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Abstract.This work deals with the dynamics of an ordinary differen-
tial equation system describing a Leslie-Gower predator-prey model
with a generalist predator and a non-differentiable functional re-
sponse proposed by M. L. Rosenzweig, given by h(x) = qxα with
0 < α < 1. Two aspects have a significant impact on the model: (1)
the predator’s carrying capacity depends on both the favorite prey
population and an alternative food source, and (2) consumers have
access to an alternative food source. Among the main results, a sep-
aratrix curve Σ arises dividing the phase plane into regions with dif-
ferent dynamic behaviors. Trajectories above the separatrix curve
Σ reach the vertical axis in finite time, while those below Σ may
converge to positive equilibrium points, limit cycles, or homoclinic
connections. Furthermore, the system is non-Lipschitz, implying
non-uniqueness of solutions at points of the vertical axis. Several
bifurcations, including saddle-node, homoclinic, Hopf, generalized
Hopf, and Bogdanov-Takens bifurcations, are identified through the
use of computational techniques. The dynamics of the system are
visualized by presenting a bifurcation diagram in a convenient pa-
rameter space.

Keywords: predator-prey model; Leslie-Gower model; separatrix; bifurcations; limit cycles; homoclinic
connection.
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1 Introduction

The Gause type and the Leslie-Gower type models are the more usual patterns
for the description of predator-prey interactions, by means of a nonlinear or-
dinary differential equation system. Leslie-Gower models are in contrast with
Gause-type models in which the conversion of prey biomass into new preda-
tors follows a sort of mass-energy conservation law, being compartmentalized
models [3]. Leslie-Gower formulations explicitly incorporate the dependence
on the predator’s population growth rate with respect to the quotient between
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the population sizes of predators and prey [20]. These models have been used
in related fields, such as bioeconomics [8] and epidemiology.

An important issue in both types of models is the action of the predator
that consumes the prey, called functional response or consumption rate [2,28].
In this work is depicted by a less-canonical function, which was proposed by the
American ecologist Michael L. Rosenzweig in a seminal paper in 1971 [26]. This
function is represented by h (x) = qxα, with 0 < α < 1, where x = x (t) is the
prey population size [5,27] and is called power law [8] or Rosenzweig functional
responses [14, 25]. This function did not fit the three types of prey-dependent
functional responses proposed by the biologist Crawford S. Holling in 1959 [16],
because it is not bounded as the linear functional response l (x) = qx, being its
main characteristic the non-differentiability when x = 0 [27]. The Rosenzweig
functional response can be employed to describe a collective social behavior,
known as prey herd behavior. This antipredator behavior (APB) occurs when
individuals of one population gather in herds, either in search of food or for
defensive purposes [1].

Additionally, this functional response has been proposed in the bioeconomic
literature, where it is referred to as the compensatory power functional response
[8]. The function is decreasing, with its components being the exponent α,
known as the catchability exponent, and the variance in catchability q [7]. It is
a particular case of a more general function, known as the Cobb-Douglas type
production function, given by h (x, y) = qxαyβ , with 0 < α, β < 1, [10,14]. This
function has been widely used to describe the relationship between output and
its inputs in an economic context. Here, x and y represent the capital and labor
inputs, respectively (i.e., the population involved in production), while q is a
constant known as the productivity factor, and h denotes total productivity (the
monetary value of all goods produced within a given period). The exponents
α and β refer to elasticities in an economic context.

In epidemiological models a power law has also been incorporated to rep-
resent a nonlinear incidence rate of the form h (I, S) = qIαSβ , with 0 < q, α,
β [21], where S = S (t) and I = I (t) are the number of susceptible and infective
individuals per unit area in the time t ≥ 0, respectively; the parameter q is the
transmission rate [21]. Particularly, when 0 < α, β < 1 is crucial to determine
the existence of a region of persistence for a disease in the phase plane [21].
However, in many of the articles in which these functions are incorporated,
the problem of the non differentiability at x = 0 is not studied, which has in
general, a strong influence in the dynamics of the systems.

The fact that this Rosenzweig functional response is not differentiable at
x = 0 could have strong implications for the dynamics [12,30]. For instance, in
Gause-type models with this functional response, the system is non-Lipschitzian,
as two trajectories pass through each point on the vertical axis [5, 27]. In the
model proposed here, there is a separatrix curve determined by the stable man-
ifold of a non-hyperbolic equilibrium. Trajectories with initial conditions above
the separatrix curve will reach the vertical axis in finite time. This functional
response is unsuitable for modeling interactions where the predator approaches
satiety [23]. Furthermore, when incorporated into the basic Volterra model [28],
it fails to satisfy the conditions of the Kolmogorov Theorem [22].
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The system to be studied is based on the model [28], proposed by Philip H.
Leslie in 1948 [20], who explicitly incorporates the dependence of this rate as
the ratio between the population sizes of prey and predators. Leslie assumed
that the equation for predators is a logistic-type growth function, in which the
conventional environmental carrying capacity for predators Ky is proportional
to the prey population size x = x (t), that is Ky = K(x) = nx [22, 28].

The model proposed by Leslie does not fit the Gause scheme and is not
defined at x = 0. For this reason, it has been strongly criticized for presenting
anomalies in its predictions. Specifically, it forecasts that even at very low
prey population densities, when the consumption rate per predator is almost
zero, the predator population might still increase if the predator-to-prey ratio
is very small [28]. Nonetheless, it is well-known that for the Leslie-Gower model
[13] there exists a wide set of parameter values for which the unique positive
equilibrium point is globally asymptotically stable [6, 11]. This property is
proved by constructing a suitable Lyapunov function [17].

Leslie’s model can be modified by adjusting the predator’s carrying capacity
to account for the presence of an alternative resource, assuming a generalist
predator. Specifically, it was defined as Ky = K(x) = nx + c, where c is a
positive constant. This implies that in the absence of prey (x) the predator
can survive on this alternative food source [22,28].

This modified Leslie model was introduced in Dı́az-Ávalos and González-
Olivares (2017) [10], incorporating a Cobb-Douglas type production function as
a functional response. That study established some fundamental properties of
the model, such as the existence of an invariant region and the conditions for
the existence and stability of equilibrium points, which were determined by
defining different regions in the parameter space based on the values of α and
β. In particular, the case when β = 1 and α ∈ (0, 1), which corresponds to the
Rosenzweig functional response, was partially analyzed.

