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Abstract. An arc search interior-point algorithm for monotone symmetric cone
linear complementarity problem is presented. The algorithm estimates the central
path by an ellipse and follows an ellipsoidal approximation of the central path to
reach an ε-approximate solution of the problem in a wide neighborhood of the central
path. The convergence analysis of the algorithm is derived. Furthermore, we prove
that the algorithm has the complexity bound O (

√
rL) using Nesterov-Todd search

direction and O (rL) by the xs and sx search directions. The obtained iteration
complexities coincide with the best-known ones obtained by any proposed interior-
point algorithm for this class of mathematical problems.
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1 Introduction

Let (V, ◦) be an n-dimensional Euclidean Jordan algebra (EJA) with rank r
equipped with the standard inner product 〈x, s〉 := tr(x◦s) and assume that K
is the symmetric cone related to EJA (V, ◦). In this paper, similar to [8,9,22], we
define the monotone symmetric cone linear complementarity problem (SCLCP)
in the standard form as follows: The problem of finding a pair (x, s) ∈ K × K

�
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such that

s =M(x) + q, x ◦ s = 0,

where q ∈ V and M : V −→ V is a positive semidefinite linear operator. That
is, 〈M(x), x〉 ≥ 0 for x ∈ V. Since V is EJA, we can consider the matrix
representation M(x) = Mx in which M ∈ Rn×n is positive semidefinite with
respect to the inner product 〈·, ·〉 in (V, ◦). Therefore, the above problem can
be reformulated as follows:

s = Mx+ q, x ◦ s = 0. (1.1)

The monotone SCLCP is a general class of mathematical problems which con-
tains the monotone LCP (the monotone SCLCP with K = Rn+(the cone of
nonnegative orthant)), the monotone semidefinite LCP (the monotone SCLCP
with K = Sn+(the cone of positive semidefinite matrices)) and the monotone
second-order cone LCP (the monotone SCLCP with K = Ln+(the second-order
cone)). Among various approaches, interior-point methods (IPMs) are quite ef-
ficient for solving various classes of mathematical problems. Since Karmarkar’s
algorithm [7] was proved to be polynomial, many researchers proposed some
interior-point algorithms for solving mathematical problems over non-negative
orthant.

Using EJA, Faybusovich [4] generalized IPMs over non-negative orthant
problems to symmetric optimization (SO) problems and SCLCPs. Gowda and
Sznajder [5] showed some global uniqueness and solvability result for SCLCPs.
Schemita and Alizadeh [17] proved the convergence analysis and the polyno-
mial iteration-complexity for short, semi-long and long-step interior-point al-
gorithms for SO problems using the commutative class of search directions.
Rangarajan [15] proposed the first infeasible interior-point method (IIPM) over
symmetric cones. Yoshise [21] proposed a homogeneous algorithm for monotone
nonlinear symmetric cone complementarity problems. Gu et al. [23] extended
the proposed algorithm by Roos [16] for linear optimization (LO) to SO prob-
lems. Wang et al. [22] generalized the Gu et al.’s feasible algorithm for SO [6]
to the Cartesian P∗(K)-SCLCP and obtained the complexity bound O (

√
rL)

for their algorithm.
In most of the above mentioned papers, the proposed algorithms search an

ε-approximate solution of the underlying problem in a small neighborhood of
a straight line related to the first and second-order derivatives of the central
path. However, the most mathematical problems are nonlinear and it seems
that the perfect search for obtaining an ε-approximate solution of them is not
along a straight line and it is along the arcs. Therefore, it is worth to investigate
the analysis of some interior-point algorithms that follow an arc instead of a
straight line in procedure of finding an ε-approximate solution of the underlying
problems.

The first arc search interior-point algorithms were suggested by Yang [19,20]
for convex quadratic optimization (CQO) problems and LO problems. These
algorithms utilize the first and second-order derivatives to construct an ellipse
for approximating the central path. Searching along the ellipse is more efficient
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than searching along any straight line due to generating a larger step size. This
makes the Yang’s algorithms [19,20] efficient in practical computation.

Ai and Zhang [1] based on a new wide neighborhood of the central path,
proposed the first wide neighborhood interior-point algorithm for LCPs. After
that, several authors generalized the Ai and Zhang’s algorithm for LCPs [1] to
some other problems. For instance, Li and Terlaky [10] extended the Ai and
Zhang’s algorithm for LCPs [1] to semidefinite optimization problems. Yang et
al. [13], based on Ai and Zhang’s wide neighborhood, proposed a new infeasible
IPM for SO problems.

Motivated by Yang [19,20], Yang et al. [25] proposed a wide neighborhood
arc search infeasible interior-point algorithm for LO problems. Pirhaji et al.
[24], using the arc search strategy and the wide neighborhood given by Ai and
Zhang [1], suggested an infeasible interior-point algorithm for monotone LCPs.
Based on a commutative class of search directions and the Ai-Zhang’s wide
neighborhood, Yang et al. [14] generalized their proposed arc search algorithm
for LO problems [25] to SO problems.

