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Abstract. Helmholtz’s problem helps us to completely understand

how sound behaves in a cylinder that is closed from one of its ends

and opened at another. This paper aims to employ some novel

convergence results to the Helmholtz problem with mixed bound-

ary conditions and demonstrate the existence and uniqueness of

the solution by applying graph-controlled contractions. For this

purpose, we enunciate graphically Reich type and graphically Ćirić

type contractions in the realm of graphical-controlled metric type

spaces. In our study, we showcase the existence and uniqueness

of fixed point results by employing these graphical contractions.

This is demonstrated through extensive examples that a graphical-

controlled metric-type space is distinct from traditional controlled

metric-type spaces. We also exhibit an example of a graphically

Reich contraction that is not a classical Reich contraction. Simi-

larly, a decent example of graphical Ćirić contraction is presented,

which is distinct from the classical Ćirić contraction. Concrete il-

lustrative examples solidify our theoretical framework.
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contractions.
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1 Introduction

Stefan Banach’s noteworthy work [10] established the groundwork for the field
of fixed point theory. Ensuing scientists developed these underlying ideas, ex-
tending comprehension and expanding the hypothesis’ applications. Stanislaw
Saks’ contribution [28] was compelling, as he presented novel viewpoints on
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multivalued mappings and the topological qualities of fixed point sets. These
revolutionary works, combined with Banach’s foundational research, estab-
lished a solid framework that has encouraged significant investigation and vari-
ous applications in the subject of fixed point theory; for instance, see [4,26,27].
In 1989, Bakhtin [9] introduced the notion of a b-metric space, subsequently
elaborated upon by Czerwik in 1993 [13]. These spaces generalize metric spaces
by modifying the triangle inequality condition with a multiplicative constant.
In 2017, Kamran [19] advanced this concept by presenting extended b-metric
spaces, hence expanding their applicability. In 2018, Mlaiki [21] introduced the
concept of controlled metric type spaces, expanding upon these foundations.
This framework included a control mechanism to manage the distance between
points, resulting in novel fixed-point outcomes. Subsequently, to enhance this
structure, Abdeljawad [1] proposed the notion of double controlled metric type
spaces by incorporating an additional function into the triangular property.
This improvement established a more robust framework for demonstrating the
existence and uniqueness of fixed points. In 2021, Ahmad et al. [3] furthered
this field by presenting double controlled partial metric type spaces. Their
research examined the ramifications of this novel framework and developed no-
table fixed-point outcomes. These subsequent developments demonstrate the
gradual evolution of metric-type spaces, increasing their relevance in fixed-point
theory and associated mathematical fields (also see [6, 25]).

In the realm of fixed point theory and its applications, the literature presents
a rich tapestry of research that explores various aspects of contractions in met-
ric spaces with graphs, ordered metric spaces, and modular function spaces.
In 2007, Jachymski [18] examined the contraction principle for mappings on a
metric space endowed with a graph, providing foundational insights into the
interplay between graph theory and metric space contractions. Consequently,
Nieto et al. [22] in 2007 delved into fixed point theorems within ordered abstract
spaces, offering pivotal results that bridge order theory and fixed point prin-
ciples. Building on these themes, O’Regan et al. [23] in 2008 extended fixed
point theorems to generalized contractions in ordered metric spaces, further
enriching the theoretical framework.

In 2010, Harjani and Sadarangani [17] investigated generalized contractions
in partially ordered metric spaces, with applications to ordinary differential
equations, highlighting practical implications in differential equations. In 2012,
Aleomraninejad et al. [7] contributed by exploring fixed point results in metric
spaces with a graph, emphasizing the significance of graphical structures in
fixed point theory. This focus on graphical aspects continued with Dinevari
and Frigon [15] in 2013, examined multivalued contractions on metric spaces
with a graph, providing new insights into multivalued mappings and their fixed
points.

Furthering this line of inquiry, Beg and Butt [11] in 2013 investigated set-
valued graph contractive mappings, expanding the scope of fixed point results
to set-valued mappings. In 2015, Alfuraidan [8] explored fixed points of
multivalued mappings in modular function spaces with a graph, integrating
modular function spaces into the fixed point discourse. In 2017, Mirmostafaee
and Alireza [20] examined coupled fixed points for mappings on a b-metric
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space with a graph, introducing coupled fixed point results in the context of
b-metric spaces. In the same year, Shukla [31] presented a generalized setting
in fixed point theory through graphical metric spaces, offering a comprehensive
framework that unifies various fixed point results under a graphical metric space
setting. Lastly, Chuensupantharat [12] in 2019 investigated graphic contraction
mappings via graphical b-metric spaces, providing applications that underscore
the practical utility of these theoretical advancements. In their 2024 paper,
Dubey et al. [16] presented the notion of graphical symmetric spaces, which
enhanced conventional metric spaces by integrating a graph framework. They
provided fixed-point theorems for particular contractive mappings in these
spaces and utilized their results to prove the existence of positive solutions
for fractional periodic boundary value problems. In their 2023 study, Shukla et
al. [29] investigated fixed-point theorems within graphical cone metric spaces,
integrating graph theory with cone metric fields, establishing fixed-points for
specific contractive mappings. Further, researchers utilized graph-based fixed-
point theorems to address systems of initial value problems, emphasizing the
practical implications of their theoretical discoveries.
Motivated by the growing literature on graphical structures and their appli-
cations, we dig into fixed point theorems inside the framework of graphical-
controlled metric type spaces, utilizing graphically Reich type and graphically
Ćirić type contractions. This exploration is driven by the acknowledgment that
conventional fixed-point theory, while strong, often fails to address the com-
plexities in graph-structured spaces.
Our method leads to useful conclusions: the existence and uniqueness of fixed
points of graphical-controlled metric type spaces that are not necessarily graphical-
controlled metric type spaces. Graphically controlled metric type spaces may
not satisfy conditions of controlled metric type spaces. We give explicit ex-
amples to show that graphically Reich and graphically Ćirić contractions have
distinctive properties different from that of the traditional Reich contractions
and Ćirić contractions, respectively. It is not only that we develop new theo-
ries, but also results become more reliable and strong.
In addition, we illustrate our theoretical results for the Helmholtz phenomenon
under mixed boundary conditions. This application highlights the significance
of our work in different physical contexts – from acoustics to electromagnetics
and mechanical vibrations – and demonstrates how the Helmholtz equation
describes the behaviour of sound waves in cylinders, the distribution of elec-
tric or magnetic fields in waveguides or resonant cavities, and the dynamics of
vibrating structures.