Building upon these findings, Rivera-Estay et al. (2020) [25] further ex-
plored this modified Leslie model with a Rosenzweig functional response, pro-
viding additional insights while still leaving some aspects open for further in-
vestigation. Their study addressed the existence and stability of equilibrium
points, Hopf bifurcation conditions, and the existence of a separatrix. Fur-
thermore, the case c = 0 was examined, enabling a comparison with the case
c > 0. It was noted that simulations suggested the existence of solutions that
approach the vertical axis in finite time (c > 0). However, no formal proof of
this phenomenon was provided. Lastly, simulations for the case c > 0 were pre-
sented for specific parameter values, showing only cases where either a stable
equilibrium or a stable limit cycle was observed.

In the present work, we extend the analysis of this model by examining
the dynamics above the separatrix, providing a formal proof that the system is
not Lipschitz. Additionally, we explore the various qualitative behaviors below
the separatrix using bifurcation theory, which allows us to demonstrate the
existence of new scenarios, such as a homoclinic connection and the existence
of two concentric limit cycles. This approach provides valuable insights into the
model’s dynamics and unveils new results that highlight the system’s complex
behavior.



A model with a generalist predator and a non-differentiable functional response 607

The main properties of the model were studied analytically. In particular,
the nature of non-hyperbolic equilibrium points and an approximation of the
separatrix curve were obtained. The dynamics of the model around the positive
equilibrium points were partially analyzed analytically, as it was not possible
to obtain an algebraic expression for them. However, we employed MATCONT
(version 7.5), a MATLAB package for numerical continuation [9]. From this
numerical analysis, we were able to construct a bifurcation diagram in a pa-
rameter space of interest, which allowed us to describe the different qualitative
behaviors of the model.

The bifurcation diagram associated with the model reveals codimension-one
bifurcations, such as saddle-node and Hopf bifurcations, as well as codimension-
two bifurcations, including Bogdanov-Takens and Generalized Hopf bifurca-
tions. In each region of the bifurcation diagram, the system exhibits different
qualitative behaviors. For instance, in some regions, stable and unstable limit
cycles coexist, while in others, these limit cycles merge and disappear through
a saddle-node bifurcation. Additionally, we identified regions where a homo-
clinic connection forms as a result of the intersection of stable and unstable
manifolds, and, in some cases, a limit cycle surrounded by a homoclinic con-
nection emerges. These bifurcation phenomena reveal the complex dynamics
of the model and provide insight into its topological transitions.

The rest of the paper is organized as follows: In Section 2, the modified
Leslie-Gower model is presented; in Section 3, the main properties of model
are proved; in Section 4, a bifurcation analysis of equilibrium points, periodic
orbits and global connections (homoclinic phenomena). Finally, we summarize
our main findings in Section 5.

2 Proposition of the model

For the construction of model describing the predator-prey interaction, the
following assumptions are made:

i) The model consists of one prey and one predator population.

ii) The prey follows a logistic growth with a carrying capacityK and intrinsic
growth rate r, which is reduced by the encounters with the predators.

iii) The predator has a generalist feeding strategy. In fact, its carrying ca-
pacity depends on the prey population size x and other available food
c. Therefore, even in the absence of the prey, the predator population
follows a logistic growth with a carrying capacity nx+ c and an intrinsic
growth rate s.

iv) The Rosenzweig functional response is chosen to represent the predators
per capita feeding rates on the prey. It is represented by h(x) = qxα,
with 0 < α < 1. The parameter α determines the slope of the functional
response near the origin and represents a kind of aggregation efficiency
(see Figure 1).
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Figure 1. The graph of the functional response h(x) as it changes its steepness near
x = 0 depending on the value of α = 0.1, α = 0.4 and α = 0.7. Parameter q = 1 is fixed.

In view of the above assumptions the model takes the following form:

Xµ (x, y) :


dx

dt
= r

(
1− x/K

)
x− qxαy,

dy

dt
= s
(
1− y

nx+ c

)
y,

(2.1)

where x = x(t) and y = y(t), denote the corresponding population sizes of the
species as functions of time t ≥ 0 with x(0) > 0, and y(0) > 0. Moreover,
µ = (r,K, q, s, n, c, α) ∈ R6

+ × ]0, 1[, is the vector of parameters (see Table 1).
Clearly, system (2.1) is defined in the first quadrant of R2, i.e.,

Ω =
{
(x, y) ∈ R2/x ≥ 0, y ≥ 0

}
.

The meanings of the positive parameters are given in the following table:

Table 1. Ecological parameters of the model.

Parameter Ecological meaning

r Intrinsic growth rate of the prey population.
K Environmental carrying capacity of the prey
q The consuming rate per capita of the predators.
s Intrinsic growth rate of the predator population

n
The food quality and it indicates how the predators turn eaten
prey into new predator births.

c The quantity of alternative food for predators.

α
A shape parameter that determines the slope of the functional
response near the origin and represents a kind of aggregation ef-
ficiency.

Since the functional response is given by h(x) = qxα with 0 < α < 1,
system (2.1) is non-differentiable at x = 0. Consequently, an unconventional
analysis is required to establish all the properties of the proposed model [25,27].
Additionally, the population sizes of both species cannot grow indefinitely, as
the system’s trajectories remain confined within a bounded region in the first
quadrant, as will be demonstrated later.
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Since (2.1) is differentiable in Ω−(0, y), the classical theory of ordinary dif-
ferential equations ensures that there is uniqueness and smoothness of solutions
for each initial condition in that domain [19].

To simplify the upcoming calculations, we transform system (2.1) into an
equivalent form that is more convenient to handle. This transformation involves
reparametrizing the vector field Xµ through a change of variables and a time
rescaling, as defined by:

Φ : R2 × R+
0 → R2 × R+

0 , Φ
(
Ku, nKv, τ(u+ C)/r

)
→ (x, y, t) .

The map Φ is a diffeomorphism, due to detDΦ(u, v, τ) = nK2(u+C)
r > 0.

Let us consider new parameters defined by: φ : R6 × ]0, 1[ → R6 × ]0, 1[

φ(µ) →
(
r,K, n,

qKαn

r
,

c

nK
,
s

r
, α

)
= (r,K, n,Q,C, S, α) .

Since detDφ = Kα−1

r2 > 0, φ is invertible. As a result, the system (2.1) is

transformed into a new vector field Yη = Φ∗Xµ = (DΦ)
−1 ◦ Xµ ◦ Φ, which is

given by:

Yη (u, v) :


du

dτ
=
(
(1− u)u−Quαv

)
(u+ C) ,

dv

dτ
= S(u+ C − v)v.

