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Abstract. This paper introduces a spectral algorithm tailored for

solving fractional boundary value problems (BVPs) using the frac-

tional derivatives of modified Chebyshev polynomials. Specifically,

it addresses linear and non-linear BVPs and Bratu equations in

one dimension via spectral methods. The approach employs basis

functions derived from first-kind shifted polynomials that satisfy

the homogeneous boundary conditions. The fractional derivatives

are formulated to facilitate the solution process. The convergence

analysis is studied for the suggested basis expansion; some numeri-

cal results are exhibited to verify the applicability and accuracy of

the method.
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1 Introduction

Fractional boundary value problems (F-BVPs) have gained considerable sig-
nificance in recent decades due to their extensive applications across various
disciplines, including physics, chemistry, and engineering [11,16,29]. Many ap-
plied research fields rely on these equations to model various phenomena [19,21].
Since exact solutions are often unattainable for most of these equations, nu-
merical methods are necessary [1, 18]. Several numerical algorithms are em-
ployed to derive these solutions. The authors in [22] used Mittag-Leffler to
solve F-BVPs. The fractional-order Fibonacci wavelet technique was applied
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to solve the fractional Bagley-Torvik equation [30]. Also, the authors [20] solved
the hyper-Bessel fractional differential operator and bi-ordinal Hilfer fractional
derivative.

One of the most important methods is the spectral method. Spectral meth-
ods are highly effective tools in computational mathematics, and they are
known for their exceptional accuracy and efficiency in solving various prob-
lems. The spectral methods involve three famous methods. Firstly, the col-
location method (pseudospectral) depends on constructing a differentiation or
integration matrix [13, 26]. The Galerkine method is the second method, with
a condition to apply: the base function satisfies the initial and boundary con-
ditions [17,25]. The third method is the Tau method [7, 14].

The spectral method assumes the approximate solution as an assumption of
unknown constant and suitable orthogonal polynomials [2]. The author of [8]
used the shifted ultraspherical as a base function. At the same time, shifted
Legendre is used in [5]. The authors in [32] chose shifted Jacobi polynomials.
The Morgan-Voyce polynomials are applied in [27].

The Chebyshev polynomials (CH-Ps), including their different kinds, are
the most used in the research papers. In addition, some of the authors modify
these polynomials. The authors of [31] modified CH-Ps of the first kind to
satisfy the homogeneity of initial and boundary conditions. The homogeneity
of initial and boundary conditions (IBCs) was confident in [6]. Moreover, the
CH-Ps of the second kind satisfied the homogeneity in [9], which achieved
excellent results in solving problems and real applications [15]. Furthermore,
generalized Chebyshev polynomials are used via the spectral Galerkin in [3,4].

The basis function, modified shifted Chebyshev polynomials (MSCH-Ps), is
employed throughout this paper, which satisfies the condition of the Galerkin
method. This means we start with an expansion-approximated solution that
satisfies the initial and boundary conditions. In addition, the number of equa-
tions of the obtained system will be reduced. The fractional derivative of
MSCH-Ps will be determined and applied to solve F-BVPs. We utilize the
Galerkin and the Tau spectral methods for solving F-BVPs.

This paper consists of six sections. Section 2 presents all the definitions and
relations needed in our work. The fraction derivative of MSCH-Ps is shown in
Section 3. The techniques of solving F-BVPs are presented in Section 4 using
the base function MSCH-Ps and its derivatives via the two spectral methods,
the Galerkin and the Tau method. The error analysis concepts are discussed in
Section 5. Finally, in Section 6, some F-BVPs and real-life problems are solved
and compared with other methods.

2 Preliminaries

Caputo fractional derivative of order v is defined as:

Dv
aZ(ξ) =

1

Γ (n− v)

∫ ξ

a

Z(n)(x)

(ξ − x)
(v−n+1)

dx, for all n− 1 < v < n, n ∈ N,

where Z(n)(x) = dnZ
dxn .
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It is clear that

Dvξb =
Γ (b+ 1)

Γ (b+ 1− v)
ξb−v. (2.1)

The shifted Chebyshev polynomials of first kind SCH-Ps (T ∗
l (ξ); l = 0, 1, . . . ; ξ ∈

[α, β]) of degree l is described as [23]:

T ∗
l (ξ) = Tl

(
2ξ − β − α

β − α

)
, l = 0, 1, 2, . . . .