2 Preliminaries

In this section, we outline some fundamental concepts and definitions that are
critical for the subsequent analysis of this article.

In 2008, Jachymski [18] described a scenario, where W is a nonempty set
and ∆ is the diagonal of W×W. He defined a directed graph Φ = (V(Φ),E(Φ))
free from parallel edges, where V(Φ) is the vertex set of Φ, aligning with the
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set W, and E(Φ) is the edge set of Φ, encompassing all the loops of Φ, such
that ∆ ⊆ E(Φ). The graph Φ−1 is gained by reversing the trajectory of E(Φ).
If Φ owns symmetric edges is portrayed as Ğ, in such a way that

E(Ğ) = E(Φ−1) ∪ E(Φ).

Assume that, ג and ℏ are vertices in the directed graph Φ. A path in Φ is a
sequence mj=0{jג} of (m + 1) vertices, whereby 0ג = ,ג mג = ℏ accompanied
by ,j−1ג) (jג ∈ E(Φ), where j = 1, 2, . . . ,m. A graph Φ, is referred as connected
when any two vertices can be connected by a group of edges. An undirected
graph Φ, is weakly connected if any two vertices within it can be joined by a
sequence of edges. A graph φ =

(
V(φ),E(φ)

)
is a subgraph of Φ = (V(Φ),E(Φ))

if all the vertices V(φ) ⊆ V(Φ) and all the edges E(φ) ⊆ E(Φ) meet these
requirements in the same order. For further explanation, we recommend [2,34].
In 2007, Shukla [31] presented the notion that lΦג = {ℏ ∈ W : there is a directed
path from ג to ℏ ∈ Φ with length l }. A relation P on W such that Φ(Pℏג)
signifies a path from ג to ℏ in Φ suggests that if ℘ ∈ ,(Pℏג) then ℘ lies on the
path .Φ(Pℏג) Moreover, a sequence {nג} ⊂ W is supposed to be Φ-termwise
connected (Φ-JWC) if Φ(n+1גnPג) for all n ∈ N. From this point forward, all
graphs are considered directed unless otherwise stated.

Definition 1. [33] Let ð : W × W → [1,∞) and Lg : W × W → [0,∞)
be functions on a nonempty set W linked with graph Φ. Suppose, for all
,ג ℏ, ℘ ∈ W with ,ג) ℏ) ∈ W ×W the underneath axioms hold:

1. If Lg(ג, ℏ) = 0, then ג = ℏ.

2. Iff ג = ℏ, then Lg(ג, ℏ) = 0.

3. Lg(ג, ℏ) = Lg(ℏ, ,(ג for all ג ∈ W.

4. ,Φ(Pℏג) ℘ ∈ Φ(Pℏג) ⇒ Lg(ג, ℏ) ≤ ð(ג, ℘)Lg(ג, ℘) + ð(℘, ℏ)Lg(℘, ℏ).
Then, (W,Lg) is referred to as a graphical-controlled metric type space.

Remark 1. It is crucial to keep in mind that not all graphical-controlled metric-
type spaces are controlled metric-type spaces [21]. The accompanying example
confirms our remark.

Example 1. Let W = {0, 1, 4, 6, 8, 10, 12, 14} and ð : W × W → [1,∞) be a
mapping such that

ð(ג, ℏ) =
1

+ℏג 2
+

1

+ℏג 3
+ 1.9803.

Assume that Lg : W ×W → [0,∞) is defined as:

Lg(ג, ℏ) =

{
−ג| ℏ|2 , if ג ̸= ℏ,
0, if ג = ℏ.
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The vertex set W = V(Φ) and the edge set is designed in the following way

E(Φ)=∆∪

 (0, 1),(0, 4),(0, 6),(0, 8),(0, 10),(0, 12),(0, 14),(1, 4),(1, 6),(1, 8),
(1, 10), (1, 12), (1, 14), (4, 6), (4, 8), (4, 10), (4, 12), (4, 14), (6, 8),
(6, 10), (6, 12), (6, 14), (8, 10), (8, 12), (8, 14), (10, 12), (12, 14)

 ,

as shown in Figure 1. Clearly, (W,Lg) is graphical-controlled metric type space

Figure 1. Graph of Example 1.

but not controlled metric type space for

Lg(10, 14) ≤ ð(10, 12)Lg(10, 12) + ð(12, 14)Lg(12, 14), 16 ≰ 15.955.

Therefore, a graphical-controlled metric space is not always the same as a
standard controlled metric type space.

Definition 2. [33] Let (W,Lg) is graphical-controlled metric type space then,

(i) a sequence {nג} converges to some ג in W, if for each positive ϵ, there is
some positive Nϵ such that Lg ,nג) (ג < ϵ for each n ≥ Nϵ. It can be
written as

lim
n→∞

nג = .ג

(ii) a sequence {nג} is referred to as Cauchy sequence, if for every ϵ > 0, there
exists Nϵ ∈ N such that Lg ,nג) (mג < ϵ for all m,n ≥ Nϵ.

