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Abstract. Radial basis functions (RBF) are used in many areas,
including interpolation and approximation, solution of partial dif-
ferential equations, neural networks, and machine learning. RBFs
are based on the sum of weighted kernel functions. Additional or-
thogonal polynomials are added for robustness, numerical stability,
and computational efficiency improvement.
This contribution gives a new analytical formula specifying values
of the polynomial coefficients used in RBF interpolation. The zero-
degree polynomial coefficient is related to the sigmoid function used
in RBF-neural networks (RBF-NN).
Unlike prior works where polynomial augmentation is only used
to guarantee solvability, this paper provides explicit closed-form
formulae for polynomial coefficients (with special focus on the zero-
degree case). This new analytical treatment clarifies their role as
global bias terms in both interpolation and RBF neural networks.

Expected applicability is in data interpolation and approximation,

RBF-neural networks, scientific computing and PDE solutions, geo-

statistics & spatial interpolation, machine learning, and data fitting

and signal processing.
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1 Introduction

Interpolation and approximation are among the most commonly used opera-
tions in computational techniques. Various methods have been developed for
data interpolation, typically requiring some form of data ”ordering”, such as
structured, rectangular, or unstructured meshes. A typical example is the nu-
merical solution of partial differential equations (PDEs), where derivatives are
approximated by finite differences, predominantly using rectangular or hexag-
onal meshes.

However, in many engineering applications, data are not structured but gen-
erally scattered within a d-dimensional space-time space. In technical applica-
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tions, scattered data is often handled through tessellation using d-dimensional
Delaunay triangulation. However, for d-dimensional data interpolation, this
approach is computationally expensive and often impractical.

Figure 1. Given data values, collocation functions, final RBF interpolation; courtesy [23].

RBF interpolation is based on the partition of unity idea1 used to construct
a global interpolant by blending multiple local interpolants while ensuring
smooth transitions between them. The key idea is to use a set of weighting
functions that sum to one across the domain, allowing localized interpolation
while maintaining global consistency (Figure 1). RBF interpolation is defined
as:

h(x) =

n∑
j=1

λjφ(∥x− xj∥) =
n∑

j=1

λjφ(rj) , x ∈ Rd , λj ∈ R1, (1.1)

where: rj represents the distance from a point x to the point xj , λj ∈ R1

represents the weight and φ(·) is the RBF kernel function used2. A polynomial
Pk(x) of degree k is added to radial basis function (RBF) interpolation to ensure
solvability and uniqueness of the interpolation system, especially when the
RBF is conditionally positive definite (e.g., thin-plate splines). The polynomial
compensates for the null space of the RBF kernel and enforces constraints that
eliminate undesired affine components in the solution [17,25]. It also improves
approximation quality for low-frequency trends in the data.

h(x) =

n∑
j=1

λjφ(∥x− xj∥) + Pk(x),

where Pk(x) is a polynomial of degree k. There are the main advantages:

� No data domain tessellation is needed.

� The formulation leads to a system of linear equations Ax = b.

� Scattered data is handled efficiently.

� Ensures the smoothness of the final interpolation.

� Simple use in radial basis function (RBF) interpolation, finite element
methods (FEM), and meshfree methods.

1 There is a special class of RBF-PUM with a strictly Partition of Unity property [4].
2 In some cases, different scaling on axes can be used, leading to anisometric RBF kernels.
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� If Compactly Supported RBF (CS-RBF) is used, it reduces computational
cost compared to global interpolation methods.

RBF interpolation avoids a tessellation of the data domain and converts the
problem to a solution of linear systems of equations [6].

In the case of RBF use, the dataset
{
(xi, hi)

n
i=1

}
establishes n linear con-

straints, which formally results in a system of linear equations Ax = b:

h(xi) =

n∑
j=1

λjφ(∥xi − xj∥) =
n∑

j=1

λjφ(rij), i = 1, . . . , n, (1.2)

where λj are weights to be determined and φ(∗) is an RBF kernel function.3

In some cases, the RBF-based methods are also sensitive to properly selecting
the shape parameter α. As the RBF matrices tend to be ill-conditioned in some
cases, additional orthogonal polynomials are added to improve the robustness
and precision of computation. However, additional polynomials lead to a loss
of rotational and translational invariance.4

Radial basis functions (RBFs) are used in many areas, e.g., interpolation
and approximation, machine learning and neural networks (RBF-NN), mesh-
less methods in computational mathematics, image processing (registration,
inpainting, and image registration), financial modeling, pattern recognition,
and image analysis.