Its recurrence relation can be formed as:

T ∗
l (ξ) = 2

(
2ξ − β − α

β − α

)
T ∗
l−1(ξ)− T ∗

l−2(ξ) l = 2, 3, . . . ,

with initials T ∗
0 (ξ) = 1 and T ∗

1 (ξ) =
2ξ−β−α

β−α . Its series form is defined as:

T ∗
l (ξ) = l

l∑
j=0

(−1)l−jΓ (l + j)22j

Γ (l − j + 1)Γ (2j + 1)
ξj , l > 0. (2.2)

The MSCH-Ps
(
ψm,l(ξ); l,m = 0, 1, 2, . . . ; ξ ∈ [α, β]

)
of degree (l + 2m)

formed as [6]:

ψm,l(ξ) = (β − ξ)m(ξ − α)mT ∗
l (ξ), l = 0, 1, 2, . . . . (2.3)

Consequently, the initial terms of MSCH-Ps are as follows:

ψm,0(ξ) =(β − ξ)m(ξ − α)m, (2.4)

ψm,1(ξ) =(β − ξ)m(ξ − α)m
(
2ξ − β − α

β − α

)
, (2.5)

ψm,2(ξ) =(β − ξ)m(ξ − α)m
(
8ξ2 − 8(α+ β)ξ + (α+ β)2 + 4αβ

(β − α)2

)
.

The recurrence relation of MSCH-Ps is formed as follows:

ψm,l+2(ξ) = 2

(
2ξ − β − α

β − α

)
ψm,l+1(ξ)− ψm,l(ξ) l = 0, 1, 2, . . . ,

while its initial Equations (2.4) and (2.5).
Furthermore, the initials and boundaries are:

ψm,l(α) = ψm,l(β) = 0, m > 0, ψ′
m,l(α) = ψ′

m,l(β) = 0, m > 1.

The MSCH-Ps satisfy that:

|ψm,l(ξ)| ≤ (β − α)2m, |ψ′
m,l(ξ)| ≤ (β − α)2ml2. (2.6)

The following equation expresses the orthogonality relation of polynomials
{ψm,l(ξ)}l,m≥0 with the weight function ŵ(ξ) = 1

(β−ξ)2m(ξ−α)2m
√

(ξ−α)(β−ξ)
as:

∫ β

α

ŵ(ξ)ψm,l(ξ)ψm,i(ξ)dξ =


0, i ̸= l,

π, i = l = 0,

π/2, i = l > 0.

(2.7)
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The first derivative of ψm,l(ξ) defined as:

d

dξ
ψm,l(ξ) =

2

β − α

l−1∑
i=0

2λl+i

γi
[i+ (2m+ 1)(l − i)]ψm,i(ξ) +∆l(ξ),

where

λi =

{
0, i even,

1, i odd,
γi =

{
2, i = 0,

1, i ̸= 0,

and

∆i =

{
−m((β − ξ)(ξ − α))m−1(2ξ − α− β), i even,

−m((β − ξ)(ξ − α))m−1(β − α), i odd.

Also, the first derivative of ψ(ξ) formed as: ψ′(ξ) = Gψ(ξ) + Ω(ξ), where
ψ′(ξ) = [ψ′

m,0(ξ), ψ
′
m,1(ξ), ..., ψ

′
m,N (ξ)]T , Ω(ξ) = [∆0(ξ), ∆1(ξ), ...,∆N (ξ)]T ,

and G = (glk)
N
l,k=0 is (N + 1)× (N + 1) matrix such that:

glk =
4λl+k

(β − α)γk
[k + (2m+ 1)(l − k)], k, l = 0, . . . , N.

For example, at m = 2 and N = 4:

G =



0 0 0 0 0
10

β − α
0 0 0 0

0
24

β − α
0 0 0

30

b− a
0

28

β − α
0 0

0
64

β − α
0

32

β − α
0


.

Furthermore, the vth integer order derivative of ψ(ξ) defined as:

ψ(v)(ξ) =

{
Gvψ(ξ) +

∑v−1
i=0 G

v−i−1Ω(i)(ξ), v = 1, . . . , N,∑v−1
i=0 G

v−i−1Ω(i)(ξ), v > N,

where G0 is the identity matrix.