(iii) (W,Lg) is said to be Φ-complete if every Cauchy sequence is convergent
in W.

3 Graphical convergence results

In this section, we will consider the graph Φ to be a weighted graph and explore
some fixed points in relation to graphical-controlled metric spaces (W,Lg).
Let 0ג ∈ W be the starting value of the sequence ,{nג} then define {nג} as a
J−Picard sequence (J− PS) if nג = Jגn−1 for all n ∈ N.
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Definition 3. Let P be a relation on W defined as follows:
The notation Φ(Pℏג) indicates that there exists a directed path from ג to ℏ in
the graph Φ.
If ℘ ∈ ,Φ(Pℏג) it is understood that ℘ lies along the path .Φ(Pℏג)
A sequence {nג} ⊆ W is called Φ-termwise connected (denoted as Φ− JWC) if
Φ(n+1גnPג) holds for all n ∈ N.
A graph Φ = (V(Φ),E(Φ)) is said to satisfy property (P) if every Φ-termwise
connected J-Picard sequence {nג} is convergent in W. That is, there exists a
limit ′ג ∈ W such that either

,nג) (′ג ∈ E(Φ) or ,′ג) (nג ∈ E(Φ) for all n > n0.

Definition 4. We say J : W → W is a graphical Reich contraction on (W,Lg)
linked with a graph Φ encompassing all loops satisfying:

1. For all ,ג ℏ ∈ W

if ,ג) ℏ) ∈ E(Φ) =⇒ (Jג, Jℏ) ∈ E(Φ), (3.1)

(J preserves edges of the graph Φ).

2. There exist non-negative constants such that π1 + π2 + π3 < 1, for all
,ג ℏ ∈ W with ,ג) ℏ) ∈ E(Φ), we achieve

Lg(Jג, Jℏ) ≤ π1Lg(ג, ℏ) + π2Lg(ג, Jג) + π3Lg(ℏ, Jℏ). (3.2)

Theorem 1. Let J : W → W be a graphical Reich contraction on a Φ−complete
graphical-controlled metric type space (W,Lg). Assume that the graph Φ demon-
strates the property (P), 0ג ∈ W with J0ג ∈ lΦ[0ג] for certain l ∈ N. Then there
exists ′ג ∈ W to such an extent that the J−PS{גn} is Φ− JWC and converges
to .′ג

Proof. Let 0ג ∈ W, with the result that J0ג ∈ lΦ[0ג] for certain l ∈ N. Adopt-
ing 0ג be the starting point derived from J Picards sequence ,{nג} ∃ a path
{ℏj}lj=0, to such an extent that 0ג = ℏ0, J0ג = ℏ1 and (ℏj−1, ℏj) ∈ E(Φ)
for j = 1, 2, . . . , l. Employing Equation (3.1) of Definition 3.2, we find that
(Jℏj−1, Jℏj) ∈ E(Φ) for j = 1, 2, . . . , l. This indicates that {Jℏj}lj=0 is a path

from Jℏ0 = J0ג = 1ג to Jℏ1 = J20ג = 2ג characterized by a length l with the
result that 2ג ∈ .lΦ[1ג] Proceeding in this manner, we deduce that {Jnℏj}lj=0 is
a path from Jn0ג = Jnℏ0 = nג to Jn1ג = JnJℏ0 = n+1ג of length l and hence
n+1ג ∈ lΦ[nג] for all m ∈ N. This confirms that {nג} is a Φ − JWC sequence,
which shows that

(Jnj−1ג, Jnj (ג ∈ E(Φ) for j = 1, 2 . . . , l and m ∈ N.
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Then, with the help of inequality(3.2), we derive

Lg(Jnj−1ג, Jnגj) = Lg(J(Jn−1גj−1), J(Jn−1גj))
≤ π1Lg(Jn−1גj−1, Jn−1גj) + π2Lg(Jn−1גj−1, J(Jn−1גj−1))

+ π3Lg(Jn−1גj , J(Jn−1גj)) = π1Lg(Jn−1גj−1, Jn−1גj)
+ π2Lg(Jn−1גj−1, Jn−1גj) + π3Lg(Jnגj−1, Jnגj),

Lg(Jnגj−1, Jnגj) ≤
(
π1 + π2

1− π3

)
Lg(Jn−1גj−1, Jn−1גj).

Given that π1+π2+π3 < 1, set π1+π2

1−π3
= η, where η ∈ [0, 1) the above inequality

reduces to
Lg(Jnגj−1, Jnגj) ≤ ηd(Jn−1גj−1, Jn−1גj).

Repeating the same procedure until we arrive at

Lg(Jnגj−1, Jnגj) ≤ ηnLg(גj−1, .(jג

The next step is to prove that {nג} is a Cauchy sequence, for all n,m ∈ N with
n < m, we have

Lg(גn, (mג ≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)ðג ,n+1ג)n+2)Lgג (n+2ג

+ ð(גn+1, ,n+2ג)m)ðג ,n+2ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)ðג ,n+1ג)n+2)Lgג (n+2ג

+ ð(גn+1, ,n+2ג)m)ðג ,n+2ג)m)ðג ,n+2ג)n+3)Lgג (n+3ג + ð(גn+1, (mג

× ð(גn+2, ,n+3ג)m)ðג ,n+3ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג +

m−2∑
i=n+1

( i∏
j=n+1

ð(גj , (mג
)
ð(גi, ,iג)i+1)Lgג (i+1ג

+

m−1∏
k=n+1

ð(גk, ,m−1ג)m)Lgג (mג ≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−2∑
i=n+1

×
( i∏
j=n+1

ð(גj , (mג
)
ð(גi, i+1)ηג

iLg(0ג, (1ג +
m−1∏

k=n+1

ð(גk, ,0ג)m)ηm−1Lgג (1ג

≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−2∑
i=n+1

( i∏
j=n+1

ð(גj , (mג
)
ð(גi, i+1)ηג

iLg(0ג, (1ג

+

m−1∏
k=n+1

ð(גk, ,m−1ג)m)ðג ,0ג)m)ηm−1Lgג (1ג

= ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−1∑
i=n+1

( i∏
j=n+1

ð(גj , (mג
)
ð(גi, i+1)ηג

iLg(0ג, (1ג

≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−1∑
i=n+1

( i∏
j=0

ð(גj , (mג
)
ð(גi, i+1)ηג

iLg(0ג, .(1ג
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Assume that

Sl =

l∑
i=0

( i∏
j=0

ð(גj , (mג

)
ð(גi, i+1)ηג

i.

