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Abstract. Polymeric drug delivery platforms offer promising ca-

pabilities for controlled drug release thanks to their ability to be

custom-designed with specific properties. In this paper we present

a model to simulate the complex interplay between solvent absorp-

tion, polymer swelling, drug release and stress development within

these platforms. A system of nonlinear partial differential equa-

tions coupled with an ordinary differential equation is introduced to

avoid drawbacks from other models found in the literature. These

incorporated a memory effect but from a numerical standpoint, re-

quired storing all previous time steps, making them computation-

ally expensive. This paper proposes a new numerical method to

simulate such devices based on nonuniform grids and an implicit

midpoint time discretization. Our main results are the second or-

der convergence of the method for nonsmooth solutions and the

scheme’s stability under the assumption of quasiuniform grids and

a small enough timestep.
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1 Introduction

In this paper, we consider the system of differential equations

∂cℓ
∂t

(x, t) = ∇ ·
(
aℓ(cℓ(x, t))∇cℓ(x, t)

)
+∇ ·

(
aσ(cℓ(x, t))∇σ

(
x, t)), (1.1)

∂cd
∂t

(x, t) = ∇ ·
(
ad(cℓ(x, t))∇cd(x, t)

)
+ f(cs(x, t), cd(x, t), cℓ(x, t)), (1.2)

∂cs
∂t

(x, t) = −f(cs(x, t), cd(x, t), cℓ(x, t)), (1.3)
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for x ∈ (0, R), t ∈ (0, T ]. In [10], the system equations (1.1) to (1.3) were
introduced with

∇σ(x, t) = −
∫ t

0

q(s, t, cℓ(x, s), cℓ(x, t))∇cℓ(x, s)ds, (1.4)

to describe the drug release from a viscoelastic spherical polymeric structure
of radius R containing a drug immersed in a spherical environment of fixed
radius, with instantaneous swelling. This differential system is complemented
by the following initial and boundary conditions:

cℓ(x, 0) = 0, cd(x, 0) = 0, cs(x, 0) = cs,0(x), x ∈ (0, R), (1.5)

∇cℓ(0, t) = 0, ∇cd(0, t) = 0, cℓ(R, t) = cext, cd(R, t) = 0, t ∈ (0, T ]. (1.6)

The authors considered therein that the drug release is a consequence of the
following set of phenomena: (i) the solvent molecules are absorbed by the poly-
meric structure due to the solvent gradient concentration (solvent absorption),
(ii) the polymeric chains relax, the structure swells and a stress gradient arises
(swelling), (iii) the dissolution process occurs due to the contact of the solid
drug with the absorbed solvent molecules (dissolution) and (iv) the molecules
of the dissolved drug diffuse throughout the platform and continue to diffuse in
the external surrounding medium (diffusion). A key aspect of this model is the
interaction between fluid absorption and the polymer’s mechanical response.
As the fluid permeates the structure, the polymer deforms and swells, gener-
ating internal stress. This stress creates a counter-acting flux, pushing fluid
from regions of high stress to regions of low stress. Consequently, the overall
fluid transport is driven not only by the concentration gradient but also by this
stress gradient.

While the polymer itself is initially free of solvent, the surrounding environ-
ment is not. The subsequent phenomena (solvent absorption, polymer swelling,
and drug dissolution/release) are also driven by the interaction between this
initially dry platform and the external solvent.

In this case, cℓ, cs and cd represent fluid, solid and dissolved drug concen-
trations, respectively, f denotes the dissolution function and σ represents the
polymeric chains’ stress. This stress is opposite to the solvent uptake and rep-
resents the response to the deformation induced by the solvent concentration.
In this context, the fluid flux is given by Jℓ = −aℓ(cℓ)∇cℓ − aσ(cℓ)∇σ. In [10]
the authors considered that ϵ = g(cℓ) and σ defined by the Boltzman integral

σ(x, t) = −
∫ t

0
E(t − s) ∂ϵ∂s (x, s)ds, where E(·) is the kernel function associated

with the generalized Maxwell-Wiechert model, E(t) = E0 +
∑m

j=1Eje
− t

τj ,

where Ej is the Young modulus, τj =
µj

Ej
and µj is the polymeric viscosity.

The initial boundary value problem (IBVP) defined by Equations (1.1)–
(1.6), is based on the 3D model originally proposed in [10]. The framework is
simplified here to one dimension to enable a more detailed and rigorous mathe-
matical analysis than was feasible for the full problem. Furthermore, while the
work in [10] focused on a spherical domain, this set of differential equations can
be made more general and applied to any domain whose boundary is divided
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into two parts: one with a constant fluid concentration and one that is isolated.
The original problem was studied from a numerical point of view in [4, 5] for
smooth (C4) and nonsmooth (H3) solutions with respect to space. In these pa-
pers the authors propose second order approximations in space. The presence
of the Neumann boundary condition at x = 0 lead to several challenges that
were solved in these papers for both scenarios of smoothness. Moreover, in [4],
an Euler implicit-explicit numerical method combined with a uniform grid for
the memory term was studied. In order to prove convergence for the solid and
dissolved drug approximations it was sufficient to guarantee uniform bounds
for the numerical approximation for the fluid. Such property was concluded
assuming a certain quasiuniformity for the spatial grid and a stability condi-
tion similar to the well known stability relation for uniform grids ∆t ≤ Csh

2.
In [11] a numerical method similar to the one considered here for a diffusion
equation with a memory term defined with an exponential kernel function was
also studied.

The presence of the memory term in Equation (1.4) leads to several chal-
lenges in the computation of the numerical approximation for the solution of
the initial boundary value problem (IBVP) defined by Equations (1.1)–(1.6), if
our goal is to compute second order accurate approximations for cℓ, cd and cs.
In this case we should apply second order approximation quadrature rules to
discretize the integral term and we need to store information for all timesteps
during the release process. Moreover, the presence of the integral term replac-
ing the stress σ makes it more difficult to construct stress estimates depending
on the data of the problem.

The goal of this paper is to consider the special case of the generalized
Maxwell-Wiechert model with one fluid arm. In this context, we modify the
definition of stress, σ, given by Equation (1.4), to the following differential
form:

∂σ

∂t
+ βσ = −αϵ− γ

∂ϵ

∂t
, (1.7)

where β = E1

µ , α = E0E1

µ , γ = E0 + E1 and µ represents the viscosity of the

polymer and E0 and E1 are the Young’s modulus (see [7]). The minus sign in
Equations (1.4) and (1.7) arises to take into account that the stress is devel-
oped by the polymeric chains as a response to the fluid entrance generating an
opposite convective flux to the standard Fickian diffusion process. To simplify,
we take ϵ = λcℓ, instead of the nonlinear relations considered in [10].

It is worth noting that Equation (1.7) can be derived directly from the Boltz-
mann integral representation for σ and the aforementioned linear relationship
between ϵ and cℓ through a straightforward calculation. Conversely, integrating
Equation (1.7) to obtain an explicit solution for σ and taking its gradient yields
an expression analogous to Equation (1.4). We aim to present a numerical
scheme that leads to second order approximations using an implicit midpoint
approach in time for the differential system defined by Equations (1.1)–(1.3)
and (1.7) and

∇σ(0, t) = 0, σ(R, t) = σext, t ∈ (0, T ], σ(x, 0) = σ0(x), x ∈ (0, R). (1.8)
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We point out that in the nonlinear system of Equations (1.1)–(1.3) and (1.7),
the concentration cℓ is defined by Equations (1.1) and (1.7) and it is included
in (1.2) and (1.3). Our goal is to propose a finite difference method that can
be seen as a fully discrete piecewise linear-constant finite element method fol-
lowing a midpoint quadrature approach that is simultaneously locally stable
and unconditionally convergent with respect to a discrete version of the usual
norm in H1(0, R). The key ideas and challenges to prove stability and con-
vergence followed throughout the paper are summarized as follows. To prove
the stability of the numerical solution we will follow the approach considered,
for instance, in [18, 19, 21, 22]. This technique imposes the uniform boundness
of the numerical approximations using a discrete version of the W 1,∞(0, R).
Regarding the unconditionally second convergence order of numerical methods
for quasilinear parabolic equations, we refer the papers [17, 25] and the refer-
ences therein where the convergence analysis requires the uniform boundeness
of the numerical approximation with respect to a suitable norm. In our con-
text, we establish unconditionally second convergence order with respect to
a discrete H1-norm and no uniform bounds for the corresponding numerical
approximations are required. The coupled and nonlinear nature of the system
of Equations (1.1)–(1.3) and (1.7) increases its complexity. Furthermore, σ is
defined by an ordinary differential equation and we would like to obtain for this
variable a second order approximation with respect to a discrete H1-norm. Fi-
nally, taking into account the convergence estimates with respect to a discrete
H1-norm, we are able to verify that the uniform boundness assumptions im-
posed to conclude local stability hold provided that the initial approximations
are in balls centered in the initial conditions of the differential problem with
mesh dependent radius.