The main goal of this paper is to present a wide neighborhood arc search
feasible interior-point algorithm for monotone SCLCPs. To this end, motivated
by Yang [19,20], we first estimate the central path of monotone SCLCP by an
ellipse and then, using the wide neighborhood given by Ai and Zhang [1], we
propose an arc search feasible interior-point algorithm for monotone SCLCPs.
The algorithm obtains an ε-approximate solution of the monotone SCLCP in
O (
√
rL) iterations using Nesterov-Todd search direction and it will terminate

after O (rL) iterations, using the xs and sx search directions.
The paper is organized as follows. In Section 2, we recall some basic con-

cepts on EJAs which are required in our paper. In Section 3, we first intro-
duce the central path of the SCLCP and its ellipsoidal approximation, then
we propose an arc search feasible interior-point algorithm for solving monotone
SCLCPs. Section 4 is devoted to present some technical lemmas which are
required in convergence analysis of the algorithm. The convergence analysis of
the algorithm will be presented in Subsection 4.2. Finally, the paper ends with
some concluding remarks in Section 5.

2 Preliminaries

In this section, we outline a minimal foundation of the theory of EJAs which
will be used in this paper.

The EJA (V, ◦) is a finite dimensional vector space over R equipped with the
bilinear map ◦ : (x, y) −→ x ◦ y ∈ V and the standard inner product 〈x, s〉 :=
tr(x ◦ s). The related cone of squares corresponding with (V, ◦) is called the
symmetric cone K. For each x, y ∈ V, Lxy := x◦y and Qx := 2L2

x−Lx2 , where
L2
x := LxLx, denote the linear and quadratic representation of V, respectively.

A Jordan algebra has an identity element, if there exists a unique element
e ∈ V such that x ◦ e = e ◦ x = x for all x ∈ V. An element c ∈ V is
said to be idempotent if c2 = c. An idempotent c is primitive if it is nonzero
and can not be expressed by sum of two other nonzero idempotents. A set of
idempotents {c1, c2, ..., ck} is called a Jordan frame if ci ◦ cj = 0 for any i 6= j,

Math. Model. Anal., 23(1):1–16, 2018.
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and
∑k
i=1 ci = e. For any x ∈ V, let l be the smallest positive integer such that

{e, x, x2, ..., xl} is linearly dependent, l is called the degree of x and is denoted
by deg(x). The rank of V, denoted by rank(V), is defined as the maximum of
deg(x) over all x ∈ V.

The spectral decomposition theorem (Theorem III.1.2 in [3]) of a Euclidean
Jordan algebra V states that for any x ∈ V there exists a Jordan frame
{c1, c2, ..., ck} and a set of real numbers {λ1, λ2, ..., λk} (the eigenvalues of

x) such that x =
∑k
i=1 λici. For any x ∈ V, we define tr(x) :=

∑k
i=1 λi

and det(x) :=
∏k
i=1 λi. We also define λmin(x) and λmax(x) as the mini-

mum and maximum eigenvalue of x, respectively. The norm induced by the
standard inner product is named as the Frobenius norm, which is given by
‖x‖F :=

√
〈x, x〉. Some other norms related to the absolute value of eigenval-

ues of x, namely 1-norm and infinity norm, are defined as ‖x‖1 :=
∑k
i=1 |λi(x)|

and ‖x‖2 := maxi |λi(x)|. Moreover, the merit projection x+ :=
∑r
i=1 λ

+
i ci

and x− := x− x+, where λ+i := max{λi, 0} for i = 1, 2, ..., k.

3 Central path and its ellipsoidal approximation

In this section, we first define the central path of monotone SCLCP and then
we estimate it by an ellipse. To this end, let

F := {(x, s) ∈ K ×K : s = Mx+ q} ,
F 0 := {(x, s) ∈ intK × intK : s = Mx+ q} ,

respectively denote the feasible and strictly feasible sets of monotone SCLCP.
Here, we assume F 0 6= ∅. That is, problem (1.1) satisfies the interior-point
condition (IPC).

The main idea of feasible IPMs is to replace the complementarity condition
x ◦ s = 0 in (1.1) by the perturbed equation x ◦ s = µe to get the following
parameterized system:

Mx− s+ q = 0, x ◦ s = µe. (3.1)

Considering a scaling point p ∈ C(x, s), where

C(x, s) := {p | p nonsingular, Qpx and Qp−1s operator commute},

defining

M̃ := Qp−1MQp−1 , x̃ := Qpx, s̃ := Qp−1s, q̃ := Qp−1q (3.2)

and using Lemma 28 in [17], system (3.1) can be rewritten as follows:

M̃x̃− s̃+ q̃ = 0, x̃ ◦ s̃ = µe. (3.3)

Some best-known choices for the scaling vector p, such as p := x−
1
2 and p := s

1
2 ,

have been proposed by some researchers. These choices of the scaling vector



An Arc Search Interior-Point Algorithm for Monotone SCLCPs 5

p respectively led to the well-known search directions xs and sx while for the
choice of

p :=

(
Q
x

1
2

(
Q
x

1
2
s
)− 1

2

)− 1
2

=

(
Q
s−

1
2

(
Q
s
1
2
x
) 1

2

)− 1
2

,

we get the Nesterov-Todd (NT) search direction. System (3.3) has a unique
solution (x̃(µ), s̃(µ)) for any µ > 0. The set of all such solutions gives a homo-
topy path, which is called the central path. Mathematically, the central path
is a parameterized function of µ defined as

H(µ) :=
{

(x̃(µ), s̃(µ)) : (x̃(µ), s̃(µ)) satisfies (3.3) with µ > 0
}
.