(2.2)

System (2.1) is C∞-equivalent to (2.2) in Ω and it has the advantage of being
defined with a reduced vector of parameters η = (Q,C, S, α) ∈ R3 × ]0, 1[.

The system (2.2), or the vector field Yη(u, v), is defined in the first quad-
rant of R2, that is, in the set Ω =

{
(u, v) ∈ R2/u ≥ 0, v ≥ 0

}
. The equilibrium

points of system (2.2) are: p0 = (0, 0), pu = (1, 0), pv = (0, C), and the equilib-
ria pe = (ue, ve), which represents coexistence, determined by the intersection
of the isoclines. The abscissa of the positive equilibrium points, denoted by ue,
satisfies the transcendental equation:

q(u) = (1− u)u−Quα(u+ C) = 0. (2.3)

Lemma 1. Equation (2.3) has either one or two positive real roots.

Proof. See Appendix 6.1. ⊓⊔

Remark 1. According to Lemma 1, there can be at most two positive equilibria
with an abscissa in the interval ]0, 1[. The dynamics of the model studied
here differ significantly from the model with c = 0, where only a single positive
equilibrium exists in the phase plane, with its abscissa within the interval ]0, 1[.

3 Results

3.1 Main properties of the model

The following properties hold for system (2.2) or the vector field Yη (u, v):
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Lemma 2. The set Γ =
{
(u, v) ∈ Ω : 0 ≤ u ≤ 1, v ≥ 0

}
is an invariant region.

Proof. See Appendix 6.2. ⊓⊔

Remark 2. Note that the set ΓC =
{
(u, v) ∈ Ω : 0 ≤ u ≤ 1, v ≤ u+ C

}
is also

an invariant region. The system (2.2) or the vector field Yη(u, v) is of Kol-
mogorov type [12], as both axes are invariant sets.

Lemma 3. All solutions of system (2.2) which initiate in R2
+ are uniformly

bounded.

Proof. See Appendix 6.3. ⊓⊔

Lemma 4. The equilibrium (1, 0) is a hyperbolic saddle point for all parameter
values.

Proof. See Appendix 6.4. ⊓⊔

Lemma 5. The equilibrium point (0, 0) is a repeller point.

Proof. See Appendix 6.5. ⊓⊔

Remark 3. We define the set

Λ̄ =
{
(u, v) ∈ Γ̄ : 0 ≤ u ≤ 1, 0 ≤ v ≤ vΣ , such that

(
u, vΣ

)
∈ Σ

}
,

such that the phase plane Ω̄ is divided in the set Λ̄ and Z = Ω̄ − Λ̄, where Σ
represents a separatrix curve, and Z defines the region above this separatrix
curve.

Theorem 1. The non-hyperbolic equilibrium point (0, C) has a hyperbolic and
a parabolic sector [24] determined by the stable manifold W s(0, C) = Σ.

Proof. See Appendix 6.6. ⊓⊔

Theorem 2. All trajectories with initial conditions above the separatrix curve
Σ reach the v-axis in a finite time.

Proof. See Appendix 6.7. ⊓⊔

Remark 4. We have established Theorem 2 for the system (2.1), and this result
also applies to the system (2.2), as both systems are topologically equivalent.
The separatrix curve for system (2.1) is denoted by Σ. Note that the proof
of Theorem 2 provides only a sufficient condition for prey extinction, not a
necessary one, since the statement is proven for the region Z̄, which lies above
the separatrix curve Σ.
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Finding an analytical expression for Σ is a challenging task; however, we
have derived a reliable approximation based on the approach outlined in [29]
(see proof of Theorem 2 in the Appendix). This approximation is obtained

y(x) =
x1−αβ

q(1− α)− x1−αβ
.

As a result of the above, the solutions along the vertical axis are non-
unique. This presents a significant issue for this modeling approach, as the
non-uniqueness of the solutions is counterintuitive, especially when compared
to models used in Physics. In particular, the model does not meet Hadamard’s
conditions for well-posed problems [15].

Remark 5. As a result, the above theorem and the associated remark indicate
that the system (2.1) is non-Lipschitzian along the vertical axis.

3.2 Nature of positive equilibrium points

An explicit expression for the equilibria within the first quadrant cannot be de-
termined, as 0 < α < 1. However, from the proof of Lemma 1 in Appendix 6.1,
it is known that the system may have two, one, or no equilibrium points. To
analyze the stability of these positive equilibrium points, we introduce a generic
equilibrium point uG. We define a new parameter G as follows:

Q : ]0, 1[ −→ R+, such that Q = Q(G) :=
(1−G)G

Gα(G+ C)
.

The inverse function theorem ensures that one can locally define a unique
G = G(Q) ∈ ]0, 1[ for every Q > 0. Let ξ := (C, S,G, α) ∈ R× ]0, 1[× ]0, 1[ be
the new vector parameters. The field with parameters ξ is given by:

Yξ (u, v) :


du

dτ
=

(
(1− u)u− (1−G)G

Gα(G+ C)
uαv

)
(u+ C) ,

dv

dτ
= S(u+ C − v)v.

(3.1)

Let us define the following functions f, g : R × R × ]0, 1[ × ]0, 1[ −→ R of
parameters given by

f (ξ) = (1− α)G2 +
[
2C + α(1− C)

]
G− C(1− α), (3.2)

g (ξ) = 1 + α(G− 1)− 2G− S. (3.3)

Theorem 3. The equilibrium point pG = (G,G+ C) satisfies the following:

i) If ξ ∈ f−1
(
{0}
)
, the equilibrium pG is not hyperbolic.

ii) If ξ ∈ f−1
(
]−∞, 0[

)
, the equilibrium pG is a saddle.

iii) If ξ ∈ f−1
(
]0,+∞[

)
∩ g−1

(
]0,∞+[

)
, the equilibrium pG is a hyperbolic

repeller.
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iv) If ξ ∈ f−1
(
]0,+∞[

)
∩ g−1

(
]−∞, 0[

)
, the equilibrium pG is a hyperbolic

attractor.

v) If ξ ∈ f−1
(
]0,+∞[

)
∩ g−1

(
{0}
)
, the equilibrium pG is a weak focus.