The a priori error analysis conducted in this paper is not based on the
usual approach introduced in [26] that was largely followed in the literature.
For instance, recently, the results of [26] have been considered in [16,27,28,29].
Instead, our approach is based on the error analysis for the error equations.
Our results can be seen in two different perspectives. As mentioned before, our
method can be seen as a fully discrete piecewise linear-constant finite element
method and the second order estimates with respect to the discrete H1-norm
are unexpected because piecewise linear finite element method lead to a first
order error estimate with respect to the usual H1-norm. The unexpected con-
vergence orders obtained for finite element approximations are known as super-
convergent results and recently the literature has been fruitful for this type of
estimates. As an example we mention [23] where a mixed finite element method
in space is combined with a second order backward formula for a quasilinear
parabolic equation is studied. However, within finite difference methods, our
convergence estimates allow to conclude that the order of the global error is
greater than that of the truncation error. In fact, the latter is of first order
only in space with respect to norm ∥ · ∥∞, while the former is of second order
in space and time. This unexpected convergence behavior is known as supra-
convergence phenomenon and it was widely studied in the 80’s in [8,14,15,20].
More recently, we also mention the following contributions [1, 9, 24].

The paper is organized as follows. In Section 2, we present some notations
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and basic results related with the finite elements scheme proposed. In Section 3,
we introduce a fully discrete (in time and space) numerical method using an
implicit midpoint time integrator and nonuniform grids in space. The stability
of the method is established in Section 3.1 provided some suitable uniform
bounds on the solution of the numerical problem. To establish such bounds,
the convergence properties of the method are studied in Section 3.2. The
final proof of the stability of the numerical scheme is a consequence of the
convergence result. In Section 4, we illustrate the convergence properties of
the method w.r.t. both hmax and ∆t. Finally, in Section 5, we present some
conclusions.

2 Definitions and basic results

In this section, we present the basic definitions and tools needed to provide the
mathematical support for the proposed numerical method and the upcoming
sections. By Λ we denote a sequence of vectors h = (h1, . . . , hN ) such that

hi > 0, i = 1, . . . , N,
∑N

i=1 hi = R, hmax = maxi=1,...,N hi → 0 and hmin =
mini=1,...,N hi → 0.We recall that a sequence of grids is said to be quasiuniform
if there exists a constant C > 0, independent of h, such that hmax

hmin
≤ C. The

sequence Λ is used to introduce in Ω = [0, R] a sequence of grids

Ωh = {xi, i = 0, · · · , N, xi = xi−1 + hi, i = 1, · · · , N, x0 = 0, xN = R}.

Let x−1 = −x1 and h0 = h1.
As we are dealing with Neumann boundary conditions at x0, to discretize

the boundary conditions, we introduce a fictitious point x−1 = −x1 and the
corresponding set of grids Ω

⋆

h = Ωh ∪ {x−1}. The numerical approximations
that we compute are defined in all grid points. They will naturally belong to
the space of grid functions V ⋆

h = {vh : Ω
⋆

h −→ R}. To study the behavior
of the error, as we are considering Dirichlet boundary conditions at x = xN ,
we also introduce a new vector space, V ⋆

h,0 = {vh ∈ V ⋆
h : vh(xN ) = 0}. The

errors for the numerical approximation for the solvent, dissolved and solid drugs
concentrations will be measured on the grid points of [0, R] and these errors are
null at xN . Consequently, we need to introduce Vh,0 = {vh ∈ Vh : vh(xN ) = 0},
where Vh = {wh : Ωh −→ R}. The norm

∥∥ · ∥∥
h
used in measuring the errors is

induced by the inner product

(uh, vh)h =
h1
2
uh(x0)vh(x0) +

N−1∑
i=1

hi+1/2uh(xi)vh(xi), uh, vh ∈ Vh,0,

where hi+1/2 = 1
2 (hi + hi+1). Another useful norm is the discrete counterpart

of the L∞(0, R) norm, defined as
∥∥vh∥∥h,∞ = maxi=0,...,N |vh(xi)|, vh ∈ Vh. We

also use the notation

(uh, vh)+ =

N∑
i=1

hiuh(xi)vh(xi),
∥∥uh∥∥+ =

√
(uh, uh)+,

and
∥∥vh∥∥+,∞ = maxi=1,...,N |vh(xi)|, for grid functions defined in x1, . . . , xN .

Math. Model. Anal., 31(1):1–25, 2026.
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For vh ∈ V ⋆
h we introduce the operators D−x and D⋆

x defined by

D−xvh(xi) =
vh(xi)− vh(xi−1)

hi
, i = 1, . . . , N,

D⋆
xvh(xi) =

vh(xi+1)− vh(xi)

hi+1/2
, i = 0, . . . , N − 1,

respectively. By Mh we denote the average operator

Mhvh(xi) =
vh(xi) + vh(xi−1)

2
, i = 0, . . . , N − 1,

for vh ∈ V ∗
h . We also introduce the following discrete version of the usual norm

in H1(0, R) :

∥uh∥1,h =
(
∥uh∥2h + ∥D−xuh∥2+

)1/2
, uh ∈ Vh,0.

We now recall some useful result regarding these discrete operators.

Proposition 1 [Discrete Friedrichs-Poincaré inequality]. For all vh ∈
Vh,0, ∥∥vh∥∥h ≤ R

∥∥D−xvh
∥∥
+
.

Proposition 2 [Discrete inverse inequality]. For all vh ∈ Vh,0, it holds∥∥D−xvh
∥∥
+,∞ ≤ 2

h
3/2
min

∥∥vh∥∥h.
Proof. From the definition of

∥∥ ·∥∥
+,∞, there exists k ∈ {1, 2, . . . , N} such that

∥∥D−xvh
∥∥2
+,∞ = |D−xvh(xk)|2 ≤ 2

h2min

(
vh(xk)

2 + vh(xk−1)
2
)
≤ 4

h3min

∥∥vh∥∥2h.
⊓⊔

Proposition 3. For all vh ∈ Vh,0,

∥∥vh∥∥h,∞ ≤
√
R

hmin

∥∥vh∥∥h.
Proof. The proof follows similar steps as the one for Proposition 2. ⊓⊔

Proposition 4. Let A : R −→ R, uh ∈ V ∗
h and vh ∈ Vh,0. Then,(

D⋆
x(AhD−xuh), vh

)
h
= −

(
AhD−xuh, D−xvh

)
+
−DA,cuh(x0)vh(x0),

where DA,cuh(x0) = 1
2

(
A(Mhuh(x0))D−xuh(x0) +A(Mhuh(x1))D−xuh(x1)

)
and Ah = A(Mhuh).

Remark 1. If A is constant then we have DA,cuh(x0) = ADcuh(x0).
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To simplify the presentation of the numerical methods that we study in
what follows, we consider the following notation: if vh : Ω

⋆

h × [0, T ] −→ R, by
vh(t) we represent the following grid function vh(t) : Ω

⋆

h −→ R, vh(t)(xi) =
vh(xi, t), i = −1, . . . , N. By v′h(t) we represent its time derivative. For grid
functions vh defined in others grid sets the definition is similar. Finally, we in-
troduce the notation Cm(Hr) = Cm([0, T ];Hr(0, R)) for the space of functions
v : [0, T ] −→ Hr(0, R) such that v(i) : [0, T ] −→ Hr(0, R), i = 0, . . . ,m are
continuous, imbued with the norm ∥v∥Cm(Hr) = maxt∈[0,T ]

∥∥v(t)∥∥
Hr(0,R)

. In a

similar fashion we introduce the simplified notation Hi(Hr) for the Bochner
space Hi(0, T ;Hr(0, R)), i, k ≥ 0.

3 Fully discrete approximation

Let M ∈ N and ∆t = T
M . We consider in [0, T ] the uniform time grid

{tm = m∆t, m = 0, . . . ,M}. We introduce now a full discretization scheme
for problem defined by Equations (1.1)–(1.3) and (1.7)–(1.8) based on an im-
plicit midpoint integration approach in time

D−tc
m+1
ℓ,h = D⋆

x

(
aℓ

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
ℓ,h

)
+D⋆

x

(
aσ

(
Mhc

m+1/2
ℓ,h

)
D−xσ

m+1/2
h

)
, (3.1)

D−tσ
m+1
h + βσ

m+1/2
h = −αcm+1/2

ℓ,h − γD−tc
m+1
ℓ,h , (3.2)

D−tc
m+1
d,h = D⋆

x

(
ad

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
d,h

)
+ f

m+1/2
h , (3.3)

D−tc
m+1
s,h = −fm+1/2

h , (3.4)

in Ωh\{xN} and m = 0, 1, . . . ,M − 1, with

c0ℓ,h(xi) = cℓ,0(xi), c
0
d,h(xi) = 0, c0s,h(xi) = cs,0(xi), σ

0
h(xi) = σ0(xi), (3.5)

for i = 0, . . . , N − 1, and

Daµ,cc
j+1/2
µ,h (x0) = 0, j = 0, . . . ,M − 1, µ = ℓ, d, σ, (3.6)

cjℓ,h(xN ) = cext, σj
h(xN ) = σext, cjd,h(xN ) = 0, j = 0, . . . ,M. (3.7)

In (3.1), D−t denotes the backward finite difference operator in time,

c
m+1/2
p,h =

cmp,h+c
m+1
p,h

2
, p=ℓ, d, s, fmh =f(cms,h, c

m
d,h, c

m
ℓ,h), f

m+1/2
h =

fmh +fm+1
h

2
.