2 Radial Basis Functions

Many radial basis functions (RBFs) have been introduced recently [2, 6, 16].
RBF interpolation of scattered data involves solving a linear system of equa-
tions Ax = b and consists of two significant steps:

1. The weights λ computation (Equation (1.2)).

2. Computation of the interpolated function h(x) for the value x (Equa-
tion (1.1)).

2.1 RBF kernel functions

RBF interpolation is based on the weighted sum of RBF kernel functions, which
can be categorized into two major groups:

� ”Global” RBFs: These RBFs have a global impact and include functions:

– Polyharmonic spline (PHS):
φ(r) = r2k−1, k = 1, 2, . . . ; φ(r) = rk ln r, k = 1, 2, . . . ;

– Thin-plate spline (TPS)5 φ(r) = r2k ln r, k = 1, 2, . . . ;

3 Some RBFs are parameterized by a shape parameter α > 0.
4 In some cases, especially if the polynomial degree is higher and the data domain range is
high, it might cause severe computational problems.

5 In an implementation φ(r) = r2 ln r2 should be used instead as r2 ln r = 1
2
r2 ln r2 elimi-

nates
√
∗ operation and λ coefficients will be doubled, only.
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– Gaussian: φ(r) = e−αr2 ;

– Multiquadric: φ(r) =
√
1 + αr2;

– Inverse quadratic: φ(r) = 1
1+αr2 ;

– Inverse multiquadratic: φ(r) = 1√
1+αr2

;

where r ∈ (0,∞); a shape parameter α > 0 is used, i.e., αr instead of
r, to modify the RBF kernel function influence. Global RBFs lead to a
dense (full) matrix A, sometimes ill-conditioned [14].

� ”Local” RBFs (Compactly Supported RBFs or CS-RBFs): These RBFs
have non-zero positive values only on the interval (0, 1). CS-RBFs usually
lead to a sparse matrix A and depend on the shape parameter α.6

CS-RBF examples are listed in Table 1.

� Other more complex functions have been defined (RBF-PUM), e.g. [4,16].

Table 1. Wendland’s Compactly Supported RBF (CS-RBF) (·)+ indicates that the value
of the expression is zero for r ≥ 1; αr instead of r is used to modify the RBF kernel function
influence, α > 0.

ID RBF Function ID RBF Function

1 φ1,0 (1− r)+ 2 φ1,1 (1− r)3+(3r + 1)
3 φ1,2 (1− r)5+(8r

2 + 5r + 1) 4 φ3,0 (1− r)2+
5 φ3,1 (1− r)4+(4r + 1) 6 φ3,2 (1− r)6+(35r

2 + 18r + 3)
7 φ3,3 (1− r)8+(32r

3 + 25r2 + 8r + 3) 8 φ5,0 (1− r)3+
9 φ5,1 (1− r)3+(5r + 1) 10 φ5,2 (1− r)7+(16r

2 + 7r + 1)

2.2 Standard testing functions

Several testing functions are commonly used to evaluate interpolation and ap-
proximation precision [10]. The most commonly used functions Fi(x, y) are
listed in Table 2.

In some cases [5], an improper choice of the shape parameter α of the kernel
function φ(r) or polynomial degree significantly influences precision and RBF
matrix conditionality [22]. Figure 2 presents the conditionality of the RBF
matrix dependency on a shape parameter value and the number of points n.

3 RBF Interpolation

Radial basis functions (RBF) are used in interpolation and approximation in
the solution of partial differential equations and are widely used in various ap-
plications [1,19]. RBF interpolation is based on the mutual distances between

6 The shape parameter α value may be critical to interpolation precision, as it influences
the interpolation errors, see [9, 13]; a deeper search for optimal shape parameter choice
was analyzed in [3, 19].
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Table 2. Typical testing functions.

