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Abstract. In this article, the Newton-iteration scheme based upon
iterated Galerkin operator is applied for solving non-linear Volterra
Urysohn integral equations of the second kind for smooth and
weakly singular kernels. A one step of improvement by iteration
to the Galerkin method, named as iterated Galerkin method is a
well discussed method and it gives improved convergence rates than
Galerkin method. But if we iterate them one more time, then there
is no guarantee that we get any improved convergence rates. The
proposed Newton-iteration scheme based upon iterated Galerkin
operator ensures improved convergence rates at every step of iter-
ation. Specifically, we establish that the convergence rate in iter-
ated Galerkin method increases by O(h") for smooth kernel, and
O(hlf‘]) for weakly singular kernel, in each step of reiteration,
where h is the norm of the partition. Numerical examples are pro-
vided to justify the reliability and efficiency of the proposed tech-
nique.
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1 Introduction

Consider the non-linear second kind Volterra integral equations of the form:

£
o(€) - / 0(&, $)K(E, 5,v(s)) ds = F(E), (L1)
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where

(1.2)

(e s) 1, for smooth kernel, o = 0,
) S =
|€ —s|7%, for weakly singular kernel, 0 < o < 1.

Here k is a given sufficiently smooth function and f is a given function. We
have to find the approximation of the unknown function v.

Non-linear Volterra Urysohn integral equations arise in many physical as
well as mathematical problems such as heat conduction, heat transfer, pop-
ulation dynamics, epidemic diffusion, gas absorption, crystal growth, elastic-
ity, reaction—diffusion in small cells, diffusion in a semi-infinite region, bound-
ary layer problems, etc. (see [16,23,25]). As explicitly solving these kind
of integral equations is difficult, we require to apply some numerical approx-
imation methods. Several approximation methods such as Nystrom, colloca-
tion, Galerkin, Petrov-Galerkin, multi-Galerkin, multi-collocation, are there
(see [4,5,7,8,9,10,11,12,13, 14, 15,18, 21, 26, 27, 30]) to solve (1.1). In [10],
Blom et al. used collocation method to solve non-linear Volterra Urysohn in-
tegral equations, whereas in [12] discussed those results for weakly singular
kernels. In [30], Zhang et al. discussed the numerical solutions for second-kind
Volterra integral equation using Galerkin method based on piecewise polyno-
mials. In [11,12], Brunner applied collocation and iterated collocation methods
with graded mesh for non-linear Volterra integral equation using the piecewise
polynomials of degree < r — 1 as basis functions and found the convergence
orders O(h") and O(h"t17%), respectively for weakly singular kernel. Newton’s
method is one of the most important method among the fixed point iteration
methods (see [29]) to solve non-linear operator equations. In [6], Newton iter-
ation method is discussed for non-linear Fredholm integral operator equations.
In [3], Argyros considered Newton and Newton-like methods to obtain the con-
vergence results for non-linear operator equations. In [20], Kelly and Sachs
have applied Broyden’s method as an approximation of Newton’s method to
approximate non-linear integral equations. For more extensive discussions and
applications of Newton method and its discretizations to solve non-linear op-
erator equations, (see [2,5,24]). To the best of our knowledge, in the study
of Newton iteration method for iterated projection operators, there are no
convergence rates available for non-linear Volterra integral operator equations.
In [28], Wan et al. used spectral Galerkin method to solve Volterra-Urysohn
integral equations of the second kind and proved that the error in approxima-
tion decay exponentially, provided that the source as well as kernel functions
are sufficiently smooth. A one step of improvement by iteration to the Galerkin
method, named as iterated Galerkin method is well discussed by many authors
(see [19,21]) and it gives improved convergence rates than Galerkin method.
But if we iterate them one more time, then there is no guarantee that we get any
improved convergence rates. In this paper, we apply Newton-iteration scheme
based upon iterated Galerkin operator to derive the improved convergence rates
for every step of iteration for solving Volterra Urysohn integral equations for
both smooth and weakly singular kernels.