Proof. See Appendix 6.8. ⊓⊔

Remark 6. Note that, f (ξ) = PT (u), then when PT (uT ) = 0 there is only one
equilibrium point, which is not hyperbolic. On the other hand, from the proof of
Lemma 1 in Appendix 6.1, it follows that PT (uT −ϵ2) < 0 and PT (uT +ϵ1) > 0.
Consequently, the equilibrium p2 = (uT − ϵ2, uT − ϵ2 + C) is always a saddle
point when it exists, and p1 = (uT + ϵ1, uT + ϵ1 + C) can be either attractor
or repeller when exists.

Theorem 4. The system (3.1) or vector field Yξ exhibits a saddle-node bifur-
cation at the equilibrium pG when ξ ∈ f−1

(
{0}
)
and g−1

(
]−∞, 0[ ∪ ]0,+∞[

)
.

Proof. See Appendix 6.9. ⊓⊔

Remark 7. The saddle-node bifurcation in Theorem 4 is a generically unfolded
by parameter α [18]. In particular, it follows that equation f(ξ) = 0 implicitly
defines the function

α(C,G) =
C − 2CG−G2

(G+ C)(1−G)
and

∂f

∂α
= 1−G2 ̸= 0.

Theorem 5. The system (3.1) or vector field Yξ(u, v) exhibits a Hopf bifurca-
tion at the equilibrium pG when ξ ∈

(
θ−1(]−∞, 0[) ∪ θ−1(]0,∞+ [)

)
∩ g−1(0),

with θ(ξ) = 4Sf(ξ) + (C +G)
(
g(ξ)

)2
.

Proof. See Appendix 6.10. ⊓⊔

Remark 8. The Hopf bifurcation in Theorem 5 is a generically unfolded by
parameter α [18]. In particular, it follows that equation g(ξ) = 0 implicitly
defines the function

α(S,G) =
S + 2G− 1

G− 1
and

∂g

∂α
= G− 1 ̸= 0.

4 Numerical bifurcation analysis

The analysis of equilibria of system (2.2) in the interior of the first quadrant

int
(
Γ
)
=
{
(u, v) ∈ R : 0 < u < 1, v > 0

}
is a major challenge, as it is generally

not possible to obtain algebraic expressions for the coordinates of equilibria lo-
cated in int(Γ ). Therefore, numerical tools are essential to continue the study.
In this section, we present a bifurcation analysis performed using analytical
tools from bifurcation theory to study codimension-1 bifurcations, and numeri-
cal continuation methods for codimension-2 bifurcations, utilizing the standard
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continuation package MATCONT (version 7.5), which applies numerical con-
tinuation techniques such as predictor-corrector methods and Moore-Penrose
pseudo-inverses to track equilibrium points and periodic orbits while detect-
ing bifurcation points [9]. Additionally, MATCONT is grounded in analytical
methods from bifurcation theory [19].

4.1 Bifurcation diagram in the (α,C)-plane

As a starting point, we consider S = 0.4 and Q = 1.2 fixed throughout this
section and let α and C to vary. The resulting bifurcation diagram in the
(α,C)-plane, is shown in Figure 2. This consists of a Hopf bifurcation curve
labeled as H+ and H− (blue curve), a saddle-node bifurcation curves labeled as
LP (orange curve), a homoclinic bifurcation curve labeled as Hom (red curve)
and saddle-node bifurcation of limit cycles labeled as LPC (green curve).

(a)

C

α

BT

GH

H+

4

LP
3

Hom

LPC 5
H−

1

2
6

(b)

C

α

5

4
3

HomLP

LPC

H−
6

2

1

C

α

2

4

5

GH

6

3

(c)

Figure 2. In (a) Bifurcation diagram of system (2.2) in the (α,C)-plane. Parameter
values S = 0.4 and Q = 1.2 are fixed. In (b) a zoom of bifurcation diagram. In panel (c) a
qualitative sketch of the bifurcation diagram near the bifurcation point GH of system (2.2)
in the (α,C)-plane. Parameter values S = 0.4 and Q = 1.2 are fixed. Homoclinic curve (red
curve) extends to C = 0, progressing with the LPC curve (green curve) so that the region 4

narrows for smaller values of C, but it always has a non-empty interior.

There are two bifurcation points of codimension two that organize these
curves. The point labeled as GH on the Hopf curve is a Generalized Hopf
bifurcation point, from which the LPC curve emerges, This point divides the
curve into two segments: H+ and H−, corresponding to the subcritical and
supercritical Hopf bifurcations, respectively. The point BT is a Bogdanov-
Takens point, at which the curves LP , H and Hom meet. Figure 2(a) shows
where the numerical convergence of the Hom curve ends (red curve), but this
curve extends to C = 0, progressing with the LPC curve so that the region
narrows for smaller values of C, but it always has a non-empty interior as shown
in Figure 2(c).

All the bifurcation events in Figure 2 are associated to positive equilibrium
points and periodic orbits in int(Γ ). The curves in Figure 2 divide the shown
part of the (α,C)-plane into six open regions that we label as 1, 2, 3, 4, 5 and
6, respectively. Now, we are going to explore how the bifurcation diagram in
the parameter space (α,C) changes as the parameter S changes. We construct
three bifurcation diagrams for different values of parameter S and fixedQ = 1.2.
The resulting bifurcation scenarios are shown in Figure 3(a)–(c).

In the three cases, the bifurcation diagrams in the (α,C)-plane consists of
a Hopf bifurcation curve labeled as H (blue curve), a saddle-node bifurcation
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Figure 3. The bifurcation diagram in the (α,C)-plane for different values of parameter S
and fixed Q = 1.2. In panel (a) S = 0.1; In panel (b) S = 0.2; In panel (c) S = 0.4.

curves labeled as LP (orange curve), a homoclinic bifurcation curve labeled as
Hom (red curve) and limit point of bifurcation cycles labeled as LPC (green
curve). There are two bifurcation points of codimension two that organize these
curves. The point BT is a Bogdanov-Takens point, at which the curves H, LP
and Hom meet. The second point is a Generalized Hopf point, labelled as GH,
at which the curves H and LPC meet.

Let us note that as the parameter S increases, the curve LP remains in the
same position, while the point BT moves towards the origin along the curve
LP (orange curve), in a manner similar to the movement of point GH along the
curve H (blue curve). Hence, the curves H, LPC and Hom became shorter,
resulting in a reduction of regions 2, 3, 4 and 5, while region 6 increases (see
Figure 3(a)–(c)).