Following [5], throughout this paper we always assume that:

(Hdiff ) for µ = ℓ, d, σ, aµ : R −→ R is differentiable, its derivative is bounded
and there exist constants a0,µ,Mµ > 0 such that

0 < a0,µ ≤ aµ(x) ≤Mµ, |a′µ(x)| ≤Mµ, for all x ∈ R,

Math. Model. Anal., 31(1):1–25, 2026.
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(Hf ) there exists a constant Cf > 0 such that, for all x, y, z, x̃, ỹ, z̃ ∈ R,

|(f(x, y, z)−f(x̃, ỹ, z̃)| ≤ Cf

(
|z̃||y − ỹ|+

(
1 + |y|

) (
|z − z̃|+ |z||x− x̃|

))
.

Remark 2. The last condition generalizes the condition that holds for the par-
ticular dissolution function f(cs, cd, cℓ) = Ĥ(cs)K(Csol − cd)cℓ, where Ĥ is a
smooth approximation of the Heaviside function H(cs), Csol is the solubility
limit of the drug and K is the dissolution rate.

Remark 3. The numerical scheme defined by Equations (3.1) and (3.4)–(3.7)
can be seen as a fully discrete piecewise finite element method: piecewise lin-
ear for cℓ, σ, cd and piecewise constant for cs, with a suitable midpoint time
discretization scheme. Although this numerical method is defined as a finite
difference scheme, this duality of point of view allows us to circumvent the
typical Taylor expansion analysis to analyze the consistency and error associ-
ated with the method and use tools such as the Bramble-Hilbert lemma. In
the process, we are able to prove second order convergence results using less
regularity of the solutions.

3.1 Stability analysis

Let cmi,h, i = d, ℓ, s, and σm
h , m = 1 . . . ,M , denote fixed solutions of the discrete

problem defined by Equations (3.1)–(3.7) with initial conditions c0i,h, i = d, ℓ, s,

and σ0
h and let ωm

i,h = cmi,h − c̃mi,h, i = d, ℓ, s, ωm
σ,h = σm

h − σ̃m
h , where c̃

m
i,h, i =

d, ℓ, s, σ̃m
h is another set of solutions of the same discrete problem with initial

conditions c̃0i,h, i = d, ℓ, s, and σ̃0
h. To simplify the exposure, we introduce now

two notations for µ = ℓ, σ, d, s. If uh, vh, wh ∈ V ⋆
h , we define bµ(uh, vh;wh) =(

aµ(Mhwh)D−xuh, D−xvh
)
+
. However, if these grid functions depend on time,

say, umh , v
m
h , w

m
h ∈ V ⋆

h , then we define bmµ (uh, vh;wh) = bµ(u
m
h , v

m
h ;wm

h ).
We start by stating a result that will be used to bound specific terms in the

upcoming analysis.

Proposition 5. Let uh, vh, ũh, ṽh ∈ V ⋆
h such that uh−ũh ∈ V ⋆

h,0 and wh ∈ Vh,0.
If aµ : R −→ R satisfies Hdiff then,

|bµ(vh, wh;uh)− bµ(ṽh, wh; ũh)| ≤Mµ

∥∥D−x(vh − ṽh)
∥∥
+

∥∥D−xwh

∥∥
+

+Mµ

∥∥D−xvh
∥∥
+,∞

∥∥uh − ũh
∥∥
h

∥∥D−xwh

∥∥
+
.

Moreover, if wh = vh − ṽh then,

bµ(ṽh, wh; ũh)− bµ(vh, wh;uh) ≤Mµ

∥∥D−xvh
∥∥
+,∞

∥∥uh − ũh
∥∥
h

∥∥D−xwh

∥∥
+

− a0,µ
∥∥D−xwh

∥∥2
+
.

We are now able to establish upper bounds for a perturbation of the numerical
solution. Indeed, considering Proposition 4, it can be shown that(

D−tω
m+1
ℓ,h , ω

m+1/2
ℓ,h

)
h
= b

m+1/2
ℓ (c̃ℓ,h, ωℓ,h; c̃ℓ,h)− b

m+1/2
ℓ (cℓ,h, ωℓ,h; cℓ,h)

+ bm+1/2
σ (σ̃ℓ,h, ωℓ,h; c̃ℓ,h)− bm+1/2

σ (σℓ,h, ωℓ,h; cℓ,h),
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D−tω

m+1
d,h , ω

m+1/2
d,h

)
h
= b

m+1/2
d (c̃d,h, ωd,h; c̃ℓ,h)− b

m+1/2
d (cd,h, ωd,h; cℓ,h)

+
(
f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
d,h

)
h
,

and
(
D−tω

m+1
s,h , ω

m+1/2
s,h

)
h
= −

(
f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
s,h

)
h
.

We now focus on Equation (3.1). Using Proposition 5, it is straightforward
to show that

1

2
D−t

∥∥ωm+1
ℓ,h

∥∥2
h
≤Mℓ

∥∥D−xc
m+1/2
ℓ,h

∥∥
+,∞

∥∥ωm+1/2
ℓ,h

∥∥
h

∥∥D−xω
m+1/2
ℓ,h

∥∥
+

− a0,ℓ
∥∥D−xω

m+1/2
ℓ,h

∥∥2
+
+Mσ

∥∥D−xω
m+1/2
σ,h

∥∥
+

∥∥D−xω
m+1/2
ℓ,h

∥∥
+

+Mσ

∥∥D−xσ
m+1/2
h

∥∥
+,∞

∥∥ωm+1/2
ℓ,h

∥∥
h

∥∥D−xω
m+1/2
ℓ,h

∥∥
+
. (3.8)

From the expressions in the previous inequality, in order to obtain an upper

bound for
∥∥ωm+1

ℓ,h

∥∥
h
, we need an upper bound for

∥∥D−xω
m+1/2
σ,h

∥∥
+
. With this

in mind, we start by proving the following result.

Proposition 6. Under the previous assumptions, ωm+1
σ,h and ωm+1

ℓ,h satisfy

1

2
D−t

[∥∥D−x

(
ωm+1
σ,h + γωm+1

ℓ,h

)∥∥2
+

]
+ β

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+ αγ

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

= −(α+ βγ)
(
D−xω

m+1/2
ℓ,h , D−xω

m+1/2
σ,h

)
+
.

Proof. Taking each member of Equation (3.2) and applying the operator D−x,

we deriveD−xD−tω
m+1
σ,h +βD−xω

m+1/2
σ,h = −αD−xω

m+1/2
ℓ,h −γD−xD−tω

m+1
ℓ,h .We

now apply the discrete inner product (·, ·)+ to each member of the previ-

ous equation considering two different elements: D−xω
m+1/2
σ,h and D−xω

m+1/2
ℓ,h .

From the former, we obtain

1

2
D−t

∥∥D−xω
m+1
σ,h

∥∥2
+
+ β

∥∥D−xω
m+1/2
σ,h

∥∥2
+
= −α

(
D−xω

m+1/2
ℓ,h , D−xω

m+1/2
σ,h

)
+

− γ
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+

and from the latter we get

γ
(
D−xD−tω

m+1
σ,h , D−xω

m+1/2
ℓ,h

)
+
+ βγ

(
D−xω

m+1/2
σ,h , D−xω

m+1/2
ℓ,h

)
+

= −αγ
∥∥D−xω

m+1/2
ℓ,h

∥∥2
+
− γ2

2
D−t

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+
.

(3.9)

We conclude the proof using the identity

D−t

(
D−xω

m+1
σ,h , D−xω

m+1
ℓ,h

)
+
=
(
D−xD−tω

m+1
σ,h , D−xω

m+1/2
ℓ,h

)
+

+
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+

in (3.9) and replacing the common term, γ
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+
. ⊓⊔
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We are now able to establish an bounds for the perturbations on cℓ,h and
σh.