Clearly, the most efficient way to find an ε-approximate solution of the mono-
tone SCLCP is to follow the central path while decreasing the parameter µ
to zero. If µ → 0, then the limit of the central path exists and it is an ε-
approximate solution of the monotone SCLCP.

As we mentioned before, most of interior-point algorithms follow a straight
line approximation related to the first and second order derivatives of the cen-
tral path and generate a sequence of iterations in a small neighborhood of the
central path. In this paper, we use the neighborhood

N (τ, β) :=
{

(x, s) ∈ F0 :
∥∥∥(τµe−Q

x
1
2
s
)+∥∥∥

F
≤ βτµ

}
of the central path, where β, τ ∈ [0, 1]. Motivated by Yang [19,20], we estimate
the central path H(µ) by the ellipse ξ(α) ∈ R2n [2] which is defined as follows:

ξ(α) :=
{

(x̃(α), s̃(α)) ∈ R2n : (x̃(α), s̃(α)) =−→a cos(α)+
−→
b sin(α)+−→c

}
, (3.4)

where −→a and
−→
b ∈ R2n are the axes of the ellipse which are perpendicular to

each other and −→c ∈ R2n is the center of the ellipse.
Let (x̃, s̃) = (x̃(α0), s̃(α0)) ∈ ξ(α) be close to or on the central path H(µ).

We proceed to determine the vectors −→a ,
−→
b ,−→c ∈ R2n and the angle α0 such

that the first and second derivatives of ξ(α) at (x̃, s̃) are the same as those
of H(µ) at (x̃, s̃). Therefor, defining

(
˙̃x, ˙̃s
)

and
(
¨̃x, ¨̃s
)

as the first and second
derivatives of (x̃, s̃) and taking the first and second derivatives of (3.3) at (x̃, s̃)
with respect to µ, we obtain

M̃ ˙̃x− ˙̃s = 0, ˙̃x ◦ s̃+ x̃ ◦ ˙̃s = e,

M̃ ¨̃x− ¨̃s = 0, ¨̃x ◦ s̃+ 2 ˙̃x ◦ ˙̃s+ x̃ ◦ ¨̃s = 0.

In this paper, motivated by [14] and [25], we define the first and second deriva-
tives at (x̃, s̃) to satisfy

M̃ ˙̃x− ˙̃s = 0, s̃ ◦ ˙̃x+ x̃ ◦ ˙̃s = r̃c, (3.5)

M̃ ¨̃x− ¨̃s = 0, s̃ ◦ ¨̃x+ x̃ ◦ ¨̃s = −2 ˙̃x ◦ ˙̃s, (3.6)

Math. Model. Anal., 23(1):1–16, 2018.
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where r̃c := −[(τµe− x̃ ◦ s̃)− +
√
r (τµe− x̃ ◦ s̃)+]. The reason for choosing r̃c

in equation (3.7) is that the extra computational effort is marginal compared to
the computation of Newton search directions with choosing any classical terms
such as e and τµe− x̃ ◦ s̃ (see [14,18,25]).

Obviously, since M is a positive semidefinite matrix M̃ is also a positive
semidefinite one. Let α ∈ [0, π2 ]. The following lemma denotes the mathemati-
cal form of the ellipsoidal approximation of the central path H(µ).

Lemma 1 [Lemma 3.1 in [19]]. Let ξ(α) be the defined ellipse in (3.4) which
passes a point (x̃, s̃). Moreover, assume that the first and second derivatives
( ˙̃x, ˙̃s) and (¨̃x, ¨̃s) satisfy (3.5) and (3.6). Then, after searching along the ellipse
ξ(α), the new generated point (x̃(α), s̃(α)) is given by

x̃(α) := x̃− ˙̃x sin(α) + ¨̃x(1− cos(α)), (3.7)

s̃(α) := s̃− ˙̃s sin(α) + ¨̃s(1− cos(α)). (3.8)

Due to the above lemma, the ellipsoidal approximation of the central pathH(µ)
is mathematically defined as follows:

H̃(α) :=
{

(x̃(α), s̃(α)) : (x̃(α), s̃(α)) satisfies (3.7) and (3.8) with α ∈ [0,
π

2
]
}
.

However, after searching along the ellipsoidal central path H̃(α), the new gen-
erated point (x̃(α), s̃(α)) is given by Lemma 1. Defining g(α) := 1− cos(α), we
have

x̃(α) ◦ s̃(α) = x̃ ◦ s̃− sin(α)r̃c + ϕ(α), (3.9)

ϕ(α) := −g2(α) ˙̃x ◦ ˙̃s− sin(α)g(α)( ˙̃x ◦ ¨̃s+ ˙̃s ◦ ¨̃x) + g2(α)¨̃x ◦ ¨̃s. (3.10)

3.1 Arc search algorithm

Here, the main idea of arc search feasible interior-point algorithm for mono-
tone SCLCP is described. The arc search algorithm starts from an initial point(
x0, s0

)
∈ N (τ, β) which is close to or on the central path H(µ). Constructing

an ellipse which passes through this point, the central path H(µ) is approx-
imated. Then, instead of the central path H(µ), the algorithm follows the

ellipsoidal approximation H̃(α) to get a new iterate (x̃(α), s̃(α)). The new it-
erate (x̃(α), s̃(α)) not only reduces the duality gap tr (x̃ ◦ s̃) but also belongs
to the wide neighborhood N (τ, β). This procedure will be repeated until an
ε-approximate solution of the monotone SCLCP is found.