4.2 Phase portraits

In order to explore how the dynamics of system (2.2) change as we move from
one region to another in the parameter space (α,C), the Figure 4 shows partial
renditions of six possible phase portraits in Γ . In the region 1 there are no
equlibria points. As the point (α,C) crosses the curve LP from region 1 into
region 2, two equilibria—labelled as p1 (unstable focus) and p2 (saddle point)
appear in the interior of Γ via a saddle-node bifurcation. If (α,Q) moves from
region 2 into region 3 by crossing the curve H+ (blue curve), one unstable limit
cycle appears around the equilibria p1 via Hopf bifurcation (see Figure 4(a)). A
family of unstable periodic orbits exists in the interior of Γ for (Q,S) in region
3, if (Q,S) reaches the Hom curve (red curve), the family of cycles converges
to a homoclinic orbit. More precisely, the homoclinic orbit is a connection
between the stable and unstable manifolds of p2 (see Figure 4(b)). Finally, in
region 6, the homoclinic connection is broken.

If (α,C) moves from region 3 into region 4 by crossing the curve H− (see
Figure 2(b)), a stable limit cycle appears, i.e., in region 4 there are two limit
cycles around the unstable focus p1 (see Figure 4(c)). The stable limit cycle
is inside the unstable limit cycle. If (α,Q) moves from region 4 into region 2
by crossing the LPC curve, both limit cycles collapse and disappear due to a
saddle-node bifurcation of limit cycles. In region 4 if (α,Q) reaches curve Hom
the (red curve) the family of unstable limit cycles converges to a homoclinic
orbit (see Figure 4(d)). Meanwhile, in region 5 homoclinic connection is broken,
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Figure 4. Phase portraits of system (2.2) corresponding to the bifurcation diagram in
Figure 3. Parameter values are (α,C) = (0.318, 0.037) ∈ region 3 in panel (a);

(α,C) = (0.2899, 0.024515) ∈ Hom in panel (b); (α,C) = (.306, 0.0312) ∈ region 4 in panel
(c); (α,C) = (0.354475, 0.054747) ∈ Hom in panel (d); (α,C) = (0.3, 0.028) ∈ region 5 in
panel (e); (α,C) = (0.304, 0.0324) ∈ region 5 in panel (f). Parameter values S = 0.4 and

Q = 1.2 are fixed.

but the stable limit cycle remains (see Figure 4(e)). Finally, as the point
(α,C) crosses the H− curve from region 5 into region 6, the stable limit cycles
disappear (see Figure 4(f)). In region 6 there are two equilibria—labelled as p1
(stable focus) and p2 (saddle point) which disappear in region 1 via a saddle-
node bifurcation.

4.3 Bifurcation diagram and its associated phase portraits

Figure 5 provides a qualitative illustration of the bifurcation diagram and its
corresponding phase portraits. The central panel shows the bifurcation curves
in the (α,C) parameter space, while the surrounding panels depict the phase
portraits for different regions of this space. This diagram may help in bet-
ter understanding the transition of dynamics as we move through the (α,C)
parameter space.

In region 1 there are not equilibriums points. In region 2 there are two
equilibrium point p1 (unstable focus) and p2 (saddle point) which emerge by
saddle node bifurcation. In region 3 an unstable limit cycle emerges through a
Hopf bifurcation, which surrounds p1 (stable focus). On the Hom curve (from
region 3), a homoclinic connection is formed, where the unstable and stable
manifolds of p2 connect. In region 6 the homoclinic connection is broken, but
both p1 (stable focus) and p2 (saddle point) remain. In region 5 a stable limit
cycle emerges through a Hopf bifurcation, which surrounds p1 (unstable focus).
On the Hom curve (from region 4), a homoclinic connection forms, where the
unstable and stable manifolds of p2 connect, and the stable limit cycle persists.
In region 4, the homoclinic connection is broken, and an unstable limit cycle
emerges, resulting in two limit cycles surrounding p1 (unstable focus). Due to
a saddle-node bifurcation of limit cycles, these limit cycles collapse into a single
cycle along the LPC curve, eventually disappearing in region 2.
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Figure 5. Qualitative illustration of the bifurcation diagram and phase portraits. The
central panel shows bifurcation curves in the (α,C) space, including saddle-node (LP ),
saddle-node of limit cycle (LPC), homoclinic (Hom), and Hopf (blue) bifurcations. The
Hopf curve splits into supercritical (H−) and subcritical (H+) branches, separated by the
generalized Hopf bifurcation point (GH). Surrounding panels show phase portraits for
different parameter regions, with p1 and p2 as positive equilibrium points. Parameter

values S = 0.4 and Q = 1.2 are fixed.

5 Conclusions

In this work, we present a more comprehensive analysis of the dynamic behav-
iors of the modified Leslie model, addressing aspects not explored in previous
studies. Building on the results of Dı́az-Ávalos & González-Olivares (2017) [10]
and Rivera-Estay et al. (2020) [25], we provide a deeper understanding of the
model’s complexity. Specifically, we analyze the dynamics of a modified Leslie-
Gower predation model [13, 17], which exhibits novel behaviors involving gen-
eralist predators. A key feature is the non-differentiable functional response
of the predator, described by h (x) = qxα, with 0 < α < 1, and the assump-
tion that the predator’s carrying capacity depends on prey population size,
expressed as Ky = K(x) = nx+ c, with c > 0.

To simplify the calculations, the system was reparameterized and the time
was rescaled, obtaining a topologically equivalent system. It was proven that
the new system obtained (2.2) is differentiable at the origin, which is a contin-
uous extension of the original one. Besides, it was proved that the solutions of
the system are bounded, implying the model is well-posed [3].

We show the existence of a separatrix curve Σ, determined by the stable
manifold of the hyperbolic equilibrium (0, C), which divides the behaviors of
the trajectories on the phase plane. The trajectories within region Z, located
above the separatrix curve Σ, eventually intersect the vertical axis [29] in fi-
nite time, similar to what occurs in the Volterra model with the Rosenzweig
functional response [27]. Consequently, the modified Leslie-Gower model is
non-Lipschitzian along the vertical axis, as two solutions of the system pass
through each point on that axis.
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An ecologically interesting result is the nature of the non-hyperbolic equi-
librium, whose stable manifold W s (0, C) divides the phase plane into two com-
plementary sectors. This point acts as an attractor for trajectories along the
separatrix curve determined by W s (0, C). Thus, a high predator population
size leads to the extinction of their preferred prey. This is a desirable outcome
when the prey constitutes a pest. However, if the prey are a species of interest,
such as commercially exploited fish, precautions should be taken to avoid their
extinction.