3 The MSCH-Ps fractional order derivative

This section aims to calculate the fractional derivative of the MSCH-Ps. From
this point forward ξ ∈ [0, 1].

Theorem 1. The fractional derivative of order α for MSCH-Ps is formed as:

ψ
(α)
m,l(ξ) = l

l∑
j=0

m∑
r=min(0,⌈α⌉−m−j)

Cj,rΓ (j +m+ r + 1)

Γ (j +m+ r − α+ 1)
ξj+m+r−α, l > 0,

Math. Model. Anal., 30(4):714–729, 2025.
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ψ
(α)
m,0(ξ) =

m∑
r=min(0,⌈α⌉−m)

(−1)r Γ (m+ 1)Γ (m+ r + 1)

Γ (r + 1)Γ (m− r + 1)Γ (m+ r − α+ 1)
ξm+r−α,

where

Cj,r =
(−1)r+l−j22jΓ (l + j)Γ (m+ 1)

Γ (l − j + 1)Γ (2j + 1)Γ (r + 1)Γ (m− r + 1)
,

such that m+ l ≥ α, and ψ
(α)
m,l(ξ) = 0, where m+ l < α.

Proof. For l = 0: ψm,0(ξ) = ξm(1 − ξ)m. By using the binomial theorem to
convert (1− ξ)m into summation as:

(1− ξ)m =

m∑
r=0

(−1)rΓ (m+ 1)

Γ (r + 1)Γ (m− r + 1)
ξr, (3.1)

then,

ψm,0(ξ) =

m∑
r=0

(−1)r Γ (m+ 1)

Γ (r + 1)Γ (m− r + 1)
ξm+r.

As the definition of Caputo fractional derivative of order α, Equation (2.1):

ψ
(α)
m,0(ξ) =

m∑
r=min(0,⌈α⌉−m)

(−1)r Γ (m+ 1)Γ (m+ r + 1)

Γ (r + 1)Γ (m− r + 1)Γ (m+ r − α+ 1)
ξm+r−α,

where m ≥ α. While ψ
(α)
m,0(ξ) = 0, m < α. For l > 0:

Let us define the MSCH-Ps as a summation in the interval [0, 1] by using
Equations (2.2) and (2.3):

ψm,l(ξ) = l

l∑
j=0

(−1)l−j22jΓ (l + j)

Γ (l − j + 1)Γ (2j + 1)
ξjξm(1− ξ)m, l > 0.

From Equation (3.1), ψm,l(ξ) can be formed as:

ψm,l(ξ) = l

l∑
j=0

m∑
r=0

(−1)r+l−j22jΓ (l + j)Γ (m+ 1)

Γ (l − j + 1)Γ (2j + 1)Γ (r + 1)Γ (m− r + 1)
ξj+m+r,

where l > 0.
Apply Caputo fractional derivative of order α:

ψ
(α)
m,l(ξ) = l

l∑
j=0

m∑
r=min(0,⌈α⌉−m−j)

Cj,rΓ (j +m+ r + 1)

Γ (j +m+ r − α+ 1)
ξj+m+r−α,

such that m+ l ≥ α. While ψ
(α)
m,l(ξ) = 0, m+ l < α. ⊓⊔

In the following section, we provide a detailed methodology for solving F-BVPs.
The two spectral methods, Galerkin and Tau, are used to solve F-BVPs.
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4 Problem formulation and the presented method for
solving F-BVPS MSCH-Ps

This section presents the techniques for solving fractional boundary value prob-
lems (F-BVPs) using the Galerkin and Tau methods. The emphasis is on ex-
ploring and explaining the methodologies in effectively tackling fractional BVPs
using these specific numerical approaches.