Then, we obtain

Lg(גn, (mג ≤ Lg(0ג, ,nג)ηnð](1ג (n+1ג + (Sm−1 − Sn)]. (3.3)

Using ratio test, we have

πi =

i∏
j=0

ð(גj , ,iג)m)ðג i+1)ηג
i, where

πi+1

πi
<

1

k
,

By taking limit as n,m → ∞, inequality (3.3) becomes

lim
n→∞

Lg(גn, (mג = 0,

this indicates that {nג} represents a Cauchy sequence in a Φ−complete gra-
phical-controlled metric type (W,Lg). As a result, {nג} → ′ג ∈ W. Therefore,

,nג) ג
′
) ∈ E(Φ) or ′ג)

, (nג ∈ E(Φ) for all n > n0,

lim
n→∞

Lg(גn, ג
′
) = 0,

which demonstrates that nג converges to ′ג
. ⊓⊔

Definition 5. Let J : W → W be a selfmap on a graphical-controlled metric
type space (W,Lg). We say that a triplet (W,Lg, J) is congruent with the
property (P), if associated with two limiting value ′ג ∈ W and ℏ′ ∈ J(W),
where {nג} term wise connected Picards sequence as a result, we have ′ג = ℏ′.

Theorem 2. Assuming the conditions of Theorem (1) are met and furthermore
the triplet (W,Lg, J) manifests the property (P), then J possess a fixed point.

Proof. According to Theorem 1, which attests to the fact that the J−Picards
sequence with initial point 0ג converges to both ′ג and Tv′. Since Φ is connected,
thus ′גPJ′ג)

)Φ ∈ E(Φ) or (Jג′
Px

′
)Φ ∈ E(Φ), then we gain

Lg(ג
′
, Jג

′
) ≤ ð(ג

′
, ג)n)Lgג

′
, (nג + ð(גn, Jג

′
)Lg(גn, Jג

′
)

= ð(ג
′
, ג)n)Lgג

′
, (nג + ð(גn, Jג

′
)Lg(Jגn−1, Jג

′
),

using inequality (3.2), we have

Lg(ג
′
, Jג

′
) ≤ ð(ג

′
, ג)n)Lgג

′
, (nג + ð(גn, Jג

′
)[π1Lg(גn−1, ג

′
)

+π2Lg(גn−1, Jגn−1) + π3Lg(ג
′
, Jג

′
)]

= ð(ג
′
, ג)n)Lgג

′
, (nג + π1ð(גn, Jג

′
)Lg(גn−1, ג

′
)

+π2ð(גn, Jג
′
)Lg(גn−1, (nג + π3ð(גn, Jג

′
)Lg(ג

′
, Jג

′
).
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After simple calculation, we derive

Lg(ג
′
, Jג

′
)≤

(
ð(ג′

, ג)n)Lgג
′
, ,nג)n)+ðג Jג

′
)[π1Lg(גn−1, ג

′
)+π2Lg(גn−1, [(nג

1− π3ð(גn, Jג′)

)
.

Taking lim
n→∞

, we have

Lg(ג
′
, Jג

′
) = 0.

Hence, ′ג
= Jג′

which demonstrate that ′ג
is fixed point of J. ⊓⊔

Example 2. Let W = {0, 4, 8, 12, 16, 20} and ð : W×W → [1,∞) be a mapping
such that

ð(ג, ℏ) =
1

+ℏג 2
+

1

+ℏג 3
+ 1.9803.

Assume that Lg : W ×W → [0,∞) is defined as:

Lg(ג, ℏ) =

{
−ג| ℏ|2 , if ג ̸= ℏ,
0, if ג = ℏ.

The vertex set W = V(Φ) and edge set is designed as

E(Φ) = ∆ ∪
{

(0, 4), (0, 8), (0, 12), (0, 16), (0, 20), (4, 8), (4, 12),
(4, 16), (4, 20), (8, 12), (8, 20), (12, 16), (16, 20)

}
,

as shown in Figure 2.

Figure 2. Related graph with vertex set V(Φ) = W.

Clearly, (W,Lg) is graphical-controlled metric type space but not controlled
metric type space, since

Lg(12, 20) ≤ ð(12, 16)Lg(12, 16) + ð(16, 20)Lg(16, 20),

64 ≰ 63.63,

Lg(8, 16) ≤ ð(8, 12)Lg(8, 12) + ð(12, 16)Lg(12, 16),

64 ≰ 63.859.
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For contraction, define a mapping J : W → W as

Jג =
{

0, for ג ∈ {0, 4, 8, 12},
4, for ג ∈ {16, 20}.

Case (i): For ג = 0 and ℏ = 16, we have

Lg(J0, J16) ≤ π1Lg(0, 16) + π2Lg(0, J0) + π3Lg(16, J16),
16 ≤ π1(256) + π2(0) + π3(144).

Case (ii): When ג = 0 and ℏ = 20, we get

Lg(J0, J20) ≤ π1Lg(0, 20) + π2Lg(0, J0) + π3Lg(20, J20),
16 ≤ π1(400) + π2(0) + π3(256).