It was established that the system can have up to five singularities; the
origin (p0), two equilibria over the axis (pu and pv), and positive equilibrium
points (p1 and p2). The equilibriums pu is always a hyperbolic saddle. The
origin and pv = (0, C) are non-hyperbolic and its stability can be proven using
sophisticated mathematical techniques, such as changes in convenient variables.
It was not possible to find an algebraic expression for the equilibrium p1 and
p2. However, through geometric and analytical tools, it was possible to prove
that p2 is always a hyperbolic saddle, and that p1 can be an attractor or a
repeller, depending on specific parameter conditions.

It provides the explicit conditions under which the equilibrium p1 an un-
dergo saddle-node and Hopf bifurcations. Additionally, a numerical bifurcation
analysis reveals the existence of various types of bifurcations. In fact, using
MATCONT, a MATLAB package for numerical continuation [9], we identified
two codimension-two bifurcations: Bogdanov-Takens and Generalized Hopf.
These bifurcation were identified in the parameter space (α,C) as a bifurca-
tion points labeled BT and GH. From these points, bifurcation curves emerge,
dividing the parameter space into open regions. All these points and curves
form the bifurcation diagram in the parameter space (α,C), where S and Q
are fixed. Additionally, as the parameter S increases, the bifurcation diagram
shifts towards the origin, causing most of the regions in the first quadrant of
the (α,C)-plane to decrease in size.

In each region of the bifurcation diagram, the system exhibits distinct qual-
itative behaviors, characterized by different phase portraits within the first
quadrant. For instance, for specific parameter values, the system can simulta-
neously exhibit two limit cycles: one stable and one unstable. As we move to
another region, these limit cycles collapse and disappear through a saddle-node
bifurcation. Furthermore, in another region, the stable and unstable manifolds
p2 can connect, forming a homoclinic orbit. This homoclinic connection arises
from a family of limit cycles whose periods converge to infinity. Lastly, there
are regions where the system can exhibit a limit cycle surrounded by a homo-
clinic connection. Therefore, the bifurcation diagram provides insight into the
topological transitions within the model’s dynamics [19].

These numerical results deepen our understanding of the system’s dynamics,
essential for describing ecological scenarios. The numerical bifurcation analysis
identifies specific conditions for persistence through a stable equilibrium point
or a stable limit cycle. Furthermore, when two limit cycles exist (one stable
and one unstable) not only can we confirm that persistence occurs through
the stable limit cycle, but we can also determine the thresholds for the initial
populations necessary for persistence, based on the basin of attraction of the
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stable limit cycle. Specifically, this basin is bounded by the unstable limit cycle.
A similar situation arises in regions where a stable limit cycle is surrounded by a
homoclinic connection, and in this case, the basin is bounded by the homoclinic
connection.

These properties make a clear difference with the dynamics of the model
proposed by P. H. Leslie in 1948 [20]. It has a unique positive equilibrium point
which is globally asymptotically stable. it has also a remarkable difference with
the model Leslie-Gower model considering the Rosenzweig functional response,
but with c = 0 [13], which is lipschitzian on the vertical axis. Future work
could identify heteroclinic connections through analytic study and bifurcation
analysis in other parameter spaces. Another study will explore the effect of an
Allee effect on prey while maintaining Rosenzweig functional responses.
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[13] E. González-Olivares and V. Rivera-Estay and A. Rojas-Palma and K. Vilches-
Ponce. A Leslie–Gower type predator-prey model considering herd behavior.
Ricerche diMatematica, 73(4):1683–1706, 2024. https://doi.org/10.1007/s11587-
022-00694-5.
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6 Appendix

6.1 Proof of Lemma 1 (Number of positive real roots)

Let v = 1
Quα (1 − u)u and v = u + C the isoclines curve. Considering the

tangency of the isoclines, it has d
du (u+ C) = 1, and d

du

(
1

Quα (1− u)u
)

=

− 1
Quα (2u+ α− uα− 1). Then, equaling both derivatives we have −2u− α+

uα + 1 = Quα. Besides, Quα = (1−u)u
v = (1−u)u

u+C . Therefore, (1−u)u
u+C = −2u −

α+ uα+1 ⇔ (1− u)u− (−2u− α+ uα+ 1) (u+ C) = 0, and the abscissa uT

of the tangency point satisfy the polynomial equation PT (u) = (1− α)u2 +[
α+ C(2− α)

]
u−C (1− α) = 0. Applying Descartes’ rule of signs PT (u), the

polynomial has a unique positive root, since 0 < α < 1, which is given by:

uT = 1
2(1−α)

(
−
(
α+ C (2− α)

)
+
√
∆T

)
, with ∆T =

[
α+ C(2− α)

]2
+

4C(1 − α)2 > 0, which is positive for all 0 < α < 1 and C > 0. Figure 6
shows that the isoclines can intersect at two, one, or no points. Both isoclines
intersect at one point at uT (PT (uT ) = 0), and when they intersect at two
points, there exist positive real values ϵ1 and ϵ2 such that u1 = uT + ϵ1 and
u2 = uT − ϵ2. Additionally, it gets

PT (uT − ϵ2) = ϵ2
[
uT (α− 1) + (ϵ2 − uT ) + α(uT − ϵ2 − 1) + C(α− 2)

]
< 0,

PT (uT + ϵ1) = (1− α)
(
2uT ϵ1 + ϵ21

)
+ ϵ1

[
α+ C(2− α)

]
> 0.
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Figure 6. Relative positions of the isoclines, when v = u+ 0.2, and
v = (1− u)u/(Qu0.75), for Q = 1.5 (green curve), 1.85 (blue curve) and 2.25 (purple curve).

6.2 Proof of Lemma 2 (Existence of a positively invariant region)

We consider u = 1, thus we obtain

Yη (1, v) :

{
du
dτ = −Qv,
dv
dτ = S(1 + C − v)v.

Hence, orbits with initial conditions outside of the set will enter to Γ ; the
trajectories inside of this set will not leave it.

6.3 Proof of Lemma 3 (Boundedness of solutions)

From the first equation of system (2.2) it becomes du
dτ ≤ (1−u)(u+C)u2, ∀v ∈

R+. We have that u(τ) → 1, when τ → ∞ and u < 1. Furthermore, u(τ) →
1, when τ → ∞ and u > 1. Defining L = max

{
u(0), 1

}
, it has u(τ) ≤

L, ∀τ, v ≥ 0. We consider W (τ) = u+ 1
S v; then,

dW (τ)

dτ
=

du

dτ
+

1

S

dv

dτ
=
(
(1− u)u−Quαv

)
(u+ C) + (u+ C − v) v.