Consider the F-BVPs as:

Z(v)(ξ) = F(ξ, Z(ξ), Z(v1)(ξ), . . . , Z(vk)), ξ ∈ [0, 1], (4.1)

The initial and boundary conditions are homogeneous as:

Z(0) = Z(1) = 0,

where v is a real number, assumed that the approximated spectral solution of
Equation (4.1) is as:

Z(ξ) ≃
N∑
l=0

clψm,l(ξ). (4.2)

Evaluating the residual of Equation (4.1) is gained from Theorem 1 as:

R(ξ)=

N∑
l=0

clψ
(v)
m,l(ξ)−F

(
ξ,

N∑
l=0

clψm,l(ξ),

N∑
l=0

clψ
(v1)
m,l (ξ), . . . ,

N∑
l=0

clψ
(vk)
m,l (ξ)

)
. (4.3)

4.1 Collocation spectral method for fraction order BVP via MSCH-
Ps (MSCH-Coll)

We utilize the collocation points ξj ∈ [0, 1]; j = 0, 1, . . . , N . By collocating
equation (4.3), we obtain N + 1 algebraic system equations for the unknowns
cl; j = 0, 1, . . . , N , represented as:

R(ξj) = 0, j = 0, 1, . . . , N. (4.4)

Solving this algebraic system, as given in Equation (4.4), allows us to determine
the values of the constants cl. Subsequently, these calculated constants are
substituted into the approximated solution presented in Equation (4.2).

4.2 Galerkin spectral method for fraction order BVP via MSCH-Ps
(MSCH-Galerkin)

According to the introduced function in Equation (2.3) specification, the initial
and boundary of the function and their derivatives are equal to zero for specified
values of m. Consequently, this assumption is consistent with the homogeneity
of BVP’s initial and boundary conditions for Galerkin. The suitable weight
function that is used:

w̄(ξ) =
1

ξm(1− ξ)m
√
ξ(1− ξ)

.

Math. Model. Anal., 30(4):714–729, 2025.
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And the trial function will be ψm,l(ξ). Then the Tau integration will be:∫ 1

0

R(ξ)ψm,l(ξ)w̄(ξ)dξ = 0, l = 0, 1, . . . , N. (4.5)

Equation (4.5) yields a system of algebraic N+1 equations in N+1 unknowns.
By solving this system, we can determine the spectral coefficients for the ap-
proximated solution (4.2).

Remark 1. In many practical applications, ensuring homogeneous initial and
boundary conditions is often only achievable sometimes. Therefore, converting
these conditions to be homogeneous becomes necessary. The transformation is
achieved in the following form. Let:

z(ξ) = Z(ξ) +

l−1∑
i=0

Miξ
i, (4.6)

such that

z(0) = z′(0) = z′′(0) = · · · = z(
l
2−1)(0) = 0,

z(1) = z′(1) = z′′(1) = · · · = z(
l
2−1)(1) = 0,

(4.7)

Mi are constants can be determined by solving Equations (4.6), (4.7). Thus,
the F-BVP (4.1), (4.7) can be solved to get the unknown function z(ξ).

5 Error analysis

In this section, some concepts related to error analysis and convergence will be
introduced.

Definition 1. [31] Consider the Sobolev space Hn
θ (α, β) as the following:

Hn
θ (α, β) = {ω ∈ L2

θ(α, β) : ω(r) ∈ L2
θ(α, β), 0 ≤ r ≤ n},

Consider the subspace Hn
0,θ(0, 1) of the space Hn

θ (α, β) such that:

Hn
0,θ(0, 1) = {ω ∈ Hn

θ (α, β) : ω(r)(0) = ω(r)(1) = 0, 0 ≤ r ≤ n}.

Theorem 2. Let Z(ξ) be a function that can be defined as Z(ξ) = ξm (1 −
ξ)m Z̄(ξ) ∈ Hn

0,θ(0, 1) and expanded in terms of the basis function ψm,l(ξ),
Equation (2.3). Then,

|cl| ≲
Mn

ln
, ∀l > 1,

where |Z̄(n)(ξ)| <Mn, and ξ ∈ [0, 1].
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Proof. Let Z(ξ) be a function that satisfies the conditions stated in the theo-
rem. Then,

ξm(1− ξ)mZ̄(ξ) =

∞∑
l=0

clψm,l(ξ).

According to the definition of the basis function in Equation (2.3) and the
orthogonality relation Equation (2.7), we get:

cl = hl

∫ 1

0

Z̄(ξ)T ∗
l (ξ)√

ξ − ξ2
dξ,

where h0 = 1
π and hl =

2
π ∀l > 0.