F1(x, y) = 3
4 e−

1
4 ((9x−2)2+(9y−2)2) + 3

4 e−
1
49 (9x+1)2− 1

10 (9y+1)2 ,

+ 1
2 e−

1
4 ((9x−7)2+(9y−3)2) − 1

5 e−(9x−4)2−(9y−7)2 ,

F2(x, y) = 1
9

(
tanh(9y − 9x) + 1

)
, F3(x, y) =

1
6
1.25+cos(4.5y)
1+(3x−1)2

F4(x, y) = 1
3e

− 81
16 ((x−

1
2 )

2+(y− 1
2 )

2), F5(x, y) =
1
3e

− 81
4 ((x−

1
2 )

2+(y− 1
2 )

2),

F6(x, y) = 1
9

√
64− 81

(
(x− 1

2 )
2 + (y − 1

2 )
2
)
− 0.5

F7(x, y) =
√

x2 + y2 + 0.2

Hxx(x, y) = 1
3e

− 81
16 ((x−

1
2 )

2+(y− 1
2 )

2+(z− 1
2 )

2)

(a) Worst conditionality for Gauss
RBF

(b) Gaussian RGB matrix conditionality

Figure 2. Gaussian RGB matrix conditionality dependency on a shape parameter α and
number of RBFs; courtesy [5].

points within the data domain Ω [6,7,10,11,20,24,25,26]. Due to the meshless
representation, RBF can be used for meshless interpolation in d-dimensional
space and approximation of time-varying scattered data, where a domain tes-
sellation cannot be used.
RBF interpolation is defined as:

h(x) =

n∑
j=1

λjφ(∥x− xj∥) =
n∑

j=1

λjφ(rj) , x ∈ Rd , λj , h ∈ R1, (3.1)

where: rj represents the distance from a point x to the point xj , λj represents
the weight and φ(·) is the RBF kernel function used. Since the parameter r of
the function φ(r) is a distance between two points in d-dimensional space, the
RBF interpolation is independent of dimension.

Let us consider the given dataset
{
(xi, hi)

n
i=1

}
. Then, for each point xi,

the interpolating function must take the value hi. It leads to a system of linear
equations:
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hi = h(xi) =

n∑
j=1

λjφ(∥xi − xj∥) =
n∑

j=1

λjφ(rij), i = 1, . . . , n, (3.2)

where: λj represents unknown weights for each radial basis function, n is the
number of given points, and φ(∗) is the radial basis kernel function.
Equation (3.2) can be rewritten in the matrix form using φij = φ(rij) =
φ(∥xi − xj∥) as: 

φ11 · · · φ1j · · · φ1n

...
. . .

...
. . .

...
φi1 · · · φij · · · φin

...
. . .

...
. . .

...
φn1 · · · φnj · · · φnn





λ1

...
λi

...
λn


=



h1

...
hi

...
hn


. (3.3)

Or in a more compact form as:

Aλ = h , A ∈ Rn×n, h,λ ∈ Rn.

Then, the interpolated value h(x) at any point x is computed using Equa-
tion (3.1) as described above.

However, this simple formulation can lead to the ill-conditionality of the
linear system of equations in some cases [5, 6], especially with a high number
of points n and a large range of data [22], special solutions of the linear system
have to be used, e.g., [18].

Therefore, additional orthogonal functions are to be added to ensure better
numerical properties and positive definiteness of the system [6,8, 22].

In the case of an additional polynomial Pk(xi) of degree k is used, Equa-
tion (3.1) is modified to:

h(xi) =

n∑
j=1

λjφ(∥xi − xj∥) + Pk(xi), i = 1, . . . , n,

and additional orthogonal conditions have to be added, e.g., in the case of a
bilinear polynomial of degree one P1(x, y):

P1(x, y) = a0 + a1x+ a2y + a3xy

and the following additional orthogonal conditions are added:7

n∑
j=1

λj = 0,

n∑
j=1

λjxj = 0,

n∑
j=1

λjyj = 0,

n∑
j=1

λjxjyj = 0. (3.4)

7 Coefficients a0, a1, a2 represent an approximation by a plane, while the additional term
a3xy enables a bilinear approximation of h(x) = f(x, y).
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The coefficients a0, a1, . . . act as Lagrange multipliers that enforce the orthog-
onality condition:

n∑
j=1

λjp(xj) = 0 for all p ∈ Πk,

where Πk is the space of polynomials of total degree less than or equal to k.
This ensures that the RBF interpolant is uniquely defined and orthogonal to
the null space associated with the kernel function.