Case (iii): If ג = 4 and ℏ = 16, then

Lg(J4, J16) ≤ π1Lg(4, 16) + π2Lg(4, J4) + π3Lg(16, J16),
16 ≤ π1(144) + π2(16) + π3(144).

Case (iv): For ג = 4 and ℏ = 20, then

Lg(J4, J20) ≤ π1Lg(4, 20) + π2Lg(4, J4) + π3Lg(20, J20),
16 ≤ π1(256) + π2(16) + π3(256).

Case (v): If ג = 8 and ℏ = 20, then

Lg(J8, J20) ≤ π1Lg(8, 20) + π2Lg(8, J8) + π3Lg(20, J20),
16 ≤ π1(144) + π2(64) + π3(256).

Case (vi): For ג = 12 and ℏ = 16, we have

Lg(J12, J16) ≤ π1Lg(12, 16) + π2Lg(12, J12) + π3Lg(16, J16),
1 ≤ π1(16) + π2(144) + π3(144).

Thus all the cases are satisfied for π1 = 1
15 , π2 = 1

18 and π3 = 1
19 , where

π1 + π2 + π3 < 1. Consequently, for ג = 8 and ℏ = 16, we obtain

Lg(J8, J16) ≤ π1Lg(8, 16) + π2Lg(8, J8) + π3Lg(16, J16),
16 ≤ π1(64) + π2(64) + π3(144),

16 ⩽̸ 15.4011,

which shows that above contraction is “graphically Reich contraction but not a
Reich contraction”. Therefore, all the terms and conditions of Theorem 1 are
satisfied and 0 is the unique fixed point of the mapping J.

Definition 6. We say J : W → W is a graphical-Ćirić contraction on (W,Lg)
linked with a graph Φ encompassing all loops if the following properties are
satisfied:
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1. For all ,ג ℏ ∈ W

if ,ג) ℏ) ∈ E(Φ) =⇒ (Jג, Jℏ) ∈ E(Φ), (3.4)

i.e., J also preserves edges of Φ.

2. There exists a non-negative constant η < 1 such that

Lg(Jג, Jℏ)≤ηmax{Lg(ג, ℏ),Lg(ג, Jג),Lg(ℏ, Jℏ),Lg(ג, Jℏ),Lg(ℏ, Jג)},
(3.5)

for all ,ג ℏ ∈ W with ,ג) ℏ) ∈ E(Φ).

Theorem 3. Let J : W → W be a graphical Ćirić contraction on a Φ−complete
graphical controlled metric type space (W,Lg) . Assume that, the graph Φ
demonstrates the property (P), 0ג ∈ W with J0ג ∈ lΦ[0ג] for certain l ∈ N,
then there exists ′ג ∈ W to such an extent that the J−PS{גn} is Φ−JWC and
converges to .′ג

Proof. Let 0ג ∈ W, with the result that J0ג ∈ lΦ[0ג] for certain l ∈ N. Adopting
0ג be the starting point derived from J Picards sequence ,{nג} ∃ a path {ℏj}lj=0,
to such an extent that 0ג = ℏ0, J0ג = ℏ1 and (ℏj−1, ℏj) ∈ E(Φ) for j =
1, 2, . . . , l. Employing reference (3.4), we find that (Jℏj−1, Jℏj) ∈ E(Φ) for j =
1, 2, . . . , l. This indicates that {Jℏj}lj=0 is a path from Jℏ0 = J0ג = 1ג to Jℏ1 =

J20ג = 2ג characterized by a length l with the result that 2ג ∈ .lΦ[1ג] Proceeding
in this manner, we deduce that {Jnℏj}lj=0 is a path from Jn0ג = Jnℏ0 = nג to

Jn1ג = JnJℏ0 = n+1ג of length l and hence n+1ג ∈ lΦ[nג] for all m ∈ N. This
confirms that {nג} is a Φ− JWC sequence, which shows that

(Jnj−1ג, Jnj (ג ∈ E(Φ) for j = 1, 2 . . . , l and m ∈ N.

Then by using (3.5), we obtain

Lg(Jnj−1ג, Jnגj) = Lg(J(Jn−1גj−1), J(Jn−1גj))
≤ ηmax{Lg(Jn−1גj−1, Jn−1גj),Lg(Jn−1גj−1, J(Jn−1גj−1)),

Lg(Jn−1גj , J(Jn−1גj)),Lg(Jn−1גj−1, J(Jn−1גj)),Lg(Jn−1גj , J(Jn−1גj−1))}
= ηmax{Lg(Jn−1גj−1, Jn−1גj),Lg(Jn−1גj−1, Jn−1גj),
Lg(Jn−1גj , Jn−1גj+1),Lg(Jn−1גj−1, Jn−1גj+1),Lg(Jn−1גj , Jn−1גj)}.

If we choose maximum other than Lg(Jn−1גj−1, Jn−1גj), it will be a con-
tradiction. So, we achieve

Lg(Jnj−1ג, Jnגj) ≤ ηd(Jn−1גj−1, Jn−1גj).