Let cos γ = 2ξ − 1 and use the integration by parts to get:

cl =
hl
2l

∫ π

0

Z̄ ′(ξ) sin γ sin lγ dγ. (5.1)

Thus, |cl| ≲ Ml

l .
Applying the integration by parts to the integral (5.1) to get:

cl =
hl

2l(l2 − 1)

∫ π

0

Z̄ ′′(ξ) sin γ[ sin lγ cos γ − cos lγ sin γ]dγ.

Thus, |cl| ≲ M2

l2 .
Applying the same procedures n− 2 to complete the proof. ⊓⊔

Lemma 1. [28] Let Z(ξ) be function with Z(l) = cl. If the following assump-
tions are verified:

i. Z(ξ) is positive, decreasing, and continuous for ξ ≥ µ.

ii.
∑
cµ is convergent, and Rµ =

∞∑
l=µ+1

al.

Then,

Rµ ≤
∫ ∞

µ

Z(ξ) dξ.

Theorem 3. Let Z(ξ) be a function that satisfies Lemma 1 and Theorem 2.
Then,

|Z(ξ)− ZN (ξ)| ≲ O
(
N1−n

)
.

Proof. It is clear that

|Z(ξ)− ZN (ξ)| =
∣∣∣∣ ∞∑
l=N+1

clψm,l(ξ)

∣∣∣∣.
Applying Lemma 1 with the aid of the property (2.6), for ξ ∈ [0, 1], and Theo-
rem 2 completes the proof. ⊓⊔

Math. Model. Anal., 30(4):714–729, 2025.
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Corollary 1. Let Z(ξ) be a function that satisfies Theorem 3. Then,

|DZ(ξ)−DZN (ξ)| ≲ O
(
N3−n

)
.

Theorem 4. Let Z(ξ) be a function that satisfies Lemma 1 and Theorem 2,
and Z(ξ) satisfy the following differential equation

Z ′(ξ) = χ(ξ, Z),

and χ satisfy Lipchitz condition in the variable Z, then we have the following
residual error bound.

Proof.

|DZN (ξ)− χ(ξ, ZN )| ≤ |DZN (ξ)−DZ(ξ)|+ |χ(ξ, ZN )− χ(ξ, Z)|
≤ |DZN (ξ)−DZ(ξ)|+ L |ZN (ξ)− Z(ξ)|.

Now, by Theorem 3, and Corollary 1, we get

|DZN (ξ)− χ(ξ, ZN )| ≤ c1N
1−n + c2N

3−n ≲ O
(
N3−n

)
,

which completes the proof. ⊓⊔

For the fractional case,

Z(α)(ξ) = χ(ξ, Z).

Theorem 4 will work with the aid of the following corollary.

Corollary 2.

|Z(α)(ξ)| ≤ 1

Γ (1− α)

∫ ξ

0

|Z ′(η)|
(ξ − η)1−α

dη.

The next section will apply all the previous techniques to some types of
F-BVPs.

6 Solving fractional boundary value problems

Some F-BVPs are solved using two spectral methods: Galerkin and Tau. A
comparison between these methods and other techniques is presented. Two
types of errors are displayed:

1. Absolute Error (AE): AEj = |ZN (ξj)− Z(ξj)|,

2. Maximum Absolute Error (MAE): MAE = max
j

(AEj),

where ξj ∈ [0, 1], ZN (ξ) is the approximate solution, and Z(ξ) is the exact
solution.
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Example 1. Consider the following nonlinear fractional ordinary differential equa-
tion [24]:

Zα(ξ) =
Γ (5 + α)

24
ξ4 + ξ8+2α − Z2(ξ), 0 < ξ < X, Z(0) = 0,

its exact solution is Z(ξ) = ξ4+α. As Z(1) ̸= 0, we apply the homogeneity
converting. The constants in Equation (4.6) were calculated as M0 = 0 and
M1 = −1, as m = 1. Tables 1, 2 and 3 show the MAE of Example 1 at different
values of α. Figure 1 presents the log error at various N .

Table 1. The MAE at α = 0.2 and m = 1 for Example 1.

N MSCH-Coll MSCH-Galerkin [24]

4 1.1 · 10−05 3.7 · 10−06 -
6 8.5 · 10−07 2.8 · 10−07 -
10 1.6 · 10−08 6.6 · 10−09 1.2 · 10−07

14 1.9 · 10−09 5.9 · 10−10 5.7 · 10−09

Table 2. The MAE at α = 0.5 and m = 1 for Example 1.