It results in a system of linear equations:

φ11 . . . φ1n 1 x1 y1 x1y1
...

. . .
...

...
...

...
...

φn1 . . . φnn 1 xn yn xnyn
1 1 1 0 0 0 0
x1 . . . xn 0 0 0 0
y1 . . . yn 0 0 0 0

x1y1 . . . xnyn 0 0 0 0





λ1

...
λn

a0
a1
a2
a3


=



h1

...
hn

0
0
0
0


.

The conditions in Equation (3.4) lead to a compact formulation of RBF inter-
polation: [

A P
PT 0

] [
λ
a

]
=

[
h
0

]
, P ∈ Rn×4 , λ ∈ Rn , a ∈ R4,

where the matrix P represents the polynomial, λ is the vector of the RBF
weights, the vector a contains the resulting polynomial coefficients, and h are
the given values hi at the given points xi ∈ Ω. The matrix PT represents the
additional orthogonal conditions defined in Equation (3.4).

P =


1 x1 y1 x1y1
1 x2 y2 x2y2
...

...
...

...
1 xn yn xnyn

 .

The bottom block row imposes the constraint:

PTλ = 0,

which ensures the uniqueness of the interpolant by orthogonality to the poly-
nomial space.

It is worth noting that the matrix size is nearly independent of the data
domain dimension and has the size of (p× p), where p = n+ k + 1 in the case
of the k-degree polynomial.
However, when using the polynomial Pk(x):

� RBF interpolation is not invariant to rotation and translation except
when a zero-degree polynomial P0(x) = a0 is used.
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� Interpolation, represented by λ and a, depends on the physical units used
for the vector x, i.e. the points’ coordinates.

� Use of a k-degree polynomial, k > 0, might be counter-productive in cases
of an extensive range of the domain data [22].

The RBF interpolation results in a linear system of equations Ax = b. It
is a significant advantage of the RBF methods that sophisticated numerical
methods have been developed, and no tessellation is required.8

3.1 Normalized RBF

Normalized RBF (N-RBF) is a modification of the standard RBF used in RBF
neural network-related applications [21]. It is given as:

h(x) =

∑n
j=1 λjφ(∥x− xj∥)∑n
j=1 φ(∥x− xj∥)

=

∑n
j=1 λjφ(rj)∑n
j=1 φ(rj)

, (3.5)

where: rj is the distance from a point x to the point xj .
It can be seen that denominator values in Equation (3.5) can be zero, or close
to zero, i.e.,

∑n
j=1 φ(∥x − xj∥) → 0, for some values x, which would lead to

instability as h(x) → ∞. However, the N-RBFs are used in the RBF neural
network applications [21] as projective linearity is kept.

3.2 Squared normalized RBF

Some RBF functions φ(r) used for interpolation and approximation are not
strictly positive, such as r2 ln(r)(Thin-Plate Spline-TPS), which is negative
on the interval (0, 1). The Euclidean norm should be used for more robust
computation in such cases.9

The Squared Normalized RBF (SN-RBF) is defined as follows:

h(x) =

∑n
j=1 λjφ(∥x− xj∥)√∑n

j=1 φ
2(∥x− xj∥)

=

∑n
j=1 λjφ(rj)√∑n

j=1 φ
2(rj)

, (3.6)

where, rj = ∥x− xj∥ is the distance from a point x to the point xj .