Proposition 7. Let cmℓ,h and σm
h , m = 0, . . . ,M , denote fixed solutions of the

discrete problem defined by Equations (3.1), (3.2) and (3.5)–(3.7) and let ωm
ℓ,h =

cmℓ,h − c̃mℓ,h, ω
m
σ,h = σm

h − σ̃m
h , where c̃

m
ℓ,h, σ̃

m
h is another solution of the same

discrete problem with initial conditions c̃0ℓ,h, and σ̃
0
h. If the assumption Hdiff

holds, the coefficients satisfy

Mσ + α+ βγ < 2min
(
β, αγ + a0,ℓ

)
(3.10)

and there exists ∆t0 > 0 such that, for all ∆t ∈ (0, ∆t0), the corresponding
solution satisfies

max
m

(∥∥D−xc
m+1/2
ℓ,h

∥∥2
+,∞,

∥∥D−xσ
m+1/2
h

∥∥2
+,∞

)
≤ C, (3.11)

for some C > 0, independent of h and ∆t, then, for all ∆t < min
{
∆t0,

1
2C

}
,

the following inequality holds

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h+γD−xω

m
ℓ,h

∥∥2
+
+∆t

m−1∑
i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+

+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+

]
≤ Cℓ

(∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+

)
,

for m = 1, 2, . . . ,M − 1, where Cℓ > 0 is a constant independent of h and ∆t.

Proof. Let ∆t < min
{
∆t0,

1
2C

}
. Combining Equation (3.8) with Proposi-

tion 6, it follows that for all ϵ ̸= 0,

D−t

[∥∥ωm+1
ℓ,h

∥∥2
h
+
∥∥D−xω

m+1
σ,h + γD−xω

m+1
ℓ,h

∥∥2
+

]
+A0

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

≤

(
M2

ℓ

ϵ2
∥∥D−xc

m+1/2
ℓ,h

∥∥2
+,∞ +

M2
σ

ϵ2
∥∥D−xσ

m+1/2
h

∥∥2
+,∞

)∥∥ωm+1/2
ℓ,h

∥∥2
h
, (3.12)

where A0 = 2β −Mσ − α− βγ and B0(ϵ) = 2
(
αγ + a0,ℓ − ϵ2 − Mσ

2 − α+βγ
2

)
.

From (3.10), it follows that A0 > 0 and we can fix ϵ such that B0(ϵ) > 0. Let

θℓ(cℓ,h, σh) =
1

ϵ2
max
µ=ℓ,σ

M2
µ · max

j=0,...,N−1

{∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞,

∥∥D−xσ
j+1/2
h

∥∥2
+,∞

}
.

With this notation, (3.12) leads to

(1− θℓ(cℓ,h, σh)∆t)
(∥∥ωm+1

ℓ,h

∥∥2
h
+
∥∥D−xω

m+1
σ,h + γD−xω

m+1
ℓ,h

∥∥2
+

)
+∆t

(
A0

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

)
≤
(
1 + θℓ(cℓ,h, σh)∆t

) (∥∥ωm
ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+

)
. (3.13)



Second order method for drug release defined by a Maxwell-Wiechert relation 11

From the uniform bound defined by Equation (3.11) and the inequality from (3.13),
applying Lemma 1 from [13] allows to obtain

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h+γD−xω

m
ℓ,h

∥∥2
+
+∆t

m−1∑
i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+
+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+

]
≤ Cℓ(1 + C ∆t)

(∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+

)
,

for some constant Cℓ > 0. ⊓⊔

We have already dealt with calculating upper bounds for suitable norms in-
volving the perturbations of cℓ,h and σh. We now turn our attention to the
perturbations of the dissolved and solid approximations, i.e., ωd,h and ωs,h.
Employing a similar technique, we can prove the following result.

Proposition 8. Let cmi,h, i = d, s, ℓ and σm
h , m = 0, . . . ,M , denote fixed so-

lutions of the discrete problem defined by Equations (3.1)–(3.7) and let ωm
i,h =

cmi,h − c̃mi,h, i = d, s, ℓ and ωm
σ,h = σm

h − σ̃m
h , where c̃

m
i,h, i = d, s, ℓ, and σ̃m

h is
another solution of the same discrete problem. If the assumptions Hdiff and Hf

hold and there exists ∆t0 > 0 such that, for all ∆t ∈ (0, ∆t0), the corresponding
solution satisfies

max
i=0,...,M

{∥∥cid,h∥∥h,∞,∥∥D−xc
i
d,h

∥∥
h,∞,

∥∥ciℓ,h∥∥h,∞,∥∥c̃iℓ,h∥∥h,∞} ≤ C, (3.14)

for some C > 0, independent of h and ∆t, then, for all ∆t < min
{
∆t0,

1
8C

}
,

the following inequality holds

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+∆t

m−1∑
i=0

∥∥D−xω
j+1/2
d,h

∥∥2
+

≤ Cd,s

(
∥ω0

d,h∥2h + ∥ω0
s,h∥2h +∆t

m∑
j=0

∥ωi
ℓ,h∥2h

)
,

for m = 1, 2, . . . ,M −1, where Cd,s > 0 is a constant independent of h and ∆t.

Proof. We start by noting that using Equations (3.3) and (3.4) and taking
into account summation by parts and the boundary conditions for ωm+1

d,h we
have(

D−tω
m+1
d,h , ω

m+1/2
d,h

)
h
+
(
D−tω

m+1
s,h , ω

m+1/2
s,h

)
h
= b

m+1/2
d (cd,h, ωd,h; c̃ℓ,h)

+
(
f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
d,h − ω

m+1/2
s,h

)
h
− b

m+1/2
d (cd,h, ωd,h; cℓ,h)

−
(
ad(Mhc̃

m+1/2
ℓ,h )D−xω

m+1/2
d,h , D−xω

m+1
d,h

)
+
. (3.15)
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Considering the assumptions on the coefficient functions, using Proposi-
tion 5, for all ϵ ̸= 0, we have

b
m+1/2
d (cd,h, ωd,h; c̃ℓ,h)− b

m+1/2
d (cd,h, ωd,h; cℓ,h) ≤

ϵ2

2

∥∥D−xω
m+1/2
d,h

∥∥2
+

+ Cd
M2

d

4ϵ2
max

j=0,...,N−1

∥∥D−xc
j+1/2
d,h

∥∥2
+,∞ ·

(∥∥ωm+1
ℓ,h

∥∥2
h
+
∥∥ωm

ℓ,h

∥∥2
h

)
,

−
(
ad

(
Mhc̃

m+1/2
ℓ,h

)
D−xω

m+1/2
d,h , D−xω

m+1
d,h

)
+

≤ −a0,d
∥∥D−xω

m+1/2
d,h

∥∥2
+
,

where Cd > 0 is a suitable constant. Through a straightforward application of
assumption Hf , it can be shown that the following holds(

f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
d,h − ω

m+1/2
s,h

)
h

≤ Cf max
i=0,...,N

{∥∥cid,h∥∥h,∞,∥∥ciℓ,h∥∥h,∞,∥∥c̃iℓ,h∥∥h,∞}(Em+1
s,d + Em

s,d

)
+ C̃f max

i=0,...,N

(
1 +

∥∥cid,h∥∥h,∞)2 (∥∥ωm+1
ℓ,h

∥∥
h
+
∥∥ωm

ℓ,h

∥∥2
h

)
,

where C̃f > 0 is a convenient constant and Em
s,d =

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
. Consid-

ering the last estimates in Equations (3.15) and (3.14), we obtain

(1− α∆t)Em+1
s,d + 2(a0,d − ϵ2)

∥∥D−xω
m+1/2
d,h

∥∥2
+
≤ (1 + α∆t)Em

s,d +∆tzm,

where α = 4CfC, β = 2C̃f (1+C)
2+Cd,1

M2
d

4ϵ2 and zm = β
(
∥ωm+1

ℓ,h ∥2h + ∥ωm
ℓ,h∥2h

)
.

Choosing ϵ ̸= 0 such that D0(ϵ) = 2(a0,d − ϵ2) > 0, Lemma 1 from [13] implies

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+∆t

m−1∑
i=0

∥∥D−xω
i+1/2
d,h

∥∥2
+

≤ Cbound

(
1+α∆t

(∥∥ω0
d,h

∥∥2
h
+
∥∥ω0

s,h

∥∥2
h

)
+2β∆t

m∑
i=0

∥∥ωi
ℓ,h

∥∥
h

)
,

with Cbound = exp
(
2Tαmax

{
1

D0(ϵ)
, 1
1−α∆t

})
. ⊓⊔

The combination of Propositions 7 and 8 leads to our first main result. Let

Em
ℓ,σ,d,s =

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥ωm

d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+

+∆t

m−1∑
i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+
+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+
+
∥∥D−xω

i+1/2
d,h

∥∥2
+

]
,

for m = 1, . . . ,M .