N MSCH-Coll MSCH-Galerkin [24]

4 4.2 · 10−05 6.5 · 10−06 -
6 3.4 · 10−06 2.9 · 10−07 -
10 1.2 · 10−07 6.6 · 10−09 1.1 · 10−07

14 1.4 · 10−09 9.1 · 10−10 4.1 · 10−09

Table 3. The MAE at α = 1 and m = 1 for Example 1.

N MSCH-Coll MSCH-Galerkin [24]

4 2.8 · 10−16 1.5 · 10−15 -
6 2.2 · 10−16 3.8 · 10−16 -
10 1.4 · 10−15 2.2 · 10−16 3.3 · 10−16

14 4.4 · 10−14 1.0 · 10−16 2.2 · 10−16

Example 2. Consider the fractional ordinary differential equation [33]:

Z(α)(ξ) =
40320

Γ (9− α)
ξ8−α − 3

Γ (5 + α
2 )

Γ (5− α
2 )
ξ4−

α
2 +

9

4
Γ (α+ 1), Z(0) = 0,

its exact solution Z(ξ) = ξ8 − 3ξ4+
α
2 + 9

4ξ
α.

At m = 1, the constants in Equation (4.6) were calculated as M0 = 0 and
M1 = − 1

4 . Table 4 shows the AE at N = 10 and α = 0.1.

Math. Model. Anal., 30(4):714–729, 2025.
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Figure 1. Log error for Example 1 at α = 0.5 using MSCH-Galerkin.

Table 4. The AE at N = 10, α = 0.1, and m = 1 for Example 2.

ξ MSCH-Coll MSCH-Galerkin [33]

0.1 3.5 · 10−02 6.1 · 10−03 2.1 · 10−02

0.2 2.2 · 10−02 4.7 · 10−02 3.4 · 10−01

0.3 1.3 · 10−02 2.0 · 10−01 2.2 · 10−02

0.4 1.0 · 10−02 4.7 · 10−01 8.3 · 10−01

0.5 8.7 · 10−03 5.0 · 10−01 2.4 · 10−01

0.6 7.3 · 10−03 2.7 · 10−02 5.9 · 10−02

0.7 6.5 · 10−03 2.7 · 10−02 1.2 · 10−02

0.8 5.3 · 10−03 1.7 · 10−01 2.1 · 10−01

0.9 6.2 · 10−03 7.5 · 10−02 1.4 · 10−02

1.0 0 0 1.4 · 10−02

Example 3. An application problem of fractional Riccati differential equations
is given by [33]:

Z(α)(ξ) = −Z2(ξ) + 1, Z(0) = 0,

its exact solution at α = 1 is Z(ξ) = tanh ξ. By converting the conditions to
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rr
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Figure 2. Log Error for Example 3 at α = 1 using MSCH-Galerkin.

be homogeneous at m = 1, the constants in Equation (4.6) were calculated as

M0 = 0 and M1 = − e2−1
1+e2 . Table 5 shows the AE at α = 1 and N = 10. Also,

Figure 2 shows the log error at several N using the MSCH-Galerkin method,
proving the stability of these techniques.
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Table 5. The AE at N = 10, α = 1, and m = 1 for Example 3.

ξ MSCH-Coll MSCH-Galerkin [33]

0.1 1.9 · 10−08 6.8 · 10−11 1
0.2 1.8 · 10−08 1.1 · 10−10 9.5 · 10−05

0.3 1.7 · 10−08 5.9 · 10−11 1.8 · 10−04

0.4 1.6 · 10−08 2.6 · 10−12 2.6 · 10−04

0.5 1.5 · 10−08 9.2 · 10−11 3.3 · 10−04

0.6 1.3 · 10−08 6.9 · 10−11 4.0 · 10−04

0.7 1.2 · 10−08 2.9 · 10−11 4.5 · 10−04

0.8 1.1 · 10−08 2.9 · 10−11 5.0 · 10−04

0.9 9.5 · 10−09 1.5 · 10−11 5.5 · 10−04

1.0 0 0 5.9 · 10−04

Example 4. Consider the Bratu equation:

Z(α)(ξ) + λeZ(ξ) = 0, Z(0) = Z(1) = 0,

its exact solution at α = 2 is Z(ξ) = −2 ln
[
cosh( η

4 (2ξ−1))

cosh( η
4 )

]
, where η is the

solution of the equation η =
√
2λ cosh η, for the three corresponding values of

η for λ = 1, 2, and 3.51 are 1.51716, 2.35755, and 4.66781 , respectively. The
conditions of this problem are homogeneous, so MSCH-Coll is applied directly
for m = 1.