Continuing in the similar fashion, we infer

Lg(Jnגj−1, Jnגj) ≤ ηnLg(גj−1, .(jג
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Our next step is to prove that {nג} is a Cauchy sequence, for all n,m ∈ N with
n < m, we have

Lg(גn, (mג ≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)ðג ,n+1ג)n+2)Lgג (n+2ג

+ ð(גn+1, ,n+2ג)m)ðג ,n+2ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג + ð(גn+1, ,n+1ג)m)ðג ,n+1ג)n+2)Lgג (n+2ג

+ ð(גn+1, ,n+2ג)m)ðג ,n+2ג)m)ðג ,n+2ג)n+3)Lgג (n+3ג + ð(גn+1, (mג

× ð(גn+2, ,n+3ג)m)ðג ,n+3ג)m)Lgג (mג

≤ ð(גn, ,nג)n+1)Lgג (n+1ג +

m−2∑
i=n+1

( i∏
j=n+1

ð(גj , (mג

)
ð(גi, ,iג)i+1)Lgג (i+1ג

+

m−1∏
k=n+1

ð(גk, ,m−1ג)m)Lgג (mג ≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−2∑
i=n+1

×
( i∏

j=n+1

ð(גj , (mג

)
ð(גi, i+1)ηג

iLg(0ג, +(1ג
m−1∏

k=n+1

ð(גk, ,0ג)m)ηm−1Lgג (1ג

≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−2∑
i=n+1

( i∏
j=n+1

ð(גj , (mג

)
ð(גi, i+1)ηג

iLg(0ג, (1ג

+

m−1∏
k=n+1

ð(גk, ,m−1ג)m)ðג ,0ג)m)ηm−1Lgג (1ג

= ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−1∑
i=n+1

( i∏
j=n+1

ð(גj , (mג

)
ð(גi, i+1)ηג

iLg(0ג, (1ג

≤ ð(גn, n+1)ηג
nLg(0ג, (1ג +

m−1∑
i=n+1

( i∏
j=0

ð(גj , (mג

)
ð(גi, i+1)ηג

iLg(0ג, .(1ג

Assume that

Sl =

l∑
i=0

( i∏
j=0

ð(גj , (mג

)
ð(גi, i+1)ηג

i.

Then, we obtain

Lg(גn, (mג ≤ Lg(0ג, ,nג)ηnð](1ג (n+1ג + (Sm−1 − Sn)]. (3.6)

Using ratio test, we have

πi =

i∏
j=0

ð(גj , ,iג)m)ðג i+1)ηג
i, where

πi+1

πi
<

1

k
,

By taking limit as n,m → ∞, inequality (3.6) becomes

lim
n→∞

Lg(גn, (mג = 0,
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this indicates that {nג} represents a Cauchy sequence in a Φ−complete graphical-
controlled metric type (W,Lg). As a result, {nג} → ′ג ∈ W. Therefore,

,nג) ג
′
) ∈ E(Φ) or ′ג)

, (nג ∈ E(Φ) for all n > n0,

lim
n→∞

Lg(גn, ג
′
) = 0,

which demonstrates that nג converges to ′ג
. ⊓⊔

Theorem 4. If the assumptions of Theorem 3 are valid and the triplet (W,Lg, J)
has the property (P), then J has a fixed point.

Proof. Theorem 3 validates that the J−Picards sequence with initial point
0ג converges to both ′ג and Tv′. Since Φ is connected so ′גPJ′ג)

)Φ ∈ E(Φ) or
(Jג′

Px
′
)Φ ∈ E(Φ), then we have

Lg(ג
′
, Jג

′
) ≤ ð(ג

′
, ג)n)Lgג

′
, (nג + ð(גn, Jג

′
)Lg(גn, Jג

′
)

= ð(ג
′
, ג)n)Lgג

′
, (nג + ð(גn, Jג

′
)Lg(Jגn−1, Jג

′
),

using inequality (3.5), we achieve

Lg(Jגn−1, Jג
′
) ≤ ηmax{Lg(גn−1, ג

′
),Lg(גn−1, Jגn−1),Lg(ג

′
, Jג

′
),Lg(גn−1, Jג

′
),

Lg(ג
′
, Jגn−1)} ≤ ηd(גn−1, ג

′
).

After substituting, we conclude

Lg(ג
′
, Jג

′
) ≤ ð(ג

′
, ג)n)Lgג

′
, (nג + ηϖ(גn, Jג

′
)Lg(גn−1, ג

′
).

Taking lim
n→∞

, we have

Lg(ג
′
, Jג

′
) = 0.

Hence, ′ג
= Jג′

which demonstrate that ′ג
is fixed point of J. ⊓⊔

Example 3. Let W = {0, 1, 2, 4, 6, 8, 10, 12} and ð : W × W → [1,∞) be a
mapping such that

ð(ג, ℏ) =
1

+ℏג 2
+

1

+ℏג 3
+ 1.95.

Assume that Lg : W ×W → [0,∞) is defined as:

Lg(ג, ℏ) =

{
−ג| ℏ|2 , if ג ̸= ℏ,
0, if ג = ℏ.

The vertex set W = V(Φ) and the edge set is designed in the following way

E(Φ) = ∆ ∪

 (0, 1), (0, 2), (0, 4), (0, 6), (0, 8), (0, 10), (0, 12), (1, 2),
(1, 4), (1, 6), (1, 8), (1, 10), (1, 12), (2, 4), (2, 6), (2, 8), (2, 10),
(2, 12), (4, 6), (4, 8), (4, 10), (6, 8), (6, 12), (8, 10), (10, 12),


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Figure 3. Graph with vertex set V(Φ) = {0, 1, 2, 4, 6, 8, 10, 12}.

as shown in Figure 3. Clearly, (W,Lg) is graphically-controlled metric-type
space but not a controlled metric-type space. For the following pair of vertices,
we have

Lg(4, 12) ≤ ð(4, 8)Lg(4, 8) + ð(8, 12)Lg(8, 12), 64 ≰ 63.653,

Lg(6, 10) ≤ ð(6, 8)Lg(6, 8) + ð(8, 10)Lg(8, 10), 16 ≰ 15.855,

Lg(8, 12) ≤ ð(8, 10)Lg(8, 10) + ð(10, 12)Lg(10, 12), 16 ≰ 15.762.

For contractive conditions, define a mapping J : W → W as

Jג =

 0, for ג ∈ {4, 8},
1, for ג = 1,
10 for ג = 12.

