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Analysis study of hybrid Caputo-Atangana-Baleanu fractional ...
1 Introduction

Recently, the fractional differential equations (FDE)s have developed as an ex-
citing and widely appreciated research subject. Various research papers are
referring to FDEs and inclusions with vary boundary conditions published in
the literature [9, 10, 11], for instance, studied qualitative results of fractional
pantograph problem involving the Caputo-Hadamard derivatives with Dirich-
let boundary conditions [21]. Moreover, authors discussed extensively sev-
eral non-local (FO)s (fractional operators) with applications on FDEs [19, 30].
Additionally, the fixed point theorems have played key roles in the study
FDEs [2,15,16,17).

In 2016. Atangana and Baleanu [7] defined a novel FO of non-singular ker-
nel includes Mittag-Leffler function in the Caputo sense, which so-called ABC-
FO. Recently, these operators attracted the interest of several researchers to
consider many problems under these operators. For example, the works [29],
established qualitative properties of ABC-fractional hybrid system and ther-
mostat dynamics model by utilizing FPTs. The fractional calculus offers a
powerful tool for modeling complex biological systems. Kucche and Sutar [14],
calculated approximations for the ABC-fractional derivative at the extreme po-
sitions. Also, the same authors studied hybrid fractional differential equations
via the ABC-fractional derivative [25].

The pantograph is a tool utilized to collect electricity from overhead wires
on electric trains. The pantograph problem is a differential problem endowed
by delay. The pantograph equation (PE) has several applications in various
areas, such as applied and pure mathematics, physics, probability, electrody-
namics, quantum mechanics, control systems, and number theory. Recently,
there has been increasing interest in the study of various PEs, such as the
implicit pantograph system [3,26], sequential PE [13], integro-differential pan-
tograph problem of variable fractional order [24], and the pantograph boundary
value problems considered in these papers [6] and references cited therein. Fur-
thermore, the HU-stability is a method for analyzing the behavior of solutions
to FDEs.

Recently, Aljoudi [5] investigated the qualitative theories for a second-order
CF— fractional order of coupled differential problems with four points boundary
conditions by the Banach and Krasnoselskii theorems:

D7 x(u) = Qu(u, x(u), y(w),  uwe T =03,
TDPy(u) = Qu,x(u),y(u), 1<01,00<2, (1.1)
x(0) =y(0) =0 ‘

X(j) = )‘1Y(t1)7 Y(ﬁ) = >‘2X(t2)7 i € (Ovﬁ)a Ai > Ovi =1,2.

Furthermore, Boutiara et al. combined Lipschitz’s matrix with contraction
techniques in generalized metric space to investigate sufficient conditions of
solutions for a coupled (p, ¢)-fractional differential system [8]. Moreover, Zhao
and Jiang applied Dhage’s fixed point principle to study the existence result of
mild solutions for a coupled hybrid fractional system via ABC-FO [29]. Also
in 2022, the authors used the Leray-Schauder and Banach theorems to establish
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the qualitative results of the following couple of second-order ABC-fractional
pantograph system (FPS):

ABCD T x(u) = Qu (u, x(pu), y(u)),
ABCDT2y (1) = Qo (u, x(u), y(pu)), (1.2)
x(a) =y(a) =0, x(3) =My(t1), y()=Aox(t2),

for u € [a, 3], where p € (0,1), 1 < o0; <2, € (0,3), Ay >0,7=1,2 [4]. Very
recently in 2023, Shah et al. studied the qualitative theorems for a coupled
of CF-fractional system under integral boundary conditions by the Perov and
Schauder fixed point theorems (FPTs) [23]. Moreover, the extremal solutions
established via upper and lower solution techniques together with a monotone
iterative approach for the following coupled system:

CF D R(u) = 0 (us x(w), y(w)),
Cf’i)gzy(ul) =—Q2 (U,X(U)J(U))a . (1.3)
w0 = [Can@ye)an s = [ wx) .

and initial condition x(0) = y(0) = 0, for u € [0,1], and 1 < 01,09 < 2 [23].