Table 6. The AE at m = 1 and λ = 1 for Example 4.

ξ
MSCH-Coll [10] [12]

N = 10 N = 20 N = 10 N = 20

0 0 0 - -
0.1 1.76 · 10−11 8.88 · 10−16 1.32 · 10−06 2.01 · 10−04

0.2 1.82 · 10−11 4.72 · 10−16 6.33 · 10−07 2.83 · 10−04

0.3 1.88 · 10−11 7.63 · 10−16 3.29 · 10−06 2.95 · 10−04

0.4 1.91 · 10−11 7.49 · 10−16 2.81 · 10−06 2.56 · 10−04

0.5 1.92 · 10−11 5.27 · 10−16 4.75 · 1007 1.96 · 10−04

0.6 1.91 · 10−11 6.39 · 10−16 1.48 · 10−06 1.37 · 10−04

0.7 1.87 · 10−11 5.72 · 10−16 2.31 · 10−06 9.16 · 10−05

0.8 1.82 · 10−11 8.32 · 10−16 2.26 · 10−06 5.71 · 10−05

0.9 1.76 · 10−11 4.09 · 10−16 8.62 · 10−07 2.83 · 10−05

1.0 0 0 - -

Tables 6 and 7 present the AE for λ = 1, and 2. While the best MAE of
several methods is presented in Table 8. The stability of the proposed technique
is proved in Figure 3.
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Table 7. The AE at m = 1 and λ = 2 for Example 4.

ξ
MSCH-Coll [10] [12]

N = 10 N = 20 N = 10 N = 20

0 0 0 - -
0.1 7.42 · 10−09 1.25 · 10−14 5.69 · 10−06 9.14 · 10−04

0.2 8.18 · 10−09 1.46 · 10−14 6.10 · 10−06 1.34 · 10−03

0.3 8.78 · 10−09 1.58 · 10−14 1.13 · 10−05 1.21 · 10−03

0.4 9.16 · 10−09 1.64 · 10−14 1.28 · 10−05 7.07 · 10−04

0.5 9.29 · 10−09 1.69 · 10−14 9.52 · 10−06 1.32 · 10−04

0.6 9.16 · 10−09 1.68 · 10−14 8.49 · 10−06 2.57 · 10−04

0.7 8.78 · 10−09 1.64 · 10−14 9.66 · 10−06 3.88 · 10−04

0.8 8.18 · 10−09 1.56 · 10−14 6.80 · 10−06 3.26 · 10−04

0.9 7.42 · 10−09 1.40 · 10−14 3.60 · 10−06 1.74 · 10−04

1.0 0 0 - -

Table 8. The MAE for Example 4.

Method λ = 1 λ = 2 λ = 3.51

MSCH-Coll 8.88 · 10−16 1.68 · 10−14 5.80 · 10−07

[10] 8.62 · 10−06 1.28 · 10−05 5.46 · 10−04

[12] 2.95 · 10−04 1.32 · 10−03 -

λ=1

λ=2

λ=3.51
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Figure 3. Log error for Example 4 at λ = 1, 2, 3.51 using MSCH-Coll.

7 Conclusions

This paper develops a spectral algorithm based on the fractional derivatives of
modified Chebyshev polynomials for solving fractional boundary value prob-
lems (BVPs). The method is applied to linear and non-linear BVPs, including
Bratu equations. The algorithm utilizes modified shifted Chebyshev polyno-
mials as basis functions, which naturally satisfy the homogeneous boundary
conditions, simplifying the solution process. By introducing the fractional
derivatives of the presented polynomials, the approach effectively addresses
these problems. The convergence analysis supports the method’s validity, and
the numerical results confirm its effectiveness and precision.
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