In this paper, Newton-iteration scheme based upon iterated Galerkin oper-
ator is applied for solving the nonlinear Volterra Urysohn integral equations for
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both smooth and weakly singular kernels. We prove that in j-th Newton iter-
ation scheme, the iterated Galerkin approximation converges with (’)(h(j +2)T)
and (’)(h’“"’(j"’”(l_o‘))7 0 < «a < 1, respectively, for smooth and weakly singular
kernels. Thus, in Newton iteration scheme, convergence rates are improving in
each step for iterated Galerkin method for Volterra Urysohn integral operator
equations.

We organize the article in the following way. In Section 2, Newton-iteration
scheme for solving (1.1) using iterated-Galerkin operator is discussed and corre-
sponding convergence results are obtained in Section 3 for this Newton iteration
scheme. Numerical results are provided in Section 4. We assume C' as a generic
constant throughout the article which may vary time to time.

2 Newton iteration method to solve Volterra Urysohn
integral equations

Let X = L*°[0,1]. We consider the non-linear Volterra Urysohn integral equa-
tions of the form (1.1)—(1.2). Now to get superconvergence results, we eventu-
ally apply a conversion s : [0,1] x [0,1] — [0,1] by s = &n. Then the integral
equations (1.1)—(1.2) become

o(€) - / 0E, 5(6, m)(E s(Em), o(s(Em))) dn = (),

where
& for smooth kernel, a = 0,
A& slesm) = {|1 — |7, for weakly singular kernel, 0 < o < 1. 2.1)
Considering the non-linear operator K from X to X by
1
o(€) = [ 16 s(€mDR(E. () olse.m)) (22)
we write (1.1) as
v(§) = K(v)(€) = f(§), £<[0,1]. (2.3)

Then the Fréchet derivative of K at any point v € X is given by

K@) = [ 16 s(Em) 5 €6 ol mulste.mydn, v €.

Throughout this paper, the following assumptions are made on f and k(-,-,-):

Al: feC"0,1] for a =0 and C™*[0,1] for 0 < a < 1.

A.2: The non-linear function k(-,-,v(-)) and its partial derivative 2%(-,-, v("))
are bounded and Lipschitz continuous w.r.t. v, i.e., 3 ¢1,¢co > 0 such that

for any y1,y2 € R,
‘k(&&yl) - k(£a37y2)| < cl|y1 - y2‘7

ok ok
%(fa 5,Y1) — %(57871/2) < coly1 — 2.
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A.3 The function %(f,s,v()) are also Lipschitz continuous w.r.t. all vari-
ables &, s and v, i.e., 3 ¢3, ¢4, c5 > 0 such that for any &1, &2, 51, 82 € [0, 1],
Y1,Y2 € Ra

ok ok
%(517517191) - %(52,827102)‘ < cs3lé — & + cals1 — s2| + eslyr — ol

Also for any v € C7[0,1], we denote |[v], 0o = max;<;<,{||v?]s}. Now, for
the kernel (2.1), we have that

1

coim s [ € sEm)]dn < .
0<¢<1Jo

Then, considering 7 (v) = K(v) + f, (2.2) can be written as v = T (v). Then,

using A.2, we have

17 (v1) = T(valloe = [K(v1) = K(v2)]loo < creellor — va]loo-

Then, by Banach contraction principle, if ¢icy, < 1, T posses a fixed point v in
X.

Now, to define Newton iteration scheme for Volterra Urysohn integral equa-
tions based upon iterated-Galerkin operator, first we discuss iterated-Galerkin
method. We consider the partition IT,, : 0 = & < & < -+- < &, = 1 of [0, 1]
such that

h=max{|§_1 —&|:1<j<n}—=0, as n— oo.
j

Then, we let X,, = Sy, (II,,), the space of piecewise polynomials subspace of
degree < r — 1 as the approximating subspace having v (-1 < v < r — 2)
continuous derivatives at the breakpoints £1,&2,...,&,—1.