Below, a more formal description of the algorithm is presented.

Algorithm 1. (Arc search feasible interior-point algorithm
for monotone SCLCP)

• Input parameters: An accuracy parameter ε > 0, a neighborhood param-
eter β ∈ (0, 12 ], a centering parameter τ ∈ (0, 14 ], an initial feasible point
(x0, s0) ∈ N (τ, β) and µ0 = 1

r tr
(
x0 ◦ s0

)
.

• Step 0: Set k=0,1,2,....



An Arc Search Interior-Point Algorithm for Monotone SCLCPs 7

• Step 1: If µ̃k ≤ εµ̃0, stop. Otherwise, go to the next step.

• Step 2: Compute
(

˙̃x, ˙̃s
)
,
(
¨̃x, ¨̃s
)

respectively by the systems (3.5) and (3.6).

• Step 3: Calculate the largest step size sin(α̂k) such that

µ̃(α) ≤
(
1− 0.5 sin(α)

)
µ̃k, (3.11)(

x̃(α), s̃(α)
)
∈ N (τ, β), (3.12)

for any step size sin(α) ∈ [0, sin(α̂k)].

• Step 4: Compute the new iterate
(
x̃(α̂k), s̃(α̂k)

)
by Lemma 1 and µ̃(α̂k) :=

tr
(
x̃(α̂k) ◦ s̃(α̂k)

)
/r.

• Step 5: Set µ̃k+1 = µ̃(α̂k) and k = k + 1 and go to Step 1.

4 Complexity analysis of the algorithm

4.1 Technical lemmas

In this subsection, we state some technical lemmas which are required in proof
of the convergence analysis of the algorithm.

Lemma 2. The neighborhood N (τ, β) is scaling invariant, i.e., (x, s) belongs
to the neighborhood N (τ, β) iff (x̃, s̃) does.

Proof. Due to Lemma 21 in [17], the vectors Q
x

1
2
s and Q

x̃
1
2
s̃ have the same

eigenvalues. On the other hand, we can rewrite the neighborhood N (τ, β) in
term of the eigenvalues of Q

x
1
2
s. This follows the result. ut

Lemma 3. Let x, s ∈ intK. If x and s are operator commute, then Q
x

1
2
s =

x ◦ s.

Proof. Let x and s be operator commute. Then, x
1
2 and s are also operator

commute. This implies

Q
x

1
2
s =

[
2L(x

1
2 )2 − L(x)

]
s = 2L(x

1
2 )2L(s)e− x ◦ s

= 2L(s)L(x
1
2 )2e− x ◦ s = 2L(s)x− x ◦ s = x ◦ s.

This completes the proof. ut

Corollary 1. Let x, s ∈ intK and x̃ and s̃ be as defined in (3.2). Then, Q
x̃

1
2
s̃ =

x̃ ◦ s̃.

Proof. Due to Lemma 2.2 in [11], if x, s ∈ intK then we have x̃, s̃ ∈ intK.
Moreover, x̃ and s̃ are operator commute. The result directly follows by Lemma
3. ut

The following lemma is a direct result of the positive semidefinite property of
the matrix M̃ in systems (3.5) and (3.6).

Math. Model. Anal., 23(1):1–16, 2018.
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Lemma 4. Let
(

˙̃x, ˙̃s
)

and
(
¨̃x, ¨̃s
)

respectively be the solutions of systems (3.5)
and (3.6). Then

tr
(

˙̃x ◦ ˙̃s
)
≥ 0, tr

(
¨̃x ◦ ¨̃s

)
≥ 0.

Lemma 5 [Lemma 5.3 in [18]]. Let (x̃, s̃) ∈ N (τ, β) and G := L−1s̃ Lx̃. Then,∥∥∥(Lx̃Ls̃)
− 1

2 r̃c

∥∥∥2
F
≤ (1 + βτ)µr.

Lemma 6. Let (x̃, s̃) ∈ N (τ, β), G := L−1s̃ Lx̃ and
(

˙̃x, ˙̃s
)

be the solution of
system (3.5). Then,∥∥ ˙̃x ◦ ˙̃s

∥∥
F
≤ 0.5

√
cond(G) (1 + βτ)µr, (4.1)

tr
(

˙̃x ◦ ˙̃s
)
≤ 0.5

√
cond(G) (1 + βτ)µr. (4.2)

Proof. Multiplying the second equation in system (3.5) by (Lx̃Ls̃)
− 1

2 , taking
squared norm on both sides and using Lemma 33 in [17] and Lemmas 4 and 5,
we derive∥∥ ˙̃x ◦ ˙̃s

∥∥
F
≤
∥∥ ˙̃x
∥∥
F

∥∥ ˙̃s
∥∥
F
≤ 0.5

√
cond(G)

(∥∥∥G−1
2 ˙̃x
∥∥∥2
F

+
∥∥∥G 1

2 ˙̃s
∥∥∥2
F

)
≤ 0.5

√
cond(G)

∥∥∥G−1
2 ˙̃x+G

1
2 ˙̃s
∥∥∥2
F

= 0.5
√

cond(G)
∥∥∥(Lx̃Ls̃)

− 1
2 r̃c

∥∥∥2
F

≤ 0.5
√
cond(G)(1 + βτ)µr,

which implies (4.1). To prove (4.2), using Lemma 4.52 in [6], in the same way
as the proof of (4.1), we obtain

tr
(

˙̃x ◦ ˙̃s
)
≤
∥∥ ˙̃x
∥∥
F

∥∥ ˙̃s
∥∥
F
≤ 1

2

√
cond(G)(1 + βτ)µr.