Theorem 1. Let cmi,h, i = d, s, ℓ and σm
h , m = 0, . . . ,M , denote fixed solu-

tions of the discrete problem defined by Equations (3.1)–(3.7) and let ωm
i,h =
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cmi,h − c̃mi,h, i = d, s, ℓ and ωm
σ,h = σm

h − σ̃m
h , where c̃

m
i,h, i = d, s, ℓ, and σ̃m

h is
another solution of the same discrete problem. If the assumptions Hdiff , Hf

and Equation (3.10) hold and there exist constants Cstab, ∆t0 > 0 such that,
for all ∆t ∈ (0, ∆t0), the corresponding solution satisfies

max
m=0,...,M

{∥∥D−xc
m
ℓ,h

∥∥
+,∞,

∥∥D−xσ
m
h

∥∥
+,∞,∥∥D−xc

m
d,h

∥∥
+,∞,

∥∥cmd,h∥∥h,∞,∥∥cmℓ,h∥∥h,∞,∥∥c̃mℓ,h∥∥h,∞} ≤ Cstab,

independently of h, then there exists a constant C > 0, independent of h and
∆t, such that, for ∆t sufficiently small, the following inequality holds

Em
ℓ,σ,d,s ≤ C

(∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h

)
,

for m = 1, 2, . . . ,M − 1.

Remark 4. We conclude this section remarking that the stability of Equations (3.1)–
(3.7) in cji,h, i = d, s, ℓ, σj

h, j = 0, . . . ,M, is concluded from Theorem 1 provided
that there exists a constant Cstab > 0, h and ∆t independent, such that, for
∆t small enough,∥∥D−xc

j+1/2
ℓ,h

∥∥2
+,∞ ≤ Cstab,

∥∥D−xσ
j+1/2
h

∥∥2
+,∞ ≤ Cstab,∥∥D−xc

j+1/2
d,h

∥∥
+,∞ ≤ Cstab, j = 0, . . . ,M − 1, h ∈ Λ,∥∥cjd,h∥∥h,∞ ≤ Cstab,

∥∥cjℓ,h∥∥h,∞ ≤ Cstab,
∥∥c̃jℓ,h∥∥h,∞ ≤ Cstab, j = 0, . . . , N, h ∈ Λ.

3.2 Convergence analysis

Let cmi,h, i = d, ℓ, s, and σm
h , m = 1, . . . ,M , denote fixed solutions of the discrete

problem defined by Equations (3.1)–(3.7). Let Ej
i,h = Rhci(tj)−cji,h, i = d, ℓ, s,

Ej
σ,h = Rhσ(tj) − σj

h, for j = 0, . . . , N, be the discretization errors, where
ci, i = d, ℓ, s, σ, represent the solution of the initial boundary value problem
defined by Equations (1.1)–(1.3) and (1.7)) with ϵ = λcℓ, Equations (1.5), (1.6)
and (1.8), and Rh : C([0, R]) −→ Vh denotes the standard restriction operator
to the grid functions defined on Ωh. To establish error estimates we use the
approach introduced in [3] for elliptic problems and largely followed by the
authors and their collaborators in, for instance, [2, 12].

Let g ∈ C([0, R]). We introduce (g)h ∈ Vh defined by

(g)h(x0) =
2

h1

∫ x1/2

x0

g(x)dx, (g)h(xN ) =
2

hN

∫ xN

xN−1/2

g(x)dx,

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x)dx, i = 1, . . . , N − 1,

and ĝ : Vh\{x0} −→ R defined by ĝ(xi) = Rhg(xi−1/2), i = 1, . . . , N. We also
define the space V = H3(0, T ;H2(0, R)) ∩ C0(0, T ;H3(0, R)), and the error
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Ej
ℓ,σ :=

∥∥Ej
ℓ,h

∥∥2
h
+
∥∥D−x

(
Ej

σ,h + γEj
ℓ,h

)∥∥2
+
, j = 0, . . . ,M. The first result on

convergence, estimating the error for approximations cℓ,h and σh, is as follows.

Proposition 9. Let cℓ, σ ∈ V denote a solution of the problem defined by Equa-
tions (1.1) and (1.5)–(1.8) and cℓ,h, σh ∈ Vh denote the solution of the problem
defined by Equations (3.1),(3.2) and (3.5)–(3.7). If the assumptions Hdiff and
(3.10) hold then there exists a constant Cℓ > 0 such that for ∆t small enough,

Em
ℓ,σ +∆t

m−1∑
j=0

∑
p=ℓ,σ

∥∥D−xE
j+1/2
p,h

∥∥2
+

≤ Cℓ

(
∥E0

ℓ,h∥2h + ∥D−xE
0
σ,h∥2+ + ∥D−xE

0
ℓ,h∥2+ + Ter,ℓ

)
,

for m = 1, 2, . . . ,M − 1, where

Ter,ℓ ≤ h4max

( ∑
p=cℓ,σ

(
∥p∥C0(H2)∥cℓ∥C0(H2) +∥p∥C0(H3) +∥p∥C1(H2)

)2)
+∆t4

( ∑
p=cℓ,σ

(
∥p∥C0(H2)∥cℓ∥H2(H1) +∥p∥H2(H2)

)2
+∥p∥H3(H2)

)
.

Proof. This proof follows the reasoning behind the one of Proposition 7.

We start by establishing estimates for D−t

∥∥Eℓ,h

∥∥2
h
and

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+
. A

straightforward, although tedious, calculation allows to show the following
equalities(
D−tE

m+1
ℓ,h , E

m+1/2
ℓ,h

)
h
=

((
c′ℓ(tm+1/2)

)
h
, E

m+1/2
ℓ,h

)
h

−
(
D−tc

m+1
ℓ,h , E

m+1/2
ℓ,h

)
h

+
∑

p=cℓ,σ

(
bm+1/2
p (ph, Eℓ,h; cℓ,h)− bm+1/2

p (Rhp,Eℓ,h;Rhcℓ)
)

+
(
Tm+1
1 , E

m+1/2
ℓ,h

)
h
+
∑

p=cℓ,σ

(
T

m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
, (3.16)

where

Tm+1
1 =Rhc

′
ℓ(tm+1/2)−

(
c′ℓ(tm+1/2)

)
h
+D−tRhcℓ(tm+1)−Rhc

′
ℓ(tm+1/2),

T
m+1/2
1,p = −

((
ap

(
ĉℓ(tm+1/2)

)
− ap

(
MhRhc

m+1/2
ℓ

)) ∂̂p

∂x
(tm+1/2)

−
(
ap

(
MhRhc

m+1/2
ℓ

))( ∂̂p
∂x

(tm+1/2)−D−xRhp
m+1/2

)
,

for p = cℓ, σ. Following the proof of Equation (3.8), it can be shown that,



Second order method for drug release defined by a Maxwell-Wiechert relation 15

from (3.16), for all ϵ ̸= 0, we have

D−t

∥∥Em+1
ℓ,h

∥∥2
h
+ (2a0,ℓ − 2ϵ2 −Mσ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+
≤ 1

ϵ2

∑
p=cℓ,σ

×
(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
+,∞

)∥∥Em+1/2
ℓ,h

∥∥2
h
+Mσ

∥∥D−xE
m+1/2
σ,h

∥∥2
+

+
(
Tm+1
1 , E

m+1/2
ℓ,h

)
h
+
∑
p=ℓ,σ

(
T

m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
, (3.17)

where ϵ ̸= 0. Using the Bramble-Hilbert Lemma (see [6]) and the proof of Theo-
rem 1 of [3], it can be shown that there exist constants C1, C2 > 0, independent
of h and ∆t, such that the following inequalities hold(

Tm+1
1 , E

m+1/2
ℓ,h

)
h
≤C1

(
h2max

∥∥∥c′ℓ(tm+1/2)
∥∥∥
H2(0,R)

∥∥D−xE
m+1/2
ℓ,h

∥∥
+

+∆t3/2
∥∥c′′′ℓ ∥∥L2

m(H1)

∥∥Em+1/2
ℓ,h

∥∥
h

)
,(

T
m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
≤C3(p, cℓ)

(
h2max +∆t3/2

)∥∥D−xE
m+1/2
ℓ,h

∥∥
+
,

for p = cℓ, σ, with L
2
m(H1) = L2(tm, tm+1;H

1(0, R)) and

C3(p, cℓ) =C2

(∥∥∥∥∂p∂x (tm+1/2)

∥∥∥∥
L∞(0,R)

∥∥∥cℓ(tm+1/2)
∥∥∥
H2(0,R)

+
∥∥∥p(tm+1/2)

∥∥∥
H3(0,R)

+
∥∥p(tm)

∥∥
H2(0,R)

+
∥∥p(tm+1)

∥∥
H2(0,R)

+

∥∥∥∥∂p∂x (tm+1/2)

∥∥∥∥
L∞(0,R)

∥∥c′′ℓ ∥∥L2
m(H1)

+

∥∥∥∥∥
(
∂p

∂x

)′′
∥∥∥∥∥
L2

m(H1)

 .