Case (i): For ג = 1 and ℏ = 4, we have

Lg(J1, J4) ≤ ηmax{Lg(1, 4),Lg(1, J1),Lg(4, J4),Lg(1, J4),Lg(4, J1)},
1 ≤ ηmax{9, 0, 16, 1, 9}, 1 ≤ η(16).

Case (ii): If ג = 1 and ℏ = 8, we gain

Lg(J1, J8) ≤ ηmax{Lg(1, 8),Lg(1, J1),Lg(8, J8),Lg(1, J8),Lg(8, J1)},
1 ≤ ηmax{49, 0, 64, 1, 49}, 1 ≤ η(64).

Case (iii): When ג = 1 and ℏ = 12, we achieve

Lg(J1, J12) ≤ ηmax{Lg(1, 12),Lg(1, J1),Lg(12, J12),Lg(1, J12),Lg(12, J1)},
81 ≤ ηmax{121, 0, 4, 81, 121}, 81 ≤ η(121).

all the cases are satisfied for η = 0.69 ∈ (0, 1). Consequently, for ג = 4 and
ℏ = 12,

Lg(J4, J12) ≤ ηmax{Lg(4, 12),Lg(4, J4),Lg(12, J12),Lg(4, J12),Lg(12, J4)},
100 ≤ ηmax{64, 16, 4, 36, 144}, 100 ⩽̸ η(144).
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Similarly, if ג = 8 and ℏ = 12,

Lg(J8, J12) ≤ ηmax{Lg(8, 12),Lg(8, J8),Lg(12, J12),Lg(8, J12),Lg(12, J8)},
100 ≤ ηmax{16, 64, 4, 4, 144}, 100 ⩽̸ η(144),

which shows that above contraction is a graphically Ciric contraction for η =
0.69 but not a Ciric contraction. Therefore, all the terms and conditions of
Theorem 3 are satisfied and 1 is the unique fixed point of the mapping J.

4 Application to Helmholtz phenomena with mixed BVP

In fixed-point analysis, different applications have been investigated across mul-
tiple abstract spaces. However, there is relatively limited work on the applica-
tion of fixed-point theory within graphical systems. In this section, we focus
on applying graphical fixed-point theory to study its applicability to Helmholtz
phenomena with mixed boundary value problems (BVPs). For deeper insights
into graphical structures and their larger applications, interested scholars may
refer to [5, 14,32].
The Helmholtz equation characterizes steady-state wave events in acoustics,
electromagnetics, and quantum mechanics. We encounter a mixed boundary
value problem (BVP) when we apply different boundary conditions (Dirich-
let, Neumann, or Robin) to different parts of the domain boundary. These
problems show up in waveguides, scattering phenomena, and Helmholtz res-
onators, where boundary conditions have a big effect on how waves behave.
The method of separation of variables can yield analytical solutions in simple
geometries, while Green’s functions offer integral representations. Numerical
techniques such as the Finite Element Method (FEM) and the Boundary El-
ement Method (BEM) address intricate scenarios. The interaction of waves
with boundaries results in resonance, diffraction, and mode-shaping phenom-
ena. Helmholtz effects are very important in mixed boundary value problems
for making wave propagation better and controlling resonances. Solutions are
frequently articulated using eigenfunctions, such as Bessel functions or Fourier
series. Comprehending these effects aids in the design of efficient acoustic,
optical, and electromagnetic systems.

Helmholtz’s problem provides us with a more rich understanding of the
functioning of electricity and magnetism in wires and boxes. It also aids to
understand the behaviour of these structures when they are vibrating. By
comparing our results with those real-life examples, we can demonstrate that
these are significant and useful for researchers in the field of fixed point theory.
The Helmholtz condition with mixed boundary conditions,

u′′(ג) + λu(ג) = f(ג), (4.1)

u(0) = 0, u′(1) = 0,

addresses a strong structure for analyzing standing wave peculiarities across

different actual settings. The presence of the term π2

4 as the eigenvalue λ
means that we are managing a basic frequency or resonant mode, portrayed by
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a wavenumber k = π
2 . This implies that the frequency λ is two times the length

of the interval, fitting precisely into the domain [0, 1] with a half-wavelength.

In acoustics, such an arrangement is frequently used to portray the way
of behaving of sound waves in a cylinder with one end shut and the opposite
end open. At t = 0, the Dirichlet boundary condition u(0) = 0, suggests a
pressure node, where the displacement of air particles is zero. At t = 1, the
Neumann boundary condition u′(1) = 0, shows a pressure antinode, where the
gradient (and thus the speed of air particles) is zero. This setup is crucial for
understanding how sound waves resound inside instruments like organ pipes or
in building acoustics, where the plan of spaces can improve or dampen specific
frequencies.

In the domain of electromagnetics, the condition models the circulation of
electric or magnetic fields in waveguides or resonant cavities. The Boundary
condition u(0) = 0 could address an impeccably conducting surface where the
electric field should be zero, while u′(1) = 0 could mean where the magnetic
field is tangentially zero, aligned with ideal magnetic conductors. This is basic
in planning microwave cavities or optical resonators, where explicit methods
of the electromagnetic field are supported to expand effectiveness and reduce
losses.

Mechanical vibrations additionally utilize this condition to depict the ele-
ments of vibrating structures, like pillars or strings. Here, u(0) = 0 signifies a
fixed end with no displacement, typical of clamped or pinned conditions, while
u′(1) = 0, denotes a free end where the bending moment is absent, similar to
a cantilever beam. Understanding these vibrational modes is fundamental in
primary designing and material science to anticipate and control reverberation,
which can result in either optimal performance in applications such as musical
instruments and precision tools or undesirable oscillations that may lead to
structural failure.