Motivated by the above research articles, this manuscript investigates the
existence and uniqueness theorems along with the HU stability by utilizing
Dhage and Perov FPTs as well as Lipschitz’s matrix for a hybrid ABC-FPS
subjected to hybrid integral boundary conditions which is given by:

ABC g [%} + @ (u, x(u), x(pu), y(u))

ABC gy [m} + Q2 (u, x(w), y(u), y(pu)) =0,

0,

[

m :/0 wy (v,y(v)) dv, m :/0 wa (v,%(v)) do,

(1.4)
and x(0) = y(0) = 0, for u € J =: [0,3], u € (0,1), ABCDZ is ABC-fractional
derivative of order o = {o1,02} € (1,2], and functions Q,Q2 : J x R® — R,
xi i J xR?2 R\ {0}, w; : J x R = R, (i = 1,2), are continuous on J. Here,
we declare that the coupled hybrid system considered in this paper is new
in the form of ABC-FPS supported by hybrid integral boundary conditions.
Moreover, our strategy is adopting Dhage’s technique to study the existence of
solutions in the space of Banach algebra. Furthermore, we combined Perov’s
approach in metric space with Lipschitz’s matrix to establish the uniqueness
and HU-stability. Additionally, the hybrid system (1.4) covers some problems
which don’t consider yet and includes several existing studies in the literature
as follows:

i) The hybrid system (1.4) becomes as problem (1.1), if we replace “B¢DJ* by
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C¢F®% and by putting x; = 1, = 1, and
3 3
/ w1 (v, 7(0)) dv = Ay (t), / wa(v, x(v)) dv = Dox(t2);  (1.5)
0 0

ii) The hybrid system (1.4) coincides problem (1.2), if we take x; = 1, and
consider Equation (1.5);

iii) The hybrid system (1.4) returns to problem (1.3), if we replace A5¢DJ

y ¢ D% and by putting x; = p = 1, and wi(v,y(v)) = wi(v)y(v),

wo (U, x(v)) = wq(v)x(v).

The rest of this work is organized as: Various essential preliminaries are sup-
plied in Section 2. Qualitative properties of solution for system (1.4) are dis-
cussed by using Dhage and Perov techniques along with Lipschitzian’s matrix
in Section 3. Furthermore, the HU stability result is established in Section 4.
Finally, one concrete example is examined to check the validity of major theo-
rems in Section 5.

2 Preliminaries

Herein, we will present various essential elementary definitions and theorems
linked to non-linear analysis and ABC-fractional calculus. Let the Banach
space €(J) equipped with the norm ||x|| = sup,c s [x(u)|. Moreover, we define
a Banach algebra subject to the multiplication by (x - y)(u) = x(u) - y(u), for
%,y € CJ),ue J. Let ¥ = &(J) x €&J) be a product Banach space with
the norm ||(x,y)]| = ||x]| + ||y|l, and can be represented as Banach algebra too.
The multiplication of two vectors of X' is given by:

((x,3) - (%9) (W) = (x,7)(w) - (£3)(u) = (x(u) - Z(w),y(u) - F(u))

for each (x,y), (%,¥
given by 0 ((x,7), (
metric on Y.

The ABC—derivative of fractional order o € (0, 1], for a function Z(u) €
£1(J,R) is given by,

(ABCZDSZ) (u) = 115(_60) /UIE ( a(ul 1;) )Z (v) dv, u >0,
0

) €

€ XY, and u € J. Also, consider a metric 0 on the space X
7)) = (lx=%[ |ly - y||) Obviously, 0 is a vector-valued

where E, is the Mittag-LefHler function defined as

o0
k
R Z
z) = Z T(okt1)’
k=0

such that Re (o) > 0,z € C, and I'(-) is the Gamma function and U(o) is
known by the normalization function admits U(0) = U(1) = 1 [7]. Note that
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the ABC—derivative convert to FCJF—derivative if ¢ = 1 in the kernel E,.
Furthermore, the ot® AB—integral is expressed by:

(*5952) (w) = 5252(u) + 5% (F952) (), w>0,

such that #3¢ is RL—fractional integral of order o € (0, 1], defined as,

(Rjgz) (u) = /0 0% 2 () do.

DEFINITION 1. ( [1])Let 2" € £Y(J,R),n <9 <n+1,neNand § =9 —n
Then, ABC-fractional derivative verifying,

(Ascgﬁz>( )= (ABC®0 )(u),

and the AB—fractional integral verifying (533 Z) (u) = (35 B3¢ Z) (u), such
that J% is n'" integral.