This completes the proof. ut

Lemma 7. Let γ := (1− β) τ , (x̃, s̃) ∈ N (τ, β), G := L−1s̃ Lx̃ and
(
¨̃x, ¨̃s
)

be the
solution of system (3.6). Then,∥∥∥G−1

2 ¨̃x+G
1
2 ¨̃s
∥∥∥2
F
≤ 1

γ
cond(G) (1 + βτ)

2
µr2. (4.3)

Proof. Multiplying the second equation in system (3.6) by (Lx̃Ls̃)
− 1

2 , taking
squared norm on both sides and using Lemma 6, we have∥∥∥G−1

2 ¨̃x+G
1
2 ¨̃s
∥∥∥2
F

= 4
∥∥∥(Lx̃Ls̃)

− 1
2 ˙̃x ◦ ˙̃s

∥∥∥2
F

= 4
∥∥∥(Lx̃Ls̃)

− 1
2

∥∥∥2
2

∥∥ ˙̃x ◦ ˙̃s
∥∥2
F

= 4λmax (Lx̃Ls̃)
−1 ∥∥ ˙̃x ◦ ˙̃s

∥∥2
F

=
4

λmin (x̃ ◦ s̃)
∥∥ ˙̃x ◦ ˙̃s

∥∥2
F

≤ 4

γµ

∥∥ ˙̃x ◦ ˙̃s
∥∥2
F
≤ 1

γ
cond(G) (1 + βτ)

2
µr2,

where, the first inequality follows from (x̃, s̃) ∈ N (τ, β). This follows the result.
ut
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Lemma 8. Let (x̃, s̃) ∈ N (τ, β), G := L−1s̃ Lx̃ and
(
¨̃x, ¨̃s
)

be the solution of
system (3.6). Then,∥∥¨̃x ◦ ¨̃s

∥∥
F
≤ 1

2γ
(cond(G))

3
2 (1 + βτ)

2
µr2, (4.4)

tr
(
¨̃x ◦ ¨̃s

)
≤ 1

2γ
(cond(G))

3
2 (1 + βτ)

2
µr2. (4.5)

Proof. Using Lemma 33 in [17] and Lemmas 4 and 7, it follows∥∥¨̃x ◦ ¨̃s
∥∥
F
≤
∥∥¨̃x
∥∥
F

∥∥¨̃s
∥∥
F
≤ 1

2

√
cond(G)

(∥∥∥G−1
2 ¨̃x
∥∥∥2
F

+
∥∥∥G 1

2 ¨̃s
∥∥∥2
F

)
≤ 1

2

√
cond(G)

∥∥∥G−1
2 ¨̃x+G

1
2 ¨̃s
∥∥∥2
F
≤ 1

2γ
(cond(G))

3
2 (1 + βτ)

2
µr2,

which concludes the inequality (4.4). In the same way as the proof of (4.2), the
inequality (4.5) is proved. This ends the proof. ut

Lemma 9. Let
(

˙̃x, ˙̃s
)

and
(
¨̃x, ¨̃s
)

be the solutions of systems (3.5) and (3.6).
Then, ∥∥ ˙̃x ◦ ¨̃s

∥∥
F
≤ 1
√
γ
cond(G) (1 + βτ)

3
2 µr

3
2 , (4.6)

∥∥ ˙̃s ◦ ¨̃x
∥∥
F
≤ 1
√
γ
cond(G) (1 + βτ)

3
2 µr

3
2 . (4.7)

Proof. Using Lemma 33 in [17] and Lemmas 6 and 8, we have∥∥ ˙̃x ◦ ¨̃s
∥∥
F
≤
∥∥ ˙̃x
∥∥
F

∥∥¨̃s
∥∥
F
≤

√
cond(G)

∥∥∥G−1
2 ˙̃x
∥∥∥
F

∥∥∥G 1
2 ¨̃s
∥∥∥
F

≤ 1
√
γ
cond(G) (1 + βτ)

3
2 µr

3
2 ,

which implies (4.6). The proof of (4.7) is similar to (4.6) and therefore is
omitted. ut

Using Lemma 4.52 in [6] and Lemma 9, the following corollary is derived.

Corollary 2. Let x, s ∈ intK and
(

˙̃x, ˙̃s
)

and
(
¨̃x, ¨̃s
)

be the solutions of systems
(3.5) and (3.6). Then,

|tr
(

˙̃x ◦ ¨̃s
)
| ≤ 1

√
γ
cond(G) (1 + βτ)

3
2 µr

3
2 ,

|tr
(

˙̃s ◦ ¨̃x
)
| ≤ 1

√
γ
cond(G) (1 + βτ)

3
2 µr

3
2 .

