T] where

10-3
g(z,t) =141, if as(t) <z < ao,
exp (_M) : it ap<z<R,

exp (_(acfaz(t))z%*l_xfaz(t)\wl) L if 0<z <as(b),

2-10—3

N2 N2
with ag(t) = ag — (t%t) “1psp and Y(t) =1 - (t?> - 1yicqy- We remark
that cq4(-,t) is in H(0, R) but not in C3(0, R).

The solid drug concentration solution used in our simulation is

ESTE e—lo(lf—?))_ (z,t) €0, R] x [0, 7.

t
cs(z,t) = <1—|— v

Finally the polymeric chains’ stress is given by

o(x,t) = (ce(,t) — cent)E(t), (x,t) € [0, R] x [0,T7,

15
The numerical method defined by Equations (3.1)—(3.7) is implemented with
initial conditions given by c¢¢(z,0), cq(z,0),cs(x,0). Based on real biological
information (see [4,5,10]), we use the coefficient functions a(cp), aq(ce), aq(ce)
defined as follows

where £(t) = By (1- ¢ 5 ) + (L7 (1-et(577)).

2
ae(ce) = Drc € - _05“)7 ad(ce) = Dae € ~pa(1 “m), aq(ce) = %C@

with Dy = 3.74- 1072 m2s7!, Dg. = 2.72-107%m2s7!, B, = 0.8, B4 = 0.5
ft =105 Pa - s. These choices yield a nonlinear numerical problem in ¢, that
is solved iteratively by Newton’s method to get an approximation of cyp at

Math. Model. Anal., 31(1):1-25, 2026.
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each time step. In Table 1 we show the errors calculated versus different values
for At at time T' =5 s in a fixed grid with Amas = 9.8638 - 107 as well as an
estimated rate of convergence calculated as

_ log(Eiy1) — log(E;)
rate; = log(At; 1) — log(At;)’

where F; and E;;; are two consecutive errors calculated based on the con-
secutive parameters At; and At; 11, respectively (a similar definition holds for
Rmaz). Thus we can show computationally that the method reaches second
order for EJ* with respect to At.

Table 1. Estimated convergence rates. Fixed hmas = 9.86 - 1074,

At E7 Rate
3.12-1071 13.95 -

2.08-10"! 8.15 1.32
1.56-10~! 4.55 2.02
1.04-1071 1.74 2.37

7.81-1072 9.59-1071 2.07

Table 2. Estimated convergence rates. Fixed At = 4.88 - 10~%.
hmaz E Rate

6.28-1072 2.94-10"! -

3.13-1072 1.96-10"! 0.58
1.56-1072 1.18-10"' 0.73
7.82-1073 342-1072 1.78
3.96-1073 8.35-1073% 2.07
1.99-1072% 2.23-1073 1.91
9.77-107* 5.27-10* 2.02

In Table 2 we plot the numerical errors versus different values for A, using
a fixed At = 4.8828 - 10~ in each grid. The results illustrate computationally
that E}* is of second order with respect to hmaa.

5 Conclusions

In this paper, we present a model to simulate the complex interplay between sol-
vent absorption, polymer swelling, drug release, and stress development within
polymeric drug delivery platforms. A Maxwell-Wiechert model has been in-
corporated to capture the memory effect arising from polymer relaxation. To
avoid the drawbacks of using an integral representation for the stress, we re-
place such memory term with a new differential equation. From a numerical
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standpoint, this leads to eliminating the need to store information from all
previous time steps.

The main goal of this manuscript is to propose a fully discrete numerical
scheme for the aforementioned system of differential equations, and subsequent
stability and convergence analysis. Being a nonlinear system of differential
equations, stability needs careful attention. Our main results are: (i) the
stability of the numerical method provided suitable uniform bounds for the
numerical solution and its perturbation and (ii) second order, in space and
time, convergence for nonsmooth solutions, with no restriction on the grids.
The bounds needed to ensure stability are derived from our main convergence
theorem and are valid if the grid is quasiuniform and the timestep satisfies a
relation of the type At < Chynay, for some constant C. Finally, we illustrate
numerically the convergence rates obtained in the main result using an exact
solution based on biological information.
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