Lemma 1. ( [7]) Forn <9 <n+1, n € N, the following identity holds:
ABg) (A5D)Z) (u) )+ Z bu', b €R.

DEFINITION 2. ( [28]) Let o(D) be a spectral radius of the square matrix D, then
D tends to zero if and only if (D) < 1, that is for |A] < 1 and det(D — AI) =0
for all A € C and unit matrix I € D,,«,(R).

Theorem 1. ( [28]) Let D be square matriz of non-negative components. Then,
the characteristics to be mentioned below are equivalent: i) D™ — 0 as n — oco;
ii) o(D) < 1; iii) the matriz (I-D) is non-singular and (I—-D)~! = [+D+. ..+
D" +...; (iv) the matriz I—D is non-singular and (I—D)~! is a non-negative.

DEFINITION 3. ( [20,22]) Let (IT,9) be a generalized metric space, then the
operator W: IT — IT is contractive, means that for all s,¢ € IT, d (\II( ), \Il(t)) <
D 0(s, t), if there is a matrix DD convergence to zero.

Theorem 2. (Perov’s FPT [18,20]) Consider (IT,0) is a generalized complete
metric space. If W: II — II be a contractive mapping with Lipschitz’s matriz
D, then U has exactly one fixed point ug, for allVu € 11, and

VEeEN, o (\I/k(u),uo) < DRI —D) 2 (u, U(u)).

Theorem 3. (Dhage’s FPT [12]) Assume that X be a Banach algebra and D be
a bounded closed convex nonempty subset of . Let two operators Fy : X — X
and Ey © D — X satisfy the following: (i) Ey is Lipschitz with constant X,
(ii) Ey is continuous and compact, (iii) v = EyuFEyv = u € D,Yv € D;
(iv) XZ < 1, with Z = ||E3(D)|| = sup{||E2(u)|| : w € D}. Then, the mapping
equation u = Eyu Exu possesses a solution.
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3 Existence and uniqueness results

We present an equivalent equation to the hybrid ABC-FPS (1.4).

Lemma 2. For ¢ : J — R, the following hybrid ABC-fractional equation:

ABC@gl [W} —|—19(u) =0, o1 € (1,2],

3
_ X)) _
x(0) =0, xMMim»—Z}”@”@»d“

possesses a solution formed by

x(u) = x1 (s x(u), y(u)) [ /0 Ty, y(0)) do— T [ /0 " 9w) do

(3.1)

- /05 n d“} Bkcey [(Rﬁglﬂ)(u) — 2 ("agi) (;,)] } (3.2)

Proof. Using 837" on both sides of (3.1) and using Lemma 1, one gets
x(u) - “ (2—01)9(v) o1—1 R~o1
m = Qi + as2U — A U(o’llfl) dU — U(o’llfl) ( jO 19) (u), (33)

where a1,as € R. Then, due to the boundary condition x(0) = 0, we have
ay = 0. So, we have

w " 20 c1-1_ (R0
T CETORTO) —“2“—/0 S dv — gty (7350 (u).

Next, applying the second boundary condition

x(3) _
we find

3
Gy Jo w1 (v, y(0))dv,

! 5
/ wi (v,y(v)) dv = agz — / (2-01)9() g, _
0

o1 —1 R~o
, Oi-1) Boi=1) ( Jolﬁ) (u),
it follows
_ 3 w1(U7Y(U)> d 3 (2—0’1)19(’11) d o1—1 Rjglr&
42 = o 3 v+ , Oli—1)s U+ 5er=D); 0 (3)-

Finally, by substituting the values of a; and as in (3.3), we obtain,

x(u)

3 ( 3
_ Uuwi UvY(U)) u(2—01)9(v) u(o1—1) (R o1 )
Xl(u,x(u),y(u)) B /0 3 dv +_/0 U(o1—1)3 dv + U(o1—1)3 jo v (3)

“ —o1)9(v 01— o
- [ G v - gty ()

u

3 S w 3 ud(v)
: /0 w1 (T%Y(U)) dv_U(le) [/0 ﬁ(v)dv—/o 3 dv}
iy [(0) -3 (B50) )]

Hence, it follows the required Equation (3.2).

O

Based on Lemma 2, we conclude the next important lemma.