4.2 Convergence analysis

In this subsection, we prove the polynomial complexity of Algorithm 1. To
this end, we need to obtain a lower bound for the largest step size sin(α̂k) such

Math. Model. Anal., 23(1):1–16, 2018.
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that the conditions (3.11) and (3.12) are held. More precisely, it is necessary to
obtain a lower bound for the step size sin(α̂) such that it not only guarantees the
reduction of the duality gap tr (x̃ ◦ s̃) but also ensures that the new generated
point (x̃(α), s̃(α)) belongs to N (τ, β). To this end, let to state the following
lemma which plays an important role in our analysis.

Lemma 10. Let ϕ(α) be defined as (3.10). Then

d1(α) ≤ tr (ϕ(α)) ≤ d2(α), (4.8)

where

d1(α) := −1

2

√
cond(G)(1 + βτ) sin4(α)µr − 2

√
γ
cond(G)

× (1 + βτ)
3
2 sin3(α)µr

3
2 , d2(α) :=

2
√
γ
cond(G)(1 + βτ)

3
2

× sin3(α)µr
3
2 +

1

2γ
(cond(G))

3
2 (1 + βτ)

2
sin4(α)µr2.

Proof. To prove the left hand side inequality in (4.8), using Lemmas 4 and 6
and Corollary 2, we derive

tr (ϕ(α)) = −g2(α)tr
(

˙̃x ◦ ˙̃s
)
− sin(α)g(α)tr

(
˙̃x ◦ ¨̃s+ ˙̃s ◦ ¨̃x

)
+ g2(α)tr

(
¨̃x ◦ ¨̃s

)
≥ −g2(α)tr

(
˙̃x ◦ ˙̃s

)
− sin(α)g(α)

(
tr
(

˙̃x ◦ ¨̃s
)

+ tr
(

˙̃s ◦ ¨̃x
))

≥ −1

2
g2(α)

√
cond(G)(1 + βτ)µr − 2

√
γ
cond(G) (1 + βτ)

3
2 sin(α)g(α)µr

3
2

≥ −1

2

√
cond(G)(1 + βτ) sin4(α)µr − 2

√
γ
cond(G) (1 + βτ)

3
2 sin3(α)µr

3
2 ,

which follows the left-hand side of the inequality in (4.8). On the other hand,
we have

tr (ϕ(α)) = −g2(α)tr
(

˙̃x ◦ ˙̃s
)
− sin(α)g(α)tr

(
˙̃x ◦ ¨̃s+ ˙̃s ◦ ¨̃x

)
+ g2(α)tr

(
¨̃x ◦ ¨̃s

)
≤ − sin(α)g(α)

(
tr
(

˙̃x ◦ ¨̃s
)

+ tr
(

˙̃s ◦ ¨̃x
))

+ g2(α)tr
(
¨̃x ◦ ¨̃s

)
≤ 2
√
γ
cond(G)(1+βτ)

3
2 sin3(α)µr

3
2 +

1

2γ
(cond(G))

3
2 (1+βτ)

2
sin4(α)µr2,

which proves the right hand side inequality in (4.8). The proof is complete. ut

Lemma 11. Let sin(α̂) be the largest step size which satisfies the condition
(3.11). Then, sin(α̂) ≥ sin(α̂0), where sin(α̂0) := 0.5βτ/

√
rcond(G).

Proof. Due to (3.9), (3.10) and the definition of r̃c, we have

µ(α) = µ̃(α) =
1

r
tr (x̃(α) ◦ s̃(α)) =

1

r
(tr (x̃ ◦ s̃)− sin(α)tr (r̃c) + tr (ϕ(α)))

= µ+ sin(α)

(
τµ− µ+

√
r − 1

r
tr (τµe− x̃ ◦ s̃)+

)
+

tr (ϕ(α))

r

≤ µ+ sin(α)

(
τµ− µ+

√
r − 1√
r

∥∥∥(τµe− x̃ ◦ s̃)+
∥∥∥
F

)
+
d2(α)

r
.
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Thus, using the definition of N (τ, β) and Lemma 10, we derive

µ(α) ≤ µ+ (τ − 1 + βτ) sin(α)µ+
1

r
d2(α) = µ+ (τ − 1 + βτ) sin(α)µ

+
2
√
γ
cond(G)(1+βτ)

3
2 sin3(α)µ

√
r+

1

2γ
(cond(G))

3
2 (1+βτ)

2
sin4(α)µr

≤
[
1−

[
1− τ − βτ − 2

√
γ
cond(G)(1 + βτ)

3
2 sin2(α̂0)

√
r

− 1

2γ
(cond(G))

3
2 (1 + βτ)

2
sin3(α̂0)r

]
sin(α)

]
µ

≤
[
1−
[
1−1

4
−1

8
− 1

2
√
γr

(1+βτ)
3
2 β2τ2− 1

16γ
√
r

(1+βτ)
2
β3τ3

]
sin(α)

]
µ

≤
[
1−

[5

8
− 1√

6
(1 + βτ)

3
2 β2τ

3
2 − 1

8
√

3
(1 + βτ)

2
β3τ2

]
sin(α)

]
µ

≤
[
1− (0.625− 0.015− 0.001) sin(α)

]
µ ≤

(
1− 1

2
sin(α)