Then,

dW (τ)

dτ
+ σW (τ) = Cu− Cu2 + Cv + uv + u2 − u3 − v2 − CQuαv −Qu1+αv

+ σ
(
u+v/S

)
≤Cu+Cv+uv+u2 − v2 + σu+

σ

S
v = −v2 + v

(
C + u+ σ/S

)
+ Cu+u2+σu=−

[
v −

(
CS+uS+σ

2S

)]2
+

(
CS+uS+σ

2S

)2

+Cu+u2+σu

≤
(
CS + uS + σ

2S

)2

+ Cu+ u2 + σu ≤
(
CS + S + σ

2S

)2

+ C + 1 + σ = R.

Then, 0 ≤ dW (τ)
dτ +W (τ) ≤ R, which is a first-order linear inequality. By the

Comparison Theorem for differential inequality [4], we obtain W (τ)eτ ≤ Reτ +
C. When τ = 0, W (0) ≤ R+C. There is n ∈ N such that C ≤ n

(
W (0)−R

)
,

then W (τ)eτ ≤ eτR + n
(
W (0)−R

)
, W (τ) ≤ R + e−τn

(
W (0)−R

)
. Clearly,

when τ → ∞ then W (τ) ≤ R.
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6.4 Proof of Lemma 4 (Nature of singularity (1, 0))

The Jacobian matrix of system (2.2) is

DYη (u, v)

=

(
−(C + u)

(
2u+ Qαuαv

u − 1
)
+ ((1− u)u−Quαv) −Quα(C + u)

Sv S(u+ C − 2v)

)
.

Then, evaluated in (1, 0) is:

DYη (1, 0) =

(
−1− C −(1 + C)Q

0 (1 + C)S

)
,

whose eigenvalues are λ1 = −1−C < 0, λ2 = (1+C)S > 0. The result follows
because detDYη (1, 0) = −(S + 2CS + C2S) < 0.

6.5 Proof of Lemma 5 (Nature of singularity (0, 0))

From the above, it can be observed that one component of the Jacobian matrix
DYη is undefined at u = 0. A change of variables is introduced to enable
the evaluation of the equilibrium at (0, 0). Let u = X1/1−α and v = Y and

apply a time rescaling T =
(
X1/1−α + C

)
(1−α)τ . After performing algebraic

calculations, we obtain the system:

Ŷη (X,Y ) :


dX
dT = X −X

α−2
α−1 −QY,

dY
dT = SY

(
−X1/1−α−C+Y

)(
X1/1−α+C

)−1

(1−α)−1.
(6.1)

The Jacobian matrix of the system Ŷη (X,Y ) is:

DŶη (X,Y ) =

(
a11 a12
a21 a22

)
, with

a11 =
[
α− 1− (α− 2)X

1
1−α

]
(α− 1)−1, a12 = −Q,

a21 = X
α

1−αY 2(α− 1)
(
C +X

1
1−α

)2
,

a22 =
(
−C −X

1
1−α + 2Y

)(
X1/1−α + C

)−1

(α− 1)−1.

Evaluating the matrix DŶη (X,Y ) in the point (0, 0) we obtain:

DŶη (0, 0) =

(
1 −Q
0 S(1− α)−1

)
.

Therefore, equilibrium point (0, 0) is a repeller.
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6.6 Proof of Theorem 1 (Nature of singularity (0, C))

The Jacobian matrix DYη is not defined in u = 0. A change of variables is

introduced to allow the evaluation of the equilibrium (0, C). Let u = X
2

1−α and
v = Y , and apply a time rescaling T = 2X

1−ατ . After performing the algebraic
calculations, we obtain the system:

Y η (X,Y ) :


dX
dT =

[ (
1−X

2
1−α

)
X2 −QY

] (
X

2
1−α + C

)
,

dY
dT = BXY

(
X

2
1−α + C − Y

)
,

(6.2)

where η = (Q,C,B, α) with B = 2S
1−α . Note that Y η(0, Y ) = −CQY ∂

∂X .
Then, the orbits of the vector field in Equation (6.2) are orthogonally crossing
the X = 0 axis (Y > 0). Let γ be an orbit of the vector field in Equation (6.2),
and there exists an orbit γ of the system in Equation (2.2), which is tangent to
the vector field Yη at the point (0, v0), with v0 > C. Clearly, the u = 0 axis is an
invariant manifold, and Yη(0, v0) = −Sv0(v0−C) ∂

∂v . Thus, at the point (0, v0),
there exist at least two orbits. Therefore, the system in Equation (2.2) is non-
Lipschitzian. The vector field in Equation (6.2) is a differentiable extension of
the vector field in Equation (2.2), and (0, C) is an equilibrium point for both
systems. However,

DY η(0, C) =

(
0 −CQ
0 0

)
.

It considers the horizontal blowing-up to desingularize (0, C) [11]. Let X =
u and Y = uv. After performing some calculations, we obtain the system:

Jη (u, v) :


du
dT = u

[
u(1− u

2
1−α )−Qv

] (
u

2
1−α + C

)
,

dv
dT =v

[
Bu
(
u

2
1−α+C−uv

)
−
(
u
(
1−u

2
1−α

)
−Qv

)(
u

2
1−α+C

) ]
,

where, DJη(0, C) =

(
0 0
0 0

)
.

Now, considering the vertical blowing-up to desingularize (0, C) [11]. Let
u = XY and v = Y . After some calculations, we obtain the system:

dX
dT = XY

[
2
(
X
(
1−

(
XY

) 2
1−α

)
−Q

)((
XY

) 2
1−α + C

)
−BX

((
XY

) 2
1−α + C −XY 2

)]
dY
dT = Y 2

[
BX

((
XY

) 2
1−α + C −XY 2

)
−
(
X
(
1−

(
XY

) 2
1−α

)
−Q
)((

XY
) 2

1−α + C
)]

,

with DJ̃η(0, C) =

(
−2C3Q 0

0 2C2Q

)
.

Since the vector field Ŷ η in Equation (6.1) is C1
(
R+2, R2

+

)
, by the Exis-

tence and Uniqueness Theorem, a unique trajectory γ passes through (0, C),
corresponding to the separatrix Σ in the topologically equivalent system Yη.
Considering the isocline:

v = Q−1 (1− u)u1−α. (6.3)
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Figure 7. Figure ilustrative of proof. Black curves represent isoclines and blue curve
presents separatrix, which divides the plane (u, v) into a hyperbolic and a parabolic sector.
In panel a) the separatrix is obove (u, v1) and in panel b) the separatrix is below (u, v2).