The orthogonal projection operator 7, : X — X, is defined as

(v, 2) = (v, 2), veX zeX,,

1
where (v, z) = / v(€)z(§) d€. Then, according to Chatelin [17], m,, satisfies
0

i) There exists a constant ¢ > 0, independent of n such that ||, ||cc < cs <
0.

ii) For any v € C"[0, 1], there exists a constant ¢z > 0, independent of n such
that
[0 = Tpvlloe < erh7 (|07l (2.4)

Then, the Galerkin method to find the numerical solution of (2.2) is to find
u, € X, such that
Up — () = T f.

The iterated Galerkin approximation is defined as
i = K(o) + f. (2.5)
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https://doi.org/10.3846/mma.2026.22594

218 S. Chakraborty, K. Kant, R. Nigam and G. Nelakanti

From (2.6) and (2.5), it can be seen that v,, = m,7,. Using which we rewrite
(2.5) in operator form by

O — K(m00p) = f. (2.6)
Then, from [19], [21], ¥,, converges to the exact solution v with
. O(h?7), for a = 0,
[v = Onloc = rtl-a (2.7)
O(h ), for0<a<l.

Now we propose the Newton iteration scheme for the operator equation
(2.6) to obtain the numerical solution of Volterra Urysohn integral equations

(1.1) of the second kind. Set 50 = Up, and for j =0,1,2,... define

U — 50) 4 (I K (5 ))7Tn)71 (=9 + K@) + f). (2.8)

This scheme can be equivalently written as
Step-I: Caleulate r$) = —5¢) + Ko j)) + 101 r$) =0, then 3¢ gives exact

solution of (2.2).
Step-11I: If 7“7(1]) # 0, solve for yy(,j) such that

(I = K'(ma0)ma)yd) = ).

Step-I1I: Set U(JH) ( )4 yn) Go to Step-I and repeat the process.
The above scheme is Newton iteration scheme for iterated-Galerkin operator.

3 Convergence analysis

Here, convergence results are discussed for Newton-iteration scheme defined by
(2.8) for the iterated-Galerkin method. For this, for any y € X, we define

-1
Anly) = y+ (1=K (mt)mn) - (—y+K(y) + 1):
Using this, we write iterated scheme (2.8) by
Ut = A, (09, j=0,1,2,..., (3.1)

where 177(?) = Uy,

Now before discussing the convergence rates first we prove the following
lemma for the norm convergence of K’ (ango)) T
Lemma 1. Let v be the exact solution of (2.2) and ¥, be the corresponding

iterated-Galerkin approzimation defined as in (2.6). Then, K’(ﬂnﬁﬁo))wn is
norm convergent to K'(v).
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Proof. Using A.2 and v( ) = Up, We have

||IC/(7T77/’6’ELO))7T” = K'(0)[loo < K (700) 0 — K'(700) 70 [l 00
+ 1K ()0 — K (v)[loo < e[| K (7 00) — K (70) ||oo
+ K () — K (0) 0 [|oc + 1K (V)70 — K (v) |0
< cgeace||Tntn — Tnvlloo 4 col| K (mv) — K'(0) [|oo + 1K' () (7 — T o
< cgeacel|tn — vlloo + cscace|(mn — Do + 1K' () (70 — 1)l (32)

Now, when K has smooth kernels, o = 0, from (2.4) and orthogonality of ,,
we have

K@)~ my(fn

= | [ o€ 6 st sl — o6,
= {606, 56, ) DU (€, ), v(s(E, ). (T~ (e, )]
= (= 706, 56 DD S(E, ), w(s(E, ) (T = (€, )]
< = )6, (6, ) I (€, (6, ) 0(5(6 M2~ Tyl
<0 = )6, (€, ) I (€, (6, (506, D)1+ o)l