)
µ,

where the third inequality is due to sin(α̂0) := βτ

2
√
rcond(G)

and the last three

inequalities follow from the facts 1√
γ ≤

√
2√
τ

, r ≥ 3, τ ≤ 1
4 and β ≤ 1

2 . This

implies that sin(α̂0) is a lower bound for the largest step size sin(α̂) which
satisfies the condition (3.11). The result is derived. ut

Lemma 12. Let sin(α̂) ≥ sin(α̂0), where sin(α̂0) := βτ

2
√
rcond(G)

. Then, for

sin(α) ∈ [0, sin(α̂)],

µ̃(α) ≥ (1− sin(α))µ. (4.9)

Proof. Using (3.9) and Lemma 10, we conclude

tr (x̃(α) ◦ s̃(α)) = tr (x̃ ◦ s̃)− sin(α)tr (r̃c) + tr (ϕ(α))

= rµ+ sin(α)
(
τrµ− rµ+

(√
r − 1

)
tr (τµe− x̃ ◦ s̃)+

)
+ tr (ϕ(α))

≥ (1− sin(α)) rµ+ sin(α)τrµ+ d1(α). (4.10)

On the other hand, we have

sin(α)τrµ+ d1(α) = sin(α)τrµ− 1

2

√
cond(G)(1 + βτ) sin4(α)µr

− 2
√
γ
cond(G) (1 + βτ)

3
2 sin3(α)µr

3
2 ≥ sin(α)rµ (4.11)

×
[
τ−
√
cond(G)

2
(1+βτ) sin3(α̂0)− 2

√
γ
cond(G) (1+βτ)

3
2 sin2(α̂0)

√
r
]

≥ sin(α)rµ
[
τ − 1

2
(1 + βτ)

β3τ3

8cond(G)r
3
2

− 2
√

2 (1 + βτ)
3
2
β2τ

3
2

4
√
r

]
≥ 0,

(4.12)

Math. Model. Anal., 23(1):1–16, 2018.
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where the last inequality holds for r ≥ 3 and it follows from τ ∈ (0, 14 ] and
β ≤ 1

2 . Substituting (4.11) into (4.10), one has µ̃(α) ≥ (1− sin(α))µ, which
concludes the result and ends the proof. ut

The following lemma is directly used in the proof of Lemma 14

Lemma 13. Let µ̃(α) > 0 and sin(α̂0) := βτ

2
√
rcond(G)

. Then, for all step size

sin(α) ∈ [0, sin(α̂0)], one has∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c)
+∥∥

F
≤
(
1− sin(α)

√
r
)
βτµ. (4.13)

Proof. Due to Lemma 11, we have µ(α) ≤ µ. Therefore,∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c)
+∥∥

F
≤
∥∥(τµe− x̃ ◦ s̃+ sin(α)r̃c)

+∥∥
F

≤
∥∥∥[(1− sin(α)) (τµe− x̃ ◦ s̃)− + (1− sin(α)

√
r) (τµe− x̃ ◦ s̃)+

]+∥∥∥
F

≤
∥∥∥[(1− sin(α)

√
r) (τµe− x̃ ◦ s̃)+

]+∥∥∥
F

=
(
1− sin(α)

√
r
)+ ∥∥∥(τµe− x̃ ◦ s̃)+

∥∥∥
F
≤
(
1− sin(α)

√
r
)
βτµ,

where the third inequality follows from Lemma 5.7 in [18] and the last one is
due to the facts (x̃, s̃) ∈ N (τ, β) and sin(α̂0) ≤ 1√

r
. This completes the proof.

ut

Now, we are ready to present the main result of the paper.

Lemma 14. Let sin(α̂0) := 0.5βτ/
√
rcond(G) and (x̃(α), s̃(α)) be defined as

in Lemma 1. Then, for all sin(α) ∈ [0, sin(α̂0)]

(x̃(α), s̃(α)) ∈ N (τ, β).

Proof. To prove the lemma, we need to show that (x̃(α), s̃(α)) ∈ F0 and

also
∥∥∥(τ µ̃(α)e−Q

x̃(α)
1
2
s̃(α)

)+∥∥∥
F
≤ βτµ̃(α). To this end, using Lemma 5.17

in [18], we have∥∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α))
+
∥∥∥
F

=
∥∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c − ϕ(α))

+
∥∥∥
F

≤
∥∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c)

+
∥∥∥
F

+
∥∥∥(ϕ(α))

−
∥∥∥
F

≤
∥∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c)

+
∥∥∥
F

+ ‖ϕ(α)‖F .

Thus,
∥∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α))

+
∥∥∥
F
≤ βτµ̃(α), if

∥∥∥(τ µ̃(α)e− x̃ ◦ s̃+ sin(α)r̃c)
+
∥∥∥
F

+ ‖ϕ(α)‖F ≤ βτµ̃(α). (4.14)
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Using Lemmas 6, 8 and 9, it follows

‖ϕ(α)‖F =
∥∥−g2(α) ˙̃x ◦ ˙̃s− sin(α)g(α)( ˙̃x ◦ ¨̃s+ ˙̃s ◦ ¨̃x) + g2(α)¨̃x ◦ ¨̃s

∥∥
F

≤ sin4(α)
∥∥ ˙̃x ◦ ˙̃s

∥∥
F

+ sin3(α)
(∥∥ ˙̃x ◦ ¨̃s

∥∥
F

+
∥∥ ˙̃s ◦ ¨̃x

∥∥
F

)
+ sin4(α)