For fixed u such that u < v − C, there exist v1 and v2 such that (u, v1)
lies below the separatrix Σ and above the isocline, while (u, v2) lies below both
the isocline and the separatrix. If this relation holds consistently, we have
dv
dτ (u, v1) < 0 and du

dτ (u, v1) < 0; furthermore, dv
dτ (u, v2) < 0 and du

dτ (u, v2) > 0
(see Figure 7(a)). Suppose the separatrix lies below the isocline for a certain
value in the first quadrant. Then, for the points above the isocline in Equa-
tion (6.3), we have du

dτ < 0. Therefore, for trajectories with an initial condition
in (u, v1) as t increases for t > 0, these trajectories would cross the separa-
trix Σ, which contradicts the uniqueness of solutions within the interior of the
first quadrant. Then, for all sufficiently small 0 < u, there exist v1, v2 such
that (u, v1) and (u, v2) are above and below the separatrix Σ, respectively (see
Figure 7(b)). Hence, there is an hyperbolic sector.

6.7 Proof of Theorem 2 (Extinction of prey in finite time)

It will be shown for the system (2.1). Let x0 = x(0) and y0 = y(0) be initial
conditions for the system (2.1) and let R be the part of the phase plane de-
fined as R =

{
(x, y)/x > 0, y > ỹ(x)

}
, where ỹ(x)=x1−αβ/(q(1− α)− x1−αβ).

Considering the equations of the system (2.1) we have:
dy
dt = s

(
1− y

nx+c

)
y ≥ − y2

nx+c ≥ − y2

nx+c −
y

nx+c ≥ −y2

c − y
c .

Then, by virtue of the Comparison Theorem for differential inequality [4],
ŷ is the solution of the equation dŷ

dt = 1
c (−y2 − y), corresponding to the same

initial condition ŷ(0) = y(0) = y0; then y(t) ≥ ŷ(t) = y0

eδt(y0+1)−y0
, for any

t > 0 and δ = 1/n. Besides,
dx
dt = r

(
1− x

K

)
x− qxαy ≤ rx− qxαy ≤ rx− qxαŷ ≤ rx− qxα y0

eδt(y0+1)
.

Therefore, again by the Comparison Theorem for differential inequality [4],
if x̂ is the solution of the equation

dx̂

dt
= rx̂− qx̂

y0
eδt(y0 + 1)

, (6.4)

corresponding to the same initial condition x̂(0) = x(0) = x0; then x(t) ≤
x̂(t), for any t > 0. In order to solve (6.4), we introduce a new variable W (t)
defined as x̂(t) = W (t)ert. It has that W (0) = x̂(0) = x(0). From definition of
W and (6.4), we obtain the following equation for the derivative of W :
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dW
dt = −Wαqy0e

−βt

y0+1 , where β = r(1− α) + δ.

As W (0) > 0 and the second term in the right-hand side of the above
derivative is a monotonically increasing function of t. It means that W (t∗) = 0
for a certain t∗, if and only if, W (0)1−α =

[
qy0(1− α)

]
/
[
β(y0 + 1)

]
. Taking

into account the relation between W and x̂, it is obvious that W (t∗) = 0 is
equivalent to x̂(t∗) = 0. Since W (0) = x0, from above equation we obtain
that x̂(t∗) = 0 for any x0 and y0 satisfying the following condition: y0 >

x1−α
0 β/

[
q(1− α)− x1−α

0 β
]
. Recalling that x̂ is an upper bound for x(t); if

x̂(t∗) = 0 then x(t∗) ≤ 0; this means that x(t) becomes zero for some t̂ ≤ t∗.
Since x(t) cannot become negative (because the axis x = 0 is a part of the
x-isocline in the phase plane of system (2.1), x(t) = 0 for any t ≥ t̂. Therefore,
the last inequality provides a sufficient condition for the prey species extinction.
That completes the proof.

6.8 Proof of Theorem 3 (Nature of positive equilibrium point)

The Jacobian matrix DYξ (pG) is

DYη(G,G+ C) =

(
(G+ C)(1− 2G− α(1−G)) −(1−G)G

S(G+ C) −S(G+ C)

)
.

It is easy to check that detDYη(G,G+C) = S(C+G)f(ξ) and TrDYη(G,G+
C) = (C + G)g(ξ), where f and g are defined in (3.2) and (3.3), respectively.
It follows from the Hartman-Grobman’s theorem that the equilibrium pG is a
repeller (resp. attractor) for (3.1) if ξ ∈ f−1

(
]0,+∞[

)
∩ g−1

(
]0,∞+[

)
(resp.

ξ ∈ f−1
(
]0,+∞[

)
∩ g−1

(
]−∞, 0[

)
).

6.9 Proof of Theorem 4 (Existence of a saddle node bifurcation)

Let pG = (G,G+C) a generic equilibrium point and the conditions for a saddle
node bifurcation are: i) detDYη(G,G+ C) = 0; ii) TrDYη(G,G+ C) ̸= 0; iii)

(Transversality condition)
∂(detDYη(G,G+C))

∂C ̸= 0.

6.10 Proof of Theorem 5 (Existence of a Hopf bifurcation)

According to the previous proof, for parameter values ξ in a neigbourhood
of the set f−1

(
]−∞, 0[

)
∩ g−1(0) ⊂ R × ]0, 1[ × ]0, 1[, the eigenvalues of the

system (3.1) have the form λ1,2 = β(ξ)± iω(ξ), where β(ξ) = 1
2g(ξ) and ω(ξ) =

1
2

√
(C +G)

[
4Sf(ξ) + (C +G)

(
g(ξ)

)2]
. In particular, if g(ξ) = 0, then β(ξ) =

0. Moreover, ∂g
∂S = −1 and, hence, ∂β

∂S ̸= 0. Therefore, the real part β(ξ)
changes sign every time the parameter vector ξ crosses the level set g−1(0) ⊂
R × ]0, 1[ × ]0, 1[. Moreover, ω(ξ) = 0 if and only if θ(ξ) = 0, where θ(ξ) =

4Sf(ξ) + (C + G)
(
g(ξ)

)2
. Hence, if ξ ∈

(
θ−1(]−∞, 0[) ∪ θ−1(]0,∞+ [)

)
∩

g−1(0), the system Yξ exhibits a Hopf bifurcation at the equilibrium pG.
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