Math. Model. Anal., 30(2):386-404, 2025.
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Lemma 3. The solution of hybrid ABC — FPS (1.4) is formed by,

x(u) = x1(u,x(u), y(u))(/23 wdv

—U(Q;(T_ll) / Q. (v, %) dv — /71‘&1“;(””‘) dv}

_0?01;11) _Rjglal;u(uvx) ?Rjglal;u(ﬁvx)}),
3
y() = xa(ux(,y(w) [ 2202200 g

~ o) / Q2 (v, y) dv — /Md}

70((1#7—11)_ ngng(u,y) URTTQQZM(Z? Y)D

with al;u (u7 X) =W (u7 X(u)’ X(Mu)a Y(u)>7 a2;u (u7 Y) = (u7 X(u)a X(u)7 Y(F‘u)) .

Before establishing the qualitative theorems, we need to present the following
assumptions:

H,;) There exist functions Lq,, Lq,, Ly, € €(J,RT) such that |w;(u,x)| <
L, (u), |Q1(u,x,y,2)| < Lg, (u), |Q2(u, x,7,2)| < Lg,(u), for each x,y,z €
R, and v € J;

Hy) There are constants A,, > 0, (i = 1, 2), where

X (u, 1, y1) = X (u, 2, y2)| < Ay, (Ix1 — 2| + |y1 — y2l) »
for each x;,y; € R, and uw € J, (i = 1,2);

Hj;) There exist functions L,, € €(J,R™) such that |x;(u,x,y)| < Ly, (u), for
each x,y € R, and u € J;

H,) There exist Ag,, Ag, > 0, such that for each x;,%; € R, i = 1,2,3, and
uveJ, k=12,
Qe (u, %1, %2,%3) — Qi (u, X1, %2, X3) | < Aq, (Z;ll |x; — X1,|>7
Hs) There exist A, > 0, (i = 1,2), where |w; (u, x1) —w;(u, x2)| < Ay, |x1—%2|,
for each x;,y;, e R,andu e J,i=1,2.

For simplicity of analysis, we set

. 2Ly, (2—o1) 2371 L (01—1)
Ay =3L5, + w1 T Taren 5=
* 3Lg,(2—02) 2392 Ly, (02—1)
A2 =3L5, + o5t T T(Fen) =0 (3.5)

and for i = 1,2, le = SupuGJ{LQi(U)}a in = SupuGJ{Lwi(u)}a L;l =
sup,es{Ly,;(u)}. Next, we will prove the existence theorem by employing
Dhage’s FPT.
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Theorem 4. Let the conditions (H;) and (Hg) are fulfilled, and if

(Ao +4) <1 (A +Ag) (A + 42) <1, (3.6)
then, the hybrid ABC-FPS (1.4) admits at least one solution in X.
Proof. Let the ball B, = {(x,y) € X : ||(x,y)|| < p}, with

IXTlAL + 1Ix30 A2 < p[1 = (Ay, + Axy)[(Ar + A2),

where || X} = sup,c s [xi(u, 0,0)] (i = 1,2). Obviously, B, is convex, bounded,
and closed subset of X'. Now, we define the operators E = (E;,Eq) : ¥ — X,
and F = (Fy,F,) : B, — X, as follows,

(E1(x,¥)) (1) = xa (u, x(w), y(w)), (Ba(x,¥)) () = xo (u, x(w), y(w),
(F1(x,y)) (w) = /0 wenledlel) gy — e / Quip(v,%)

3/\ o~ o~
o %/O Quipe (v, %) dv} N U(Gal:—ll) [Rjglqhu(uvx) - ERjngl;u(éaX)]v
3
(Fa(x,y))(w) = / et dy — s, / Qosu(v,y)

3/\ ~
- %/O Q2;. (v, y) dv} N |ET5271>|[ 35 Qo y) — ?RjSQQQ;u(ﬁ’Y)]

Hence, the pantograph integral system (3.4) deform into the following coupled
of mapping equations

E(x,y)(u) - F(x,y)(u) = (x,7)(u). (3.7)
Thus for u € J, one has
Eqi(x,y)(u) Fi(x,y)(w) = x(u), Ea(x,y)(u) - Fa(x,y)(u) = y(u).
Now, we split our proof into a sequence of procedures. Firstly, we prove that
E = (E4,E,) is Lipschitz mapping. Let (x;,y;) € X, i = 1,2, and by using
(Hy), we find,
IE1(x1,y1)(u) — E1(x2, y2) (w)| = |x1(u, x1(u), y1(w)) — x1(u, x2(u), y2(u))|
< Ay, (Ixa(w) — x2(u)| + [y1(u) — y2(w)]) < Ay, (%1 — %l + [[y1 — y2ll) -
Thus, for k =1,2,