Inserting the previous inequalities into (3.17) we obtain

D−t

∥∥Em+1
ℓ,h

∥∥2
h
+ (2a0,ℓ − 3ϵ2 −Mσ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

≤ 1

ϵ2

∑
p=cℓ,σ

(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
h,∞+

1

2

)∥∥Em+1/2
ℓ,h

∥∥2
h

+Mσ

∥∥D−xE
m+1/2
σ,h

∥∥2
+
+ T

m+1/2
ℓ,σ , (3.18)

where, for i = 1, . . . , N − 1, |Tm+1/2
ℓ,σ (xi)| ≤ C̃1h

4
max + C̃2∆t

3, with

C̃1 = C

(
ϵ2
∥∥∥c′ℓ(tm+1/2)

∥∥∥2
H2(0,R)

+
∑

p=cℓ,σ

(
∥p∥C0(H2)

∥∥∥cℓ(tm+1/2)
∥∥∥
H2(0,R)

+
∥∥∥p(tm+1/2)

∥∥∥
H3(0,R)

+
∥∥p(tm)

∥∥
H2(0,R)

+
∥∥p(tm+1)

∥∥
H2(0,R)

)2)
,

C̃2 = C

(∥∥c′′′ℓ ∥∥2L2
m(H1)

+
∑

p=cℓ,σ

(
∥p∥C0(H2)

∥∥c′′ℓ ∥∥L2
m(H1)

+

∥∥∥∥(∂p∂x
)′′ ∥∥∥∥

L2
m(H1)

)2)
,
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for some ϵ ̸= 0, and C > 0, independent of ∆t and h.

We now focus on obtaining estimates for
∥∥D−x

(
Em+1

σ,h + γEm+1
ℓ,h

)∥∥2
+
,∥∥D−xE

m+1/2
ℓ,h

∥∥2
+
and

∥∥D−xE
m+1
σ,h

∥∥2
+
. Taking the error equation associated with

Equation (3.2), a simple calculation reveals that, for Ej
σ,h and Ej

ℓ,h, it holds

D−tE
m+1
σ,h + βE

m+1/2
σ,h = −αEm+1/2

ℓ,h − γD−xE
m+1
ℓ,h + Tm+1

σ,ℓ , (3.19)

where

Tm+1
σ,ℓ =

(
D−tRhσ(tm+1)−Rhσ

′(tm+1/2)
)
−γ
(
Rhc

′
ℓ(tm+1/2)−D−tRhcℓ(tm+1)

)
− α

(
Rhcℓ(tm+1/2)− c

m+1/2
ℓ

)
− β

(
Rhσ(tm+1/2)− σm+1/2

)
.

Following the proof of Proposition 6, it can be shown that

1

2
D−t

∥∥D−x

(
Em+1

σ,h + γEm+1
ℓ,h

)∥∥2
+
+ β

∥∥D−xE
m+1
σ,h

∥∥2
+

+ αγ
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+
+ (α+ βγ)

(
D−xE

m+1/2
ℓ,h , D−xE

m+1/2
σ,h

)
+

=

(
D−xT

m+1
ℓ,σ , D−x

(
E

m+1/2
σ,h + γE

m+1/2
ℓ,h

))
+

.

Using again the Bramble-Hilbert Lemma, it can be established for i =
1, . . . , N , m = 0, . . . ,M − 1, that

|D−xT
m+1
σ,ℓ (xi)| ≤ C∆t3/2

∑
p=cℓ,σ

3∑
k=2

∥∥∥p(k)∥∥∥
L2(tm,tm+1;H2(0,R))

,

where C > 0 denotes a suitable constant. This implies the bound(
D−xT

m+1
ℓ,σ , γD−xE

m+1/2
σ,h +D−xE

m+1/2
ℓ,h

)
+

≤ ϵ22
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+
+ ϵ23

∥∥D−xE
m+1/2
σ,h

∥∥2
+
+ T̃m+1

ℓ,σ ,
(3.20)

with

T̃m+1
ℓ,σ ≤ C∆t3

∑
p=cℓ,σ

3∑
k=2

∥∥∥p(k)∥∥∥
L2(tm,tm+1;H2(0,R))

and ϵi ̸= 0, i = 2, 3. Combining Equations (3.18)–(3.20) we get

D−t

[∥∥Em+1
ℓ,h

∥∥2
h
+
∥∥D−xE

m+1/2
σ,h + γD−xE

m+1/2
ℓ,h

∥∥2
+

]
+A0(ϵ3)

∥∥D−xE
m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

≤ 1

ϵ2

∑
p=cℓ,σ

(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
+,∞ +

1

2

)∥∥Em+1/2
ℓ,h

∥∥2
h
+ 2T̃m+1

ℓ,σ + Tm+1
ℓ,h ,

where B0(ϵ) = 2(αγ + a0,ℓ)− (Mσ + α+ βγ)− 4ϵ2, A0(ϵ3) = 2β − (Mσ + α+
βγ)− 2ϵ23 and 2ϵ22 = ϵ2.
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Considering the assumption (3.10) on the coefficients α, β, γ, a0,ℓ and Mσ,
we conclude the existence the coefficients ϵ, ϵ3 ̸= 0, such that A0(ϵ3), B0(ϵ) are
positive and

(1−∆tθℓ(cℓ, σ))E
m+1
ℓ,σ

+∆tmin{A0(ϵ3), B0(ϵ)}
(∥∥D−xE

m+1/2
σ,h

∥∥2
+
+
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+

)
≤
(
1 +∆tθℓ(cℓ, σ)

)
Em

ℓ,σ +∆t
(
2T̃m+1

ℓ,σ + Tm+1
ℓ,h

)
, (3.21)

where θℓ(cℓ, σ) =
1

2ϵ2 maxp=ℓ,σMp ·maxp=ℓ,σ∥p∥C0(H2) .

Assuming that ∆tmaxp=ℓ,σ{Mp · maxp=ℓ,σ∥p∥C0(H2)} < 2ϵ2 and applying

a discrete Gronwall Lemma to Equation (3.21), we conclude the proof. ⊓⊔

We finally turn our attention to the error associated with the concentration
of solid and dissolved drugs, cd and cs. Let X = X1 ∩ X2, where X1 =
C0(0, T ;H3(0, R) ∩ H1

0,R(0, R)) ∩ H2(0, T ;H2(0, R) and X2 = H1
0,R(0, R)) ∩

H3(0, T ;H1
0,R(0, R)).

Proposition 10. Let cℓ, σ ∈ V , cd ∈ X and cs ∈ H3(0, T ;H1(0, R)) de-
note a solution of the problem defined by Equations (1.1) and (1.5)–(1.8) and
cd,h ∈ Vh,0 and cs,h ∈ Vh denote the solution of the problem defined by Equa-
tions (3.1)–(3.7). If f(cs, cd, cℓ) ∈ C0(H2) and the assumptions Hdiff , Hf and
Equation (3.10) hold then, there exists a constant Cd,s > 0, such that for ∆t
small enough,

∥∥Em
d,h

∥∥2
h
+
∥∥Em

s,h

∥∥2
h
+∆t

m−1∑
j=0

∥∥D−xE
j+1/2
d,h

∥∥2
+
≤Cd,s

(
∥E0

d,h∥2h+ ∥E0
s,h∥2h+Ter,d,s

)
,

where Terr,d,s ≤ C1h
4
max + C2∆t

4,

C1 =
∑

p=cℓ,σ

(
∥p∥C0(H2)∥cℓ∥C0(H2) +∥p∥C0(H3) +∥p∥C1(H2)

)2
+
∥∥f(cs, cd, cℓ)∥∥2C0(H2)

(
∥cd∥C1(H2) +∥cd∥C0(H3)

(
∥cℓ∥C0(H2) + 1

))2

,

C2 =
∑

p=cℓ,σ

(
∥p∥C0(H2)∥cℓ∥H2(H1) +∥p∥H2(H2)

)2
+∥p∥H3(H2)

+∥cd∥2C0(H2)∥cℓ∥
2
H2(H1) +∥cd∥2H2(H2) +∥cd∥2H3(H1) +∥cs∥2H3(H1) .