It is essentially the Euclidean normalization of each row of the matrix A in
Equation (3.3), which leads to slightly better numerical conditionality of the
linear system of equations [5]. In the case of interpolation, Equation (3.6) must
be valid for all given points xi ∈ Ω:

h(xi) =

∑n
j=1 λjφ(∥xi − xj∥)√∑n

j=1 φ
2(∥xi − xj∥)

=

∑n
j=1 λjφ(rij)√∑n

j=1 φ
2(rij)

, i = 1, . . . , n (3.7)

8 Note that in the case of spatio-temporal varying scattered data also in time, data tessel-
lation is not possible.

9 It should be noted that r2 log(r) = 1
2
r2 log(r2) is to be used as no

√
r2 computation is

needed; only the values of the weights λj are doubled.
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and it leads to:

n∑
j=1

λjφ(∥xi − xj∥) = h(xi)

√√√√ n∑
j=1

φ2(∥xi − xj∥), i = 1, . . . , n. (3.8)

In the case of the RBF interpolation with an added polynomial Pk(x) of degree
k, Equation (3.7) becomes:

h(x) =

∑n
j=1 λjφ(∥x− xj∥)√∑n

j=1 φ
2(∥x− xj∥)

+ Pk(x). (3.9)

The additional orthogonal conditions will be added, as discussed in Equa-
tion (3.4). The polynomial Pk(x) improves the conditionality of the RBF
matrix and provides a rough approximation of the given data.

The SN-RBF in Equation (3.9) can be rewritten as:

h(xi)=

∑n
j=1 λjφ(∥xi−xj∥)√∑n

j=1 φ
2(∥xi−xj∥)

+Pk(xi)=

∑n
j=1 λjφ(rij)√∑n

j=1 φ
2(rij)

+Pk(xi), i=1, . . . , n,

(3.10)
where: rij = ∥xi − xj∥. It is important to note that this approach replaces
O(n2) division operations with O(n) multiplications. The given values h(xi)

are just multiplied by the values qi =
√∑n

j=1 φ
2(rij).

Now, Equation (3.10) can be modified similarly as to Equation (3.8) to:

n∑
j=1

λjφ(∥xi − xj∥) + Pk(xi)

( n∑
j=1

φ2(∥xi − xj∥)
)1/2

= h(xi)

√√√√ n∑
j=1

φ2(∥xi − xj∥) i = 1, . . . , n. (3.11)

As qi is a constant for the ith row (i = 1, . . . , n), Equation (3.11) is simplified
to:

n∑
j=1

λjφ∥xi − xj∥) + qi Pk(xi) = qi h(xi) i = 1, . . . , n, (3.12)

where: qi =
√∑n

j=1 φ
2(∥xi − xj∥).

It leads to the system of linear equations for the SN-RBF interpolation:

φ11 . . . φ1n q1 q1x1 q1y1 q1x1y1
...

. . .
...

...
...

...
...

φn1 . . . φnn qn qnxn qnyn qnxnyn
1 1 1 0 0 0 0
x1 . . . xn 0 0 0 0
y1 . . . yn 0 0 0 0

x1y1 . . . xnyn 0 0 0 0





λ1

...
λn

a0
a1
a2
a3


=



q1h1

...
qnhn

0
0
0
0


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or more compactly as: [
A QP
PT 0

] [
λ
a

]
=

[
Qh
0

]
,

where: Q = diag[q1, . . . , qn] is a diagonal matrix and qi > 0,10 i = 1, . . . , n in
the case of SN-RBFs.

It should be noted that in the approximation case, i.e., the matrix A is
(n × m), n > m, the polynomial part has to be handled differently, and the
Least Squares Error method (LSE) cannot be used directly [15].

The polynomial Pk(x) of degree k used in RBF generally leads to better
conditionality and computation robustness.

In the following sections, explicit formulae of additional polynomial coefficients
will be derived, including the special case of a zero-degree polynomial related
to the ”bias” term in RBF-NN.

4 RBF polynomial coefficients

In RBF interpolation, the polynomial term can be viewed as capturing the
broad, low-frequency trend of the data (a ”coarse” approximation). At the
same time, the radial basis functions provide localized corrections or ”fine-
tuning” to achieve an accurate overall interpolation.

The coefficients of the polynomial Pk(x) do not represent statistical sum-
maries of the data, such as the mean or the median. Instead, they arise as
part of the solution to the saddle-point (or Karush-Kuhn-Tucker) system that
ensures the solvability and uniqueness of the interpolation problem, especially
when φ(∗) is a conditionally positive definite function. They are Lagrange mul-
tipliers that arise from enforcing the solvability conditions of the RBF system,
particularly when using conditionally positive definite kernels (like polyhar-
monic splines).