< Ch" (14 co)lylloo
which gives
1K (0)(I — 7p)|loo < CR"(1+cg) = O(R"). (3.3)

Hence for smooth kernels, a = 0, using (2.4), (2.7) and (3.3), from (3.2), we
have

1K (757, — K ()] oo < cBeaceO(h?) 4 cocacecsO(AT) + O(hT)
=0(h") >0 as n— occ. (3.4)

Next, if K has weakly singular kernels, 0 < a < 1, £(€,5(£,m)) = (1—n)~ %o,

considering H(£, 5(€,)) = (€, 5(€,m) 2 (€, (6, 1), v(5(E,))), and similar as
Theorem 3.2 of [19], we have that 3 a polynomial v¢ € P, such that

IH (€, 5(¢, 7)) = vellr = O(h ™),

where P,. is the set of polynomials of degree < r — 1. Then, using orthogonality
of m,, we get

K @)1~ 7)y(©)
=| [t st G stm, o€~ mn(s(Em)d

Math. Model. Anal., 31(2):214-227, 2026.
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= [(H(€ 56,0, (T = ma)u(s(& )|

= {<H(€7 S(Ea )) — V¢, (I - ﬂn)y(s(fa 7]))>|
S NHE 56 ) = vella Il = ma)ylloe < (1 + co) [yl O(R ™),

which gives

1K' (0)(I = 7)o = O(R'™). (3.5)
Thus, for 0 < a < 1, using (2.7) and (3.5), from (3.2), it follows that
1K (70081 — K/ (0) |00 < caeaceO(R™T7%) + coeaciO(RT) + O(h' ™)
=0Mh'™) =0 as n— oo (3.6)

Hence from (3.4) and (3.6), it implies X' (7, On 5 ))Tl'n is norm convergent to X' (v).
This proves the lemma. O

Now, let 1 is not an eigenvalue of X'(v). Then, from [1] and Lemma 1, ||({ —
K'(v)) Y| is bounded gives ||(T — K/ (1,5 )) L[| oo is uniformly bounded,
ie., there exists £ > 0 such that || (I — K/ (1,55 )m) " |oe < £ < 00 for enough
large n.

Using this we can prove that A/, (y) is Lipschitz continuous. For any y1,y2 €
X, we obtain

1AL (1) = AL (y2) oo = 1T = K/ (w00 m0) " H{=T + K (51) + T = K'(42)}H o
< (I - ’C/(Wnﬁizo))ﬂ'n)_l||00||IC/(?/1) - ’Cl(y2)||oo < Leacellyr — y2|lo-

Thus, A/, (y) is Lcace-Lipschitz.
Next, we prove the following lemma that helps for proving our main theorem
regarding convergence rates of Scheme (2.8).

Lemma 2. Let v be the exact solution of (2.3). Then, under the scheme (3.1),
for (j + 1)-th Newton-iterated approzimate solution 177(1]“), there holds

Jo = 55D e < (Cllo = 5P llow + LI (mnd ) = K' ()]0 ) 0 = 55 -

Proof.  Since v is the exact solution of (2.3), it follows that A, (v) = v. Then,
from mean value theorem with 0 < § < 1, we have

0= W = Aufo) — Aa(0) = Ay (0 + 60 — 50)) (0~ 5)
= A, (0 +0(0 = 5)) (0 = 57)) = A (v) (0 = 5) + A, (0) (v - B)).
Now, from the Lipschitz continuity of A/, it follows that

lo = 57+ Vloe <AL (0 + 80 = 57))) = AL (0) ocllv = TP |0
+ AL @) llsollo = 5l
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<Cllv = 59|13 + 15, ()l llo = 55 |0

< (Cllo = 3P lloe + 14, @)oo ) 0 = 3o (3.7)
Note that
A (0) = I+ (I = K/ (m,00)ma) ™ (- I+/C'<v>>
= (I - K' (7o ?)m,) 1( 7O —IJrIC'(v))

(I = K (1))~ (zc'(wn (0))n—lC’(v)).