2
B (x1,x1) — B (o, o) || < Ay, Y [l — x4
=1

Now, by definition of the operator E, we have

[E(x1,y1) — E(x2,y72)|| = || (E1(x1,51), E2(x1, 1)) — (E1(x2,¥2), E2(x2,y2)) |
= || (E1(x1,y1) — E1(x2, y2), Ba(x1,¥1) — Ea(x2,32)) ||
= ||E1(X1,Y1) - E1(X2,YQ)H + HEQ(X17Y1) - E2(X2,Y2)||

< (A + 40 (i1 =] + ly1 ~ yal])

Math. Model. Anal., 30(2):386-404, 2025.
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In view of the condition (3.6), we have X = (4,, + A,,) < 1. Hence, the
mapping E is an Lipschitzian on X with Lipschitz’s constant (A, + A,,).
Secondly, we prove that F = (Fi,F2) : B, — X, is a continuous and compact
mapping. In order to show the continuity of I, let the sequence {(xn,¥Vn)}nen
convergence to (x,y) in B, as n — oo. Then, based on continuity of the
functions Q1, Q2,w1,ws, and by utilizing the Lebesgue-dominated convergence
theorem, we get,

3 u
Lim F (%, ) ()= /0 lim () gy 2o [ /0 lim Q. (v,%,)dv

n—oo n—oo

3 .
. Q1;, (v,%0) o1—=1 |[R~o1 130 Q)
—/0 lim u“fdv} — U(;l_l)[ 3olnh_{20 Ql;u(uvxn)

n—roo
- %Rjgl nli_)H;Oam(& Xn)] = (Xa Y) (u)
Likewise, one has lim,_, s Fa(%p, yn)(u) = Fa(x,y)(u). Hence,

lim F(Xnvyn)_ hm (Fl(x’myn) FQ(XN’yn)):(Fl(X7Y)’IF2(X7Y)):F(X7Y)'

n—oo

Next, we prove uniformly bounded and equicontinuous of a set F(B,) in X.
Regarding uniformly bounded, let (x,y) € B, and by using (H;), we obtain,

w 3
|(IF1 (X’ Y))(u)‘ S “Lwl @) dv + O(o1 —1 LQ1 (U) dv + m dv
0 e |, L

o1—1 o u R~o (2 o1) 2371 L5 (o1—-1)
T Bo- 1>|[ 30" Loy (w)+3 JOIqu(?’)kﬁLwl* Bl DI T T T (o1

Hence, ||F1(X7y)|| < 3LZI i 23Lq, (2—01) 2371 Ly, (01 —1)

[G(o1—1)| T'(1401)|0(o1—1)] = /11. Slmllarly,

25L,(2m00) | 272 Li, (0-1)
[O(e2—1)] I(1402)[6(o2-1)]

[Fa(x, )l < 315, + = As.

Therefore, ||F(x,y)| = [|F1(x, )|+ |F2(x, y)|| < A1 + Az < co. Thus, it follows
that I is uniformly bounded mapping on %5,. Now, we are ready to show that
F is equicontinious. For any wi,us € J,u1 < ug, (x,y) € B, and by using
(H,), we find,

3
(B2, 3))az) = (Fr (e ) ()] < [ Cammleateatl g
0
2 “a ? (g =) @1y (v.0)]
+ \U(alall)\ {/ |Q1m(v,x)|dv—|—/o %dv]