� Algebraically, these coefficients enforce that the RBF part lies in the or-
thogonal complement of the space of polynomials of degree ≤ k, ensuring
a unique solution.

� Geometrically, they determine the global trend or bias in the interpola-
tion, e.g., a0 can be interpreted as the vertical shift (offset). In contrast,
the other coefficients model linear or higher-order trends, i.e., represent
tilt or slope, and higher-order terms capture curvature, etc.

In the following, the dependency of the coefficients a of the polynomial
Pk(x) on the distribution of points x in the data domain Ω and given interpo-
lated values h will be analyzed.

10 It is expected that xi ̸= xj , ∀i ̸= j, i, j = 1, . . . n.
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4.1 RBF polynomial - general case

Let us consider RBF with a polynomial defined by the block matrix system:[
A P
PT 0

] [
λ
a

]
=

[
h
0

]
, M ξ = η, (4.1)

where A and M are symmetrical matrices and the matrix A is non-singular,
i.e., DET(A) ̸= 0.11 As Equation (4.1) gives the two equations:

Aλ+Pa = h, (4.2)

PTλ = 0, (4.3)

then the λ coefficients can be expressed, using Equation (4.2), as:

λ = A−1(h−Pa). (4.4)

Substituting Equation (4.4) into Equation (4.3):

PTλ = PTA−1(h−Pa) = 0, i.e., PTA−1h−PTA−1Pa = 0,

the coefficients a of the polynomial Pk(x) are given as:

a =
(
PTA−1P

)−1

PTA−1h, (4.5)

where PTA−1P is the Schur’s complement M\0 of the block sub-matrix A of
the matrix M. The formula Equation (4.5) expresses the polynomial coefficient
a0 directly from the known matrices A, P, and the vector of the given values
h.

4.2 SN-RBF polynomial - general case

The Squared-normalized RBF (SN-RBF) is described in the block matrix form
as: [

A QP
PT 0

] [
λ
a

]
=

[
Qh
0

]
, (4.6)

where Q = diag[q1, . . . , qn] is a diagonal matrix, qi =
√∑n

j=1 φ
2(∥xi − xj∥),

see Equation (3.12). Then Equation (4.6) can be rewritten as:

Aλ+QPa = Qh, (4.7)

PTλ = 0. (4.8)

Then λ can be expressed from Equation (4.7) as:

λ = A−1 (Qh−QPa) = A−1Q(h−Pa).

11 For some kernel functions φ(∗), the matrix A is a positive definite matrix.
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Substituting into Equation (4.8):

PTλ = PTA−1Q(h−Pa) = 0.

Rewriting:

PTA−1Qh = PTA−1QPa.

Therefore, the polynomial coefficients a can be expressed as:

a =
(
PTA−1QP

)−1

PTA−1Qh. (4.9)

4.3 Zero-order polynomial

Using a polynomial Pk(x) of degree k leads to a loss of invariance against
rotation and translation, which might not be acceptable in some applications.
However, using a zero-degree polynomial P0(x) = a0 can be interpreted as the
vertical shift (offset), while the other coefficients model linear or higher-order
trends.

Now, the above-derived formulae for a general polynomial Pk(x) can be
specified for the zero-degree polynomial.

4.3.1 RBF interpolation

In the case of the zero-order polynomial, i.e., P0(x) = a0, the coefficient a0 can
be asily expressed as:

a0 =
(
1TA−11

)−1

1TA−1h =
1TA−1h

1TA−11
, (4.10)

where 1T = [1, . . . , 1]T is a column vector of ”1” and Equation (4.10) can be
rewritten as

a0 =

∑n
i,j=1(A

−1)ijhj∑n
i,j=1(A

−1)ij
=

∑n
j=1 hj

∑n
i=1 αij∑n

j=1

∑n
i=1 αij

,

where αij are elements of the inverse matrix A−1.