∥∥¨̃x ◦ ¨̃s
∥∥
F

≤ 1

2

√
cond(G)(1 + βτ) sin4(α)µr +

2
√
γ
cond(G) (1 + βτ)

3
2 sin3(α)µr

3
2

+
1

2γ
(cond(G))

3
2 (1 + βτ)2 sin4(α)µr2

≤ sin(α)
√
rµ
[1

2

√
cond(G)(1 + βτ) sin3(α̂0)

√
r +

2
√
γ
cond(G)

× (1 + βτ)
3
2 sin2(α̂0)r +

1

2γ
(cond(G))

3
2 (1 + βτ)2 sin3(α̂0)r

3
2

]
≤ sin(α)

√
rβτµ

[ 1

16r

1

cond(G)
(1 + βτ)β2τ2 +

√
2

2
(1 + βτ)

3
2 β
√
τ

+
1

8
(1 + βτ)2β2τ

]
≤ 22

100
sin(α)

√
rβτµ, (4.15)

where the last inequality follows from r ≥ 3, τ ≤ 1
4 , β ≤ 1

2 and cond(G) ≥ 1.

Now, using Lemma 12, Lemma 13 and (4.15), we derive∥∥∥(τµ(α)e− xs+ sin(α)rc)
+
∥∥∥+ ‖ϕ(α)‖ − βτµ(α)

≤
(
1− sin(α)

√
r
)
βτµ+

22

100
sin(α)

√
rβτµ− (1− sin(α))βτµ

= sin(α)
√
rβτµ

(
−1 +

22

100
+

1√
r

)
≤ 0,

which implies inequality (4.14). Therefore∥∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α))
+
∥∥∥
F
≤ βτµ̃(α). (4.16)

On the other hand, due to (4.16) and Lemma 12, we have

λi (x̃(α) ◦ s̃(α)) ≥ (1− β) τ µ̃(α) ≥ (1− β) (1− sin(α)) τµ > 0,

which implies x̃(α) ◦ s̃(α) ∈ intK and therefore, using Lemma 2.15 in [23],
det (x̃(α)) 6= 0 and det (s̃(α)) 6= 0 for all α ∈ [0, π2 [. Furthermore, since
x̃ ∈ intK and s̃ ∈ intK, by the continuity, it follows that both x̃(α) and s̃(α)
belong to intK for α ∈ [0, π2 [. Moreover, since s̃(α) = M̃x̃(α)+ q̃ it follows that
(x̃(α), s̃(α)) ∈ F0.

Finally, using Lemma 5.10 in [12] and (4.16), we conclude∥∥∥∥(τ µ̃(α)e−Q
x̃(α)

1
2
s̃(α)

)+∥∥∥∥
F

≤
∥∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α))

+
∥∥∥
F
≤ βτµ̃(α).

This result is concluded. ut

Math. Model. Anal., 23(1):1–16, 2018.
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4.3 Iteration bound

Now, we are ready to compute the complexity bound of Algorithm 1. The
following lemma tasks this goal.

Lemma 15. Let
√
cond(G) be bounded above by κ < ∞ for all iterations,

(x, s) ∈ N (τ, β) and sin(α̂0) := 0.5βτ/
√
rcond(G). Then, Algorithm 1 will

terminate in at most O
(
κ
√
r log ε−1

)
iterations.

Proof. Let sin(α̂0) := 0.5βτ/
√
rcond(G). Then, due to (3.11), we have

µ(α̂k+1) = µ̃(α̂k+1) ≤
k∏
i=1

(
1− 1

2
sin
(
α̂i
))

µ0 ≤
(

1− 1

2
sin
(
α̂0
))k

µ0

=

(
1− 1

4

βτ√
rcond(G)

)k
µ0 ≤

(
1− 1

4

βτ

κ
√
r

)k
µ0,

which implies (
1− 1

4

βτ

κ
√
r

)k
µ0 ≤ ε,

for k ≥
(
4κ
√
r log ε−1

)
/(βτ). Therefore, Algorithm 1 will terminate after at

most d4κ
√
r log ε−1e iterations. This completes the proof. ut

The following lemma gives a bound on cond(G) for some specific search di-
rections.

Lemma 16 [Lemma 36 in [17]]. For the NT direction, cond(G) = 1 while
for the xs and sx directions, cond(G) ≤ r/γ.

Using the bounds on
√
cond(G) in Lemma 16 for the NT, xs and sx search

directions, we have the following iteration complexities.

Corollary 3. If the NT search direction is used, the iteration complexity of
Algorithm 1 is O

(√
r log ε−1

)
. If the xs and sx search directions are used, the

iteration complexities of Algorithm 1 are O
(
r log ε−1

)
.

5 Concluding remarks

This paper proposed an arc search feasible interior-point algorithm for mono-
tone SCLCPs. The algorithm follows an ellipsoidal approximation of the central
path and generates a sequence of iterates in a wide neighborhood of the central
path. For a commutative class of search directions which includes NT-search di-
rection and the xs and sx directions, the convergence analysis of the algorithm
was proved. Moreover, we derived the complexity bound of the algorithm and
proved that it coincides with the currently best known theoretical complexity
bounds for feasible interior-point algorithm.
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