Then, from uniform boundedness of (I — K’ (wnvglo)) )L, we get

5, () oo = (T = K (mn2)m) ™ (K (0 ) = (1)) o
<|I(Z - K/(Wnﬁéo))ﬂ'n)_luooH’CI(Wnﬁr(LO))Wn = K'(0)[loo
< LIK (mnt )0 = K (0) -

Using this in (3.7), we obtain
Jo = 55 e < (Cllo = 5P llow + LIK (mn8 )0 = K' ()]l ) 0 = 55 oo
Hence the proof. 0O

Now, we prove the following main theorem for convergence rates of the
scheme defined by (2.8) based upon iterated-Galerkin operator.

Theorem 1. Let v be the exact solution of (2.3) and o) be the iterated-
Galerkin approximation ¥, defined in (2.6). Then, under the Newton-iteration
scheme defined by (2.8) for the iterated-Galerkin operator, for (j+1)-th Newton

iterated approximation 177(3 +1), there holds

+3)r —
||’U _ ,l~)7(lj+1)||oo — O(h(J ) )7 ~ fOT a=0,
O(hr*u+D0=e) " for0 < a < 1.

Proof. From (3.1), for the Newton iteration scheme (2.8), we have

K'(v) = K/ (1007,
=K' (v) = K'(0)7n + K (v)7 — K (70700 + K' (700700 — K (7,597,
=K' (0)(I =) + [K'(v) = K (mp0)] 70 + [K (m0) — ICI(anw(zO))]Wn

Then, using the estimates (2.4), (2.7), (3.3) and (3.5), and the Lipschitz conti-
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nuity of K'(v), we obtain
1K’ (v) = K (w0 )T lloo < 1K (0) (I = 70) oo

+[I[K"(v) = K (mnv)] 700 +[IIK () = K (0 )l o
<K () (I = 70)||so + cacel|v — mpvl|scs + cacel|Tnv — Tt || oo o
< K ()T = 7)o + cocacel|[(T = mn)vlloo + cgeacellv — 85| oo

{ (h"), for « =0,

ORI=), for 0 < a < 1.

Using this, from Lemma 2, we get

lo =57l

IN

(cnv 6D oo+ LK (8O K’<v>||oo) o — 89l

s O(h") ~(
< C||U_U7€L])||OO +£{o(h(1a)) ||U_’U'$7,J)||OO
Then, for j =0, from (2.7), it follows that
~ - O(h")
1 0
HU_U7(1)||OO < C||U_U£L)||N+£{0(h(la)) ||U—U ||OC
o, for a =0,
Ot for 0 < a < 1.
Similarly for j = 1, we get
- - O(h")
2 1
HU_/US%)”OO < C||v_vr(7,)||00+£{0(h(1o¢)) ||U_U ||OO

_Jom), for a =0,
O3y for 0 < a < 1.

Similarly, proceeding further, it can be seen that under the scheme (2.8), in
each step of reiteration, for smooth kernels, & = 0, the order is increasing by
h", whereas for weakly singular kernels, 0 < a < 1, the order increases by h!=¢
for every step of reiteration. Thus in general we will get (it can be proved at
ease using induction)

v — @(j+1)|| < O(h(ﬁ?)r)v for o = 0,
" T OhrtEEA0-e) - for 0 < a < 1.

Hence the theorem. 0O

Remark 1. From Theorem 1, we note that the superconvergence rates are im-
proving in each step of reiterations for the proposed scheme (2.8) for iterated-
Galerkin operator.
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4 Numerical results

Here numerical examples are given to justify the reliability and efficiency of
our proposed technique. We provide the errors in finding iterated-Galerkin

approximation 17%0) and the corresponding first reiterated approximation for

the iterated-Galerkin operator 177(11) respectively, in infinity norm. Then we

denote
v =9l = O(R), and |Jv —5|ee = O(R*),

where ¢ = 1 for smooth kernels, and ¢ = 2 for weakly singular kernels, respec-
tively, and v denotes the exact solution. We have performed all the numerical
algorithms on Matlab (R2017a).