4.3.2 SN-RBF interpolation

It is easy to prove that in the case of the SN-RBF, see Equations (4.9) and
(3.10), the formula for the zero-degree polynomial coefficient a0 has the form:

a0 =
(
1TA−1Q 1

)−1

1TA−1Qh =
1TA−1Qh

1TA−1Q 1
,

a0 =

∑n
j=1 hjqj

∑n
i=1 αij∑n

j=1(qj
∑n

i=1 αij)
,

where Q = diag[q1, . . . , qn] and qi =
√∑n

j=1 φ
2(∥xi − xj∥).
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4.4 Optimized computation of the polynomial coefficients

Let us consider the SN-RBF system:[
A QP
PT 0

] [
λ
a

]
=

[
Qh
0

]
.

Let us define

z := Qh , B := QP.

To compute the polynomial coefficients a efficiently, the following steps should
be used:

1. Solve the linear system AY = B, i.e., compute Y := A−1B.

2. Solve the linear system Ay = z, i.e., compute y := A−1z.

3. Then, compute: a =
(
PTY

)−1 (
PTy

)
.

This formulation avoids explicit matrix inversion and leverages the system’s
structure for improved numerical stability and performance.

5 RBF approximation with polynomial term

Let us consider the problem of approximating data values hi given at n data
points xi ∈ Rd using a radial basis function (RBF) interpolant augmented with
a polynomial of degree k. The approximant takes the form:

s(x) =

m∑
j=1

λjφ(∥x− ξj∥) + Pk(x),

where: ξj arem chosen center points (knots)12 in Rd, φ is a radial basis function
(e.g., Gaussian, multiquadric, etc.), Pk(x) is a polynomial of total degree k.

5.1 Formulation

Approximation leads to an overdetermined system with n equations and
m+ L unknowns, where L = dimΠk, the number of monomials in Pk.

Then the approximation system becomes:

Aλ+Pa = h, h ∈ Rn,

where: A ∈ Rn×m: matrix with entries Aij = φ(∥xi−ξj∥), P ∈ Rn×L: matrix
with rows containing evaluations of all monomials of degree ≤ k at xi, λ ∈ Rm:
RBF coefficients, a ∈ RL: polynomial coefficients.

12 Note that the knots points might differ from the given points x; sometimes called points
of importance, e.g., extreme points, inflection points, etc.



Analytical formulae for RBF polynomials 143

This can be solved in the least-squares sense. Defining the residual:

r = Aλ+Pa− h.

We want to minimize the squared error:

∥r∥22 = ∥Aλ+Pa− h∥22.

To solve this constrained least-squares problem, the normal equations are to
be set: [

AT

PT

]
(Aλ+Pa− h) = 0,

which leads to the system:[
ATA ATP
PTA PTP

] [
λ
a

]
=

[
ATh
PTh

]
.

This (m+L)×(m+L) symmetric system can be solved using standard methods
(e.g., Cholesky, if positive definite).

Remarks:

� Using a low-degree polynomial Pk helps control global behavior and
avoids ill-conditioning for certain RBFs.

� Choosing knot points ξj carefully (e.g., using clustering or low-discrepancy
sampling) improves accuracy.

5.2 Explicit evaluation of polynomial coefficients

The approximation of given n data points {xi, hi}ni=1 and m center points
(knots) {cj}mj=1 leads to:

h(xi) ≈
m∑
j=1

λjφ(∥xi − cj∥) +
L−1∑
k=0

akpik(xi),

where: A ∈ Rn×m, where Aij = φ(∥xi − cj∥), P ∈ Rn×L, where Pik = pk(xi),
λ ∈ Rm: RBF weights, a ∈ RL: polynomial coefficients, h ∈ Rn: given data
vector.

Then the least squares error is minimized by solving:

min
λ,a

∥Aλ+Pa− h∥2 .

This leads to the standard equations:[
ATA ATP
PTA PTP

] [
λ
a

]
=

[
ATh
PTh

]
.
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Assuming ATA is invertible, the first block row can be solved:

λ = (ATA)−1
(
ATh−ATPa

)
.

Substitute into the second block row:

PTAλ+PTPa = PTh,

PTA(ATA)−1
(
ATh−ATPa

)
+PTPa = PTh.

Distribute terms:

PTA(ATA)−1ATh−PTA(ATA)−1ATPa+PTPa = PTh

and rearranging gives:(
PTP−PTA(ATA)−1ATP

)
a = PTh−PTA(ATA)−1ATh.