Proof. We follow the steps of the proof of Proposition 9. We start by noticing
that from Equations (3.3) and (3.4) we easily establish, for all ϵ ̸= 0, that

1

2
D−t

(∥∥Em+1
d,h

∥∥2
h
+
∥∥Em+1

s,h

∥∥2
h

)
+

(
a0,d −

ϵ2

2

)∥∥D−xE
m+1/2
d,h

∥∥2
+

≤ M2
d

2ϵ2
∥cd∥2C0(H2)

∥∥Em+1/2
ℓ,h

∥∥2
h
+ T1 + T2 + Td,s,
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where

T1 =
(
(Rhf

m+1/2)h −Rhf
m+1/2, E

m+1/2
d,h

)
h
,

T2 =
(
Rhf

m+1/2 − f
m+1/2
h , E

m+1/2
d,h + E

m+1/2
s,h

)
h
,

Td,s ≤ D1∆t
3/2
∥∥D−xE

m+1/2
d,h

∥∥
+
+D2h

2
max

∥∥D−xE
m+1/2
d,h

∥∥
+

+D3∆t
3/2
∥∥Em+1/2

d,h

∥∥
h
+D4∆t

3/2
∥∥Em+1/2

s,h

∥∥
h
,

with D1 = C1

(
∥cd∥C0(H2)∥cℓ∥H2

m(H1) +∥cd∥H2
m(H2)

)
, D2 = C1(∥cd∥C1(H2) +

∥cd∥C0(H3) (∥cℓ∥C0(H2) + 1)), D3 = C1∥cd∥H3
m(H1), D4 = C1∥cs∥H3

m(H1), and

Hi
m(Hr) = Hi(tm, tm+1;H

r(0, R)), for some constant C1 > 0, independent of
h and ∆t. Both terms T1 and T2 can be bound using the Bramble-Hilbert

Lemma. For T1 we get, |T1| ≤ C2h
2
max

∥∥f(cs, cd, cℓ)∥∥C0(H2)

∥∥D−xE
m+1/2
d,h

∥∥
+
,

for some constant C2 > 0, independent of h and ∆t. Regarding T2, using
assumption Hf , it holds, for all η ̸= 0,

|T2| ≤

(
Cf (1 +∥cd∥C0(H1))

)2
η2

∥∥Em+1/2
ℓ,h

∥∥2
h
+ ϵ2

∥∥D−xE
m+1/2
d,h

∥∥2
+

+

η2
2

+
C2

fR
∥∥cm+1/2

ℓ,h

∥∥2
h

2ϵ2
+
Cf∥cℓ∥C0(H1))(1 +∥cd∥C0(H1))

2

∥∥Em+1/2
d,h

∥∥2
h

+

η2
2

+
C2

fR
∥∥cm+1/2

ℓ,h

∥∥2
h

2ϵ2
+

3Cf∥cℓ∥C0(H1) (1 +∥cd∥C0(H1))

2

∥∥Em+1/2
s,h

∥∥2
h
.

From Proposition 9, we know that
∥∥cm+1/2

ℓ,h

∥∥
h
is uniformly bounded, w.r.t,

h and ∆t, which means that there exists a constant Cconv,ℓ > 0 such that∥∥cm+1/2
ℓ,h

∥∥2
h
≤ Cconv,ℓ.

Choosing ϵ2 = ad

6 and η2 = 3min

{
C2

fRCconv,ℓ

ad
,
Cf∥cℓ∥C0(H1)(1+∥cd∥C0(H1))

2

}
,

it follows that

(1− α∆t)
(∥∥Em+1

d,h

∥∥2
h
+
∥∥Em+1

s,h

∥∥2
h

)
+∆ta0,d

∥∥D−xE
m+1/2
d,h

∥∥2
+

≤∆tzm + 2∆t

((
1 +∥cd∥

)2
+
M2

d

2ϵ2
∥cd∥2C0(H2)

)∥∥Em+1/2
ℓ,h

∥∥2
h

+ (1 + α∆t)
(∥∥Em

d,h

∥∥2
h
+
∥∥Em

s,h

∥∥2
h

)
,
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where

α = 2max

{
3C2

fRCconv,ℓ

ad
,
3Cf∥cℓ∥C0(H1) (1 +∥cd∥C0(H1))

2

}
.

zm = C3h
4
max

((
∥cd∥C1(H2) +∥cd∥C0(H3)

(
∥cℓ∥C0(H2) + 1

))2

+
∥∥f(cs, cd, cℓ)∥∥2C0(H2)

)
+ C3∆t

3

×
(
∥cd∥2C0(H2)∥cℓ∥

2
H2

m(H1) +∥cd∥2H2
m(H2) +∥cd∥2H3

m(H1) +∥cs∥2H3
m(H1)

)
,

for some constant C3 > 0, independent of h and ∆t. Assuming ∆t < 1
α , we

finally conclude the proof. ⊓⊔

We can now state our final convergence result for the error

Em
h =

∑
p=ℓ,d,s

∥∥Em
p,h

∥∥2
h
+
∥∥D−x

(
Em

σ,h+γE
m
ℓ,h

)∥∥2
+
+∆t

m−1∑
j=0

∑
p=ℓ,σ,d

∥∥D−xE
j+1/2
p,h

∥∥2
+
.

Theorem 2. Let cℓ, σ ∈ V , cd ∈ X and cs ∈ H3(0, T ;H1(0, R)) denote a
solution of the problem defined by Equations (1.1) and (1.5)–(1.8) and cd,h∈Vh,0
and cℓ,h, σh, cs,h∈Vh denote the solution of the problem defined by Eq. (3.1)–
(3.7). Under assumptions f(cs, cd, cℓ) ∈ C0(H2), Hdiff , Hf and (3.10), there
exists a constant C > 0, independent of h and ∆t, such that for sufficiently
small small ∆t, the following inequality holds for m = 1, . . . ,M ,

Em
h ≤ C(h4max +∆t4)

 ∑
p=ℓ,d,s

∥E0
p,h∥2h + ∥D−xE

0
ℓ,h∥2+ + ∥D−xE

0
σ,h∥2+

 .

Remark 5. Let us suppose that the initial errors are null. In this case Theo-
rem 2 establishes that the fully discrete piecewise linear-constant finite element
method presents second convergence order

∥Em
ℓ,h∥2h + ∥Em

σ,h + γEm
ℓ,h∥21,h +∆t

m−1∑
j=0

∑
p=ℓ,σ

∥Ej+1/2
p,h ∥21,h ≤ C

(
h4max +∆t4

)
,

∑
p=d,s

∥Em
p,h∥2h +∆t

m−1∑
j=0

∥Ej+1/2
d,h ∥21,h ≤ C

(
h4max +∆t4

)
.

As mentioned before, these upper bounds were established avoiding the
approach of Wheeler [26]. Furthermore, as the fully-discrete Galerkin method
is obtained considering linear piecewise approximation for cℓ, σ and cd, the
second convergence order with respect to the norm ∥.∥1,h which can be seen as
a discrete version of the usual H1-norm.
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Remark 6. As mentioned in Section 3.1, the stability of the fluid discretization

can be established showing that
∥∥D−xc

j+1/2
ℓ,h

∥∥2
+,∞ and

∥∥D−xσ
j+1/2
h

∥∥2
+,∞, are

uniformly bounded, w.r.t. h and ∆t. Let c0ℓ,h, σ
0
h be such that

∥E0
ℓ,h∥h ≤ Ch2max, ∥D−xE

0
ℓ,h∥+ ≤ Ch2max, ∥D−xE

0
σ,h∥+ ≤ Ch2max.

From Proposition 2 it follows that∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞ ≤ 2

∥∥D−xE
j+1/2
ℓ,h

∥∥2
+,∞ + 2

∥∥D−xRhc
j+1/2
ℓ

∥∥2
+,∞

≤ 8

h3min

∥∥Em+1/2
ℓ,h

∥∥2
h
+ 2∥cℓ∥2C0(H2) .

Using the estimate from Proposition 9, there exists a constant C > 0, indepen-
dent of h and ∆t, such that

∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞ ≤ C

h4max +∆t4

h4min

+ 2∥cℓ∥2C0(H2) .

Therefore, under the assumption of the grids being quasiuniform, the stability
condition ∆t

hmax
≤ C̃, for some constant C̃ and that we choose our perturbations

in a ball centered around the numerical solution and with radius such that∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h ≤ Ch4max,

we can conclude that for ∆t small enough, the bound given by Equation (3.11)
holds and the stability is ensured in the mentioned sense. Regarding the sta-
bility of the scheme w.r.t. cd,h and cs,h, using Proposition 3, similar uniform
bounds can be obtained for

∥∥cmp,h∥∥h,∞, with p = d, s and
∥∥c̃mℓ,h∥∥h,∞, under the

same requirements for the grids and ∆t.

Theorem 1 can now be reformulated as follows.

Theorem 3. Under the assumptions of Theorem 1, the numerical method is
stable, provided the perturbations ωm

i,h = cmi,h − c̃mi,h, i = d, s, ℓ and ωm
σ,h =

σm
h − σ̃m

h , where c̃
m
i,h, i = d, s, ℓ and σ̃m

h satisfy the same discrete problem with
perturbed initial data and∥∥ω0

ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h ≤ Ch4max,

for some constant C > 0.

4 Numerical simulation

This section aims to illustrate the main convergence result of this work, The-
orem 2, for the fully-discrete approximation defined by Equations (3.1)–(3.7).
The theoretical solutions cℓ, σ ∈ V , cd ∈ X and cs ∈ H3(0, T ;H1(0, R)) of
Equations (1.1) and (1.5)–(1.8) used in our numerical test solve a modified
problem obtained by adding in each partial differential equation a source term
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Ri, i = ℓ, d, s, σ. We highlight that these solutions aim at reproducing the
qualitative behavior of the system. In our test we run the simulation in the
time interval [0, T ] with T = 5 s and in the space interval [0, R] with R = 1 mm
representing the radius of Maxwell-Wiechert polymeric platform with Young
modules E0 = E1 = 1 Pa, viscosity µ = 106 Pa · s, and relaxation time
τ = µ

E1
= 106 s.