The fundamental or resonant mode depicted by this Helmholtz condition
is significant in designing. It guarantees that energy is stored and moved pro-
ficiently, which is key for planning gadgets and designs that oversee wave de-
velopment. This condition assists us with understanding how waves act with
specific boundary conditions, which is significant for working on sound quality,
upgrading electromagnetic fields, and keeping mechanical designs stable.
Let f be a continuous function from [0, 1] × R2 → R, as investigated in 4.1.
The problem under consideration has a solution ג in the space W = C[[0, 1],R],
represented by the integral equation

(t)ג =
∫ 1

0

Ġ(t, ζ)f(ζ, t, ,dt((t)ג t ∈ [0, 1] (4.2)

and Ġ(t, ζ) is Green’s function for any λ, ζ > 0 expressed as

Ġ(t, ζ) =


sin(

√
λt)√

λ sin(
√
λ)

sin
(√

λ(1− ζ)
)
, 0 ≤ t ≤ ζ,

sin(
√
λζ)√

λ sin(
√
λ)

sin
(√

λ(1− t)
)
, ζ ≤ t ≤ 1.

(4.3)
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Define a graphical-controlled metric type space Lg : W ×W → [0,∞) as:

Lg(ג(t), ℏ(t)) = sup
t∈[0,1]

−(t)ג∣∣ ℏ(t)
∣∣2 .

Let ð : W × W → [1,∞) defined as ð(ג(t), ℏ(t)) = exp{ג(t) + ℏ(t) + 1} for
all ,ג ℏ ∈ W and t ∈ [π, b]. Clearly, (W,Lg) is complete graphical-controlled
metric type space. Before going to prove, we have to choose particular λ and
ζ, for this we integrating the (4.3) over the domain of [0, 1] in such a way

∫ 1

0

Ġ(t, ζ) =
1

λ sin
(√

λ
)
 sin

(√
λ(1− ζ)

)(
1− cos

(√
λζ

))
+sin

(√
λζ

)(
1− cos

(√
λ(1− ζ)

))
.


For choosing specific λ = π2

4 and ζ = 1
2 . Furthermore, we also discuss their

physical significance in the above paragraphs, after simple calculation, we
achive ∫ 1

0

Ġ(t, ζ)dt = 4(
√
2− 1)/π2.

A forthcoming theorem offers sufficient conditions for the existence and unique-
ness of a solution to the problem 4.1.

Theorem 5. Assume that the following conditions hold:

1. For each t ∈ [0, 1] and ,ג ℏ ∈ W, we have∣∣f(ζ, t, −((t)ג f(ζ, t, ℏ(t))
∣∣2 ≤

−(t)ג∣∣ ℏ(t)
∣∣2 .

Consequently, the existence of a solution to the integral equation in 4.2
yields a solution to the Helmholtz problem described in 4.1.

Proof. Define an operator J : W → W, given byJג(t) =
∫ 1

0
Ġ(t, ζ)f(ζ, t, ,dt((t)ג

obviously J is well defined. Now, ,ג) ℏ) ∈ E(Φ) for all ,ג ℏ ∈ W, we have

∣∣(Jג(t)− Jℏ(t)
∣∣2 =

∣∣∣∣ ∫ 1

0

Ġ(t, ζ)f(ζ, t, −dt((t)ג
∫ 1

0

Ġ(t, ζ)f(ζ, t, ℏ(t))dt
∣∣∣∣2

=

∣∣∣∣( ∫ 1

0

Ġ(t, ζ)dt

) ∣∣f(ζ, t, −((t)ג f(ζ, t, ℏ(t))
∣∣ ∣∣∣∣2

≤
(∫ 1

0

Ġ(t, ζ)dt

)2 ∣∣f(ζ, t, −((t)ג f(ζ, t, ℏ(t))
∣∣2

≤
∣∣f(ζ, t, −((t)ג f(ζ, t, ℏ(t))

∣∣2 (4(
√
2− 1)

π2

)2

≤
−(t)ג∣∣ ℏ(t)

∣∣2 (16(
√
2− 1)2

π4

)
If 16(

√
2−1)2

π4 = η ∈ (0, 1), above inequality can be expressed as∣∣(Jג(t)− Jℏ(t)
∣∣2 ≤ η

−(t)ג∣∣ ℏ(t)
∣∣2 .
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From given hypothesis, we conclude that

sup
t∈[0,1]

∣∣Jג(t)− Jℏ(t)
∣∣2 ≤ η sup

t∈[0,1]

−(t)ג∣∣ ℏ(t)
∣∣2 .

It can easily be observed thatLg(Jג, Jℏ) ≤ ηd(ג, ℏ), The aforementioned in-
equality can be presented in the following way

Lg(Jג, Jℏ) ≤ ηmax{Lg(ג, ℏ),Lg(ג, Jג),Lg(ℏ, Jℏ),Lg(ג, Jℏ),Lg(ℏ, Jג)}.

Consequently, all hypotheses of Theorem 3 are fulfilled. Therefore, the mixed
boundary value problem 4.1 admits a unique solution in W. ⊓⊔

5 Conclusions

In conclusion, we used Reich and Ćirić contractions in graphical control met-
ric spaces to obtain significant fixed point findings. Our approach proved
the existence and uniqueness of fixed points using graph-based contractions,
demonstrating its potential for broader use. We showed the distinction between
graphical-controlled and controlled metric-type spaces using specific examples.
Additionally, we claimed that both graphically Reich and Ćirić contractions
need not be their traditional counterparts. Our discoveries are now more ex-
tensive and significantly more substantial. This research also explored mixed
boundary problems for the Helmholtz equation using graphic contractions of
the Ćirić type, thereby mingling theoretical and applied mathematics. In acous-
tics, our findings demonstrate sound wave behavior in a cylinder with one end
closed and the other open.

For further research, utilizing the concept propounded in this manuscript,
one can research about the fixed-point analysis of complex-valued fractional
order neural networks [24].

It would be intriguing to investigate whether the findings presented in this
study can be generalized to multivalued mappings as done in [30].
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