Finally, the explicit formula for a is given as:

a =
(
PTP−PTA(ATA)−1ATP

)−1 (
PTh−PTA(ATA)−1ATh

)
.

Observing that the matrix:

HA = A(ATA)−1AT

is the orthogonal projector onto the column space of A.
Therefore, the expression can be simplified as:

PTA(ATA)−1ATP = PTHAP.

This interpretation emphasizes that the term measures how much of the poly-
nomial basis P lies in the column space of the RBF basis A.

If the polynomial Pk(x) used in RBF approximation is of degree zero, then
P = 1 is a column vector of ones. The general formula for the polynomial
coefficients simplifies to:

a0 =
(
1T (I−HA)1

)−1

1T (I−HA)h

or equivalently:

a0 =
1T (I−HA)h

1T (I−HA)1
,

which is analogous to Equation (4.10); similarly, in the SN-RBF approxima-
tion case. This expression gives the least-squares optimal constant term that
complements the RBF approximation orthogonal to the RBF basis.
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5.3 Characterization of the coefficient a0

In the case of RBF approximation with a degree-zero polynomial, the coefficient
a0 plays a specific role that can be understood from various perspectives:

� Geometrical Point of View : Geometrically, a0 represents the vertical shift
(translation) of the entire RBF approximation surface in the function
space. It adjusts the baseline level of the approximation so that the
residuals h−Aλ are optimally aligned (in the least squares sense) with
the constant function. Thus, a0 positions the RBF surface to best fit the
data on average, after accounting for the contribution of the RBF part.

� Algebraic Point of View : Algebraically, a0 is the projection of the residual
vector (h − Aλ) onto the subspace spanned by the constant function,
orthogonal to the RBF span. Explicitly, it is given by:

a0 =
1T (I−HA)h

1T (I−HA)1
,

where HA = A(ATA)−1AT is the projection matrix onto the RBF sub-
space. This formula ensures that a0 is the optimal scalar minimizing the
residual norm in the orthogonal complement of the RBF space.

� RBF-Neural Network Interpretation: In the framework of RBF neural
networks, the term a0 can be interpreted as a bias node or global bias
term. While the radial basis functions (neurons) capture localized fea-
tures of the data, a0 adjusts the global activation level of the output
layer. It ensures that the output neurons (linear combination of RBF
activations) are centered correctly with respect to the target values.

6 Conclusions

This contribution presents new analytical formulae expressing the influence
of the additional polynomial Pk(x) of degree k. In this case, special formulae
are presented for the zero-degree polynomial, as RBF and SN-RBF are invariant
to rotation and translation. The zero-degree case directly impacts RBF-Neural
Networks by providing an exact value for the sigmoid threshold.

The coefficient a0 of the zero-degree polynomial P0(x) is not an average
of the given values h, nor the median, etc. It depends on the distribution of
points xi in the data domain Ω and given interpolated values h.

The following are the main impacts of the analytical formula for a0:

� RBF Interpolation: Ensuring solvability when working with conditionally
positive definite kernels; interpreting a0 as a global bias or base level in the
interpolant, supporting bias correction and hierarchical decomposition.

� RBF Neural Networks: Direct computation instead of iterative learn-
ing, improved initialization and hybrid analytical-learning strategies, in-
terpretation of low-frequency vs high-frequency components in learned
functions.
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� RBF methods like the Kansa method [12] are widely used for solving
PDEs. The inclusion of a polynomial term (especially constant terms)
in RBF-PDE methods is known to enhance numerical stability and ma-
trix conditioning, provide analytical error bounds, and rigorously assist
in satisfying boundary conditions [8, 9].
An explicit formula for a0 can aid in the development of robust precon-
ditioners and adaptive meshless solvers.

The derivation of the formulae above establishes a connection between the in-
verse of the RBF kernel matrix and the polynomial subspace, thereby providing
a bridge to reproducing kernel Hilbert spaces (RKHS), projection theory, and
functional approximation.

The closed-form expression enables direct computation, bypassing iterative
procedures and reducing the computational cost, which is especially beneficial
for online systems and streaming data scenarios.

Also, a modified formulation for the approximation case has been briefly
described, and relevant formulae have been derived.
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