The solvent concentration cℓ used is defined by

cℓ(x, t) = e−
t
15 c̃(x) + ϕ(t), (x, t) ∈ [0, R]× [0, T ],

with ϕ(t) = cext(1− e−
t
15 ), and

c̃(x)=

(
1− 1

m

)
(cext−1)

x2

R2
+
cext−1

m
+
|ax−R|p+1 + aRp(p+ 1)(x−R)

(aR−R)p+1
,

where cext = 755.74 kg/m3 is the exterior solvent concentration, a = 3, m = 10
and p = 1.7. Note that x = R

a is a point that guarantees that cℓ(·, t) ∈ H3(0, R)
(and not in C3(0, R)), in order to satisfy the hypothesis of Theorem 2.

We also define cd(x, t) = g(x, t)ψ(t), (x, t) ∈ [0, R]× [0, T ] where

g(x, t) =


exp

(
− (x−a2(t))

2+|x−a2(t)|p+1

10−3

)
, if 0 ≤ x ≤ a2(t),

1, if a2(t) < x < a0,

exp
(
− (x−a0)

2+|x−a0|p+1

2·10−3

)
, if a0 ≤ x ≤ R,

with a2(t) = a0 −
(

t−t̃
T

)2
· 1{t≥t̃} and ψ(t) = 1 −

(
t−t̃
t̃

)2
· 1{t<t̃}. We remark

that cd(·, t) is in H3(0, R) but not in C3(0, R).
The solid drug concentration solution used in our simulation is

cs(x, t) =

(
1 +

t

5× 10−5
e−10( 10

4 − tx
3 )
)−1

, (x, t) ∈ [0, R]× [0, T ].

Finally the polymeric chains’ stress is given by

σ(x, t) = (cℓ(x, t)− cext)ξ(t), (x, t) ∈ [0, R]× [0, T ],

where ξ(t) = E0

(
1− e−

t
15

)
+
(

E1τ
τ−15

)(
1− e−t( 1

15−
1
τ )
)
.

The numerical method defined by Equations (3.1)–(3.7) is implemented with
initial conditions given by cℓ(x, 0), cd(x, 0), cs(x, 0). Based on real biological
information (see [4,5,10]), we use the coefficient functions aℓ(cℓ), ad(cℓ), aσ(cℓ)
defined as follows

aℓ(cℓ) = Dℓe e
−βℓ

(
1− cℓ

cext

)
, ad(cℓ) = Dde e

−βd

(
1− cℓ

cext

)
, aσ(cℓ) =

R2

8µ̃
cℓ,

with Dℓe = 3.74 · 10−9m2s−1, Dde = 2.72 · 10−10m2s−1, βℓ = 0.8, βd = 0.5,
µ̃ = 106 Pa · s. These choices yield a nonlinear numerical problem in cℓ,h that
is solved iteratively by Newton’s method to get an approximation of cℓ,h at
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each time step. In Table 1 we show the errors calculated versus different values
for ∆t at time T = 5 s in a fixed grid with hmax = 9.8638 · 10−4 as well as an
estimated rate of convergence calculated as

ratei =
log(Ei+1)− log(Ei)

log(∆ti+1)− log(∆ti)
,

where Ei and Ei+1 are two consecutive errors calculated based on the con-
secutive parameters ∆ti and ∆ti+1, respectively (a similar definition holds for
hmax). Thus we can show computationally that the method reaches second
order for Em

h with respect to ∆t.

Table 1. Estimated convergence rates. Fixed hmax = 9.86 · 10−4.

∆t Em
h Rate

3.12 · 10−1 13.95 -
2.08 · 10−1 8.15 1.32
1.56 · 10−1 4.55 2.02
1.04 · 10−1 1.74 2.37
7.81 · 10−2 9.59 · 10−1 2.07

Table 2. Estimated convergence rates. Fixed ∆t = 4.88 · 10−4.

hmax Em
h Rate

6.28 · 10−2 2.94 · 10−1 -
3.13 · 10−2 1.96 · 10−1 0.58
1.56 · 10−2 1.18 · 10−1 0.73
7.82 · 10−3 3.42 · 10−2 1.78
3.96 · 10−3 8.35 · 10−3 2.07
1.99 · 10−3 2.23 · 10−3 1.91
9.77 · 10−4 5.27 · 10−4 2.02

In Table 2 we plot the numerical errors versus different values for hmax using
a fixed ∆t = 4.8828 · 10−4 in each grid. The results illustrate computationally
that Em

h is of second order with respect to hmax.

5 Conclusions

In this paper, we present a model to simulate the complex interplay between sol-
vent absorption, polymer swelling, drug release, and stress development within
polymeric drug delivery platforms. A Maxwell-Wiechert model has been in-
corporated to capture the memory effect arising from polymer relaxation. To
avoid the drawbacks of using an integral representation for the stress, we re-
place such memory term with a new differential equation. From a numerical
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standpoint, this leads to eliminating the need to store information from all
previous time steps.

The main goal of this manuscript is to propose a fully discrete numerical
scheme for the aforementioned system of differential equations, and subsequent
stability and convergence analysis. Being a nonlinear system of differential
equations, stability needs careful attention. Our main results are: (i) the
stability of the numerical method provided suitable uniform bounds for the
numerical solution and its perturbation and (ii) second order, in space and
time, convergence for nonsmooth solutions, with no restriction on the grids.
The bounds needed to ensure stability are derived from our main convergence
theorem and are valid if the grid is quasiuniform and the timestep satisfies a
relation of the type ∆t ≤ Chmax, for some constant C. Finally, we illustrate
numerically the convergence rates obtained in the main result using an exact
solution based on biological information.
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[22] E. Süli. Convergence and nonlinear stability of the Lagrange-
Galerkin method. Numerich Mathematik, 53:459–483, 1988.
https://doi.org/10.1007/BF01396329.

[23] J. Wang. Superconvergence analysis of an energy stable scheme for nonlinear
reaction-diffusion equation with BDF mixed FEM. Applied Numerical Mathe-
matics, 153:457–472, 2020. https://doi.org/10.1016/j.apnum.2020.03.007.

[24] S. Wang and G. Kreiss. Convergence of summation-by-parts finite difference
methods for the wave equation. Journal of Scientific Computing, 71:219–245,
2017. https://doi.org/10.1007/s10915-016-0297-3.

[25] Y. Wang, H. Yi, X. Fang and G. Li. Unconditionally optimal error estimates
of linearized Crank-Nicolson virtual elements for quasilinear parabolic problems
on general polygonal meshes. ESAIM: Mathematical Modelling and Numerical
Analysis, 58:881–926, 2024. https://doi.org/10.1051/m2an/2024017.

[26] M. Wheeler. A priori l2 error estimates for Galerkin approximations to parabolic
partial differential equations. SIAM Journal on Numerical Analysis, 10:723–759,
1973. https://doi.org/10.1137/0710062.

[27] J. Yan, Z. Yin and A. Zhu. H1-Galerkin mixed finite element method the vi-
bration equation of beam with structural damping. Computational and Applied
Mathematics, 43:308, 2024. https://doi.org/10.1007/s40314-024-02831-2.

[28] J. Zhang and H. Rui. A coupling of Galerkin and mixed finite element meth-
ods for the quasi-static thermo-poroelasticity with nonlinear convective trans-
port. Journal of Computational and Applied Mathematics, 441:115672, 2024.
https://doi.org/10.1016/j.cam.2023.115672.

[29] D. Zhu, X. Feng and L. Qian. Error analysis of Crank-Nicolson-
Leapfrog scheme for the two-phase Cahn-Hilliard-Navier-Stokes incompress-
ible flow. Computers and Mathematics with Applications, 172:78–93, 2024.
https://doi.org/10.1016/j.camwa.2024.07.026.

Math. Model. Anal., 31(1):1–25, 2026.

https://doi.org/10.1007/BF01396329
https://doi.org/10.1016/j.apnum.2020.03.007
https://doi.org/10.1007/s10915-016-0297-3
https://doi.org/10.1051/m2an/2024017
https://doi.org/10.1137/0710062
https://doi.org/10.1007/s40314-024-02831-2
https://doi.org/10.1016/j.cam.2023.115672
https://doi.org/10.1016/j.camwa.2024.07.026
https://doi.org/10.3846/mma.2026.22960

	Introduction
	Definitions and basic results
	Fully discrete approximation
	Stability analysis
	Convergence analysis

	Numerical simulation
	Conclusions
	References