We choose the space of piecewise constant (r = 1) functions as approxi-
mating subspace. Then for r = 1, for smooth kernels, the expected orders
of convergence will be \; = 2,47 = 3 that we calculate in Table 1 of Exam-
ple 1. Also for a = %, r =1, the expected rates for weakly singular kernels are
A2 = 1.5, us = 2 which we compute in the Table 2 of Example 2.

Ezample 1. Consider the following non-linear Volterra integral equation

13
v(€) = /0 k(e 5, 0(s)) ds + F(©),

with smooth kernel k(€, s,v(s)) = —s[v(s)]?, the function f(&) = & + %, and
exact solution v(§) = &.

Table 1. Numerical results for Example 1.

(0)

(1)

n lv — 5 |loo A1 lv — o5 lloo m
2 4.28181707 x 102 — 3.18558778 x 103 —
4 1.00182785 x 102 2.10 4.95673661 x 10~4 2.68
8 2.76579432 x 10~3 1.86 7.26741030 x 10~5 2.77
16 7.47153027 x 10~* 1.89 9.85115481 x 10~ 2.88
32 1.95350117 x 104 1.94 1.26030843 x 10~ 2.96

From Table 1, we can see that the orders are matching well with the ex-

pected orders. Also, from Figure 1, we see that the errors in the reiterated ap-

proximation for the iterated-Galerkin operator 177(}), when solving Example 1,

are lower than those in iterated-Galerkin approximation 177(10). Thus the reiter-

ated approximation 179) improves upon iterated-Galerkin approximation 177(10).
In [22], authors have solved Example 1 using the Legendre spectral Galerkin
and Legendre spectral iterated Galerkin methods and obtained minimum errors
of 6.33 x 1072 and 5.02 x 1075, respectively, in the infinity norm (see, Table 3
of [22]), whereas from Table 1 of Example 1, in the reiterated approximation for

(1)

the iterated-Galerkin operator @, ’, we obtain minimum error of 1.26 x 1075.

Math. Model. Anal., 31(2):214-227, 2026.
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Error bounds —+

n-

Figure 1. Error bounds for Example 1.

Ezample 2. Consider the following Volterra-Urysohn integral equation of sec-
ond kind with weakly singular kernel

5 1
v(5>=/0 (€ — 5)bh(E, 5,0(s) ds + F(€), €€ [0,1],

where k(¢,5,0(s)) = v(s)?, f(§) = & — 2235 % and the exact solution v(§) =

¢

Table 2. Numerical results for Example 2.

n o = v floo A2 o = & oo pa
2 4.98669684 x 10~1 — 3.24034264 x 10~ 1 —
4 2.37780247 x 10~! 1.07 1.00771037 x 10~1 1.69
8 9.41916752 x 102 1.34 2.80842139 x 102 1.84
16 3.42077422 x 10~2 1.46 7.35471314 x 1073 1.93
32 1.20050043 x 102 1.51 1.86604743 x 10—3 1.98

10°

Error bounds —
/

n-

Figure 2. Error bounds for Example 2.

From Table 2, for weakly singular kernels, we see that the orders are match-

ing well with the expected orders. Again, from Figure 2, we observe that the
errors in the reiterated approximation 177(11) are lower than those in the iterated-
Galerkin approximation 177(10). Thus the reiterated approximation 177(11) improves

upon iterated-Galerkin approximation 17510).
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5 Conclusions

We developed Newton-iteration scheme for iterated-Galerkin operator for solv-
ing non-linear Volterra Urysohn integral equations for both smooth kernels and
weakly singular kernels, and obtain superconvergence results. In each step of
Newton iterations, we enhance the convergence results of the iterated Galerkin
method for both smooth kernels and weakly singular kernels.
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