o1—1 v (u v)"l 1 (u vnl 1
T e [/ oo |Quip (v, %)| dv

b [ e 0] o+ 2 0]
Ul

* 2(2—0o *
< (ug —wy) L7, + 7“;(01;1))‘ (uy — ug) L,

*

371 Lq, (u2—wu1)

—1 Lq o o o
+ ‘U(Ul 1)‘ |:1—~(0_1+1) [2(U2 —_ Ul) 1 +’LL21 _ ull} —+ 4“’1“(1_"_071) :|
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Then, as ug — ug, we have |(F1(x,y))(u2) — (F1(x,y))(u1)| — 0. In the same
manner, we obtain |(Fa(x,y))(u2) — (F2(x,y))(u1)] — 0, as uz — u;. Conse-
quently, one finds |(F(x,y))(u2) — (F(x,y))(u1)| = 0, as us — uy. Hence, F is
an equicontinuous mapping on 98, implies that IF is relatively compact. Based
on Arzela-Ascoli’s theorem,we deduce that I is completely continuous. Thirdly,
we show that the property (iii) of Theorem 3 is verified. Let (x,y) € B, sat-
isfy (3.7), that means (Ey(x,y)-Fi(x,y), E2(x,y) - F2(x,y)) = (x,y). Then, by
applying (H;) and (Hs), we have,

()] = [Ea(e, )] 3 (5,9)] < s )y ([ 212200

3 o~
+ iz [ 100 sy av+ [ 2Bee gy

+ i 195 B, )|+ 298 @5,
< b x(w), (1) = x1(,0,0)| + xa (,0,0)

o By @) | 2T (1)
X (szlJr Do =0T T T 00— U')

< (A Ul + 1) + 1D 1] A1 = % < [ Ao Ul + iy + 181 As-

By the same above procedures, we get,
Iyl < [AxaCllxll + I3l + 131 2.

Therefore, we obtain,

H (E1(x,y) - F1(x,¥), Ea(x,y) - Fa(x,y) H
|| (E1(x,y) - Fi(x,y || + ||IE2 x,y) - Fa(x, y)”
(A Ul + Iy + 31 Ax + (A (el + D7) + 130 4

< (MAy, + A2 A00) () I+ AR+ Az [IX5]l
< (A + Ay (A1 + )| (=, 7) I+ AdlIXT ]+ A2l

IN

Therefore,

X3 1A +lIx5 11 A
=, y)I < (= (Ai1+1AX2)%A1j-A2) =P

That means the property (iii) of Theorem 3 verified. Fourthly, we establish
that the property (iv) of Theorem 3 is hold. In fact, by uniform bounded of F,

we have,

z=sw {|Fxy) : (x.y) € B,
< sup {IF1 (e, y)ll + [F2(x,9)] < (x,y) € By | < (A + 42).
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Hence, we get XZ = (A, + A,,)(A1 + A2) < 1, so the property (iv) of
Theorem 3 verified. According to all above conclusions, the Dhage’s Theorem 3,
implies that the hybrid ABC-FPS (1.4) possesses a solution in Y. O

In what follows, the uniqueness of solution for a coupled hybrid system (1.4)
will establish by utilizing Perov’s FPT.

Theorem 5. Let the conditions (Hy)—(Hs) are fulfilled. If M is positive square
matriz of spectral radius o(M) < 1, such that

M = < cn ) (3.8)

€21 €22

where

25(2AQ1L;1+AX1L31)(2_01)+2301 (QAQlL;f’_AXlLSl)(Ul_l)
|61 — 1) I(l+o)[0(1 -1 ~
23(24q; LY, + Ay, L§, ) (2—01) n 2371 (24q, L}, +Ax, L )(o1—1)
[B(o1—1)] I'(1+01)[0(o1—-1)] ’
23(240, Ly, + Ay, L, ) (2—02)

X2 ™0y
[B(2—1)]

enn=3Ay, Ly, +

612:5"4)(1 Lzl +Aw1 Lj(l +

€21 = 3AX2L —+ szL;2 +

2572 (2Aq, L;Q +Ay, La‘z)(og—l)
I'(1402)[C(o2—1)] ’
25(2AQ2 L;kcz +AX2 LSQ)(Q_O-Q) + 2302 (2AQ2L;2 +AX2 LSQ ) (02_1)
|B(oo — 1) I'(1+4 03)|0(o2 — 1)

*
w2

e2=3Ay, L, +

Then, the hybrid ABC-FPS (1.4) admits one solution in X.

Proof. We define the operator IT : X — X' by II(x,y) = (II1, II2)(x,y), where,

(Ul(x,y))(u) = X1 (%X(u),y(u))(/a w dv

0
- sz uﬁ (v, x)dv — " (on) dv}
G(o1—1) | 0 Lip\Ys o 3
- U((jol:—ll) _Rjglal;ﬂ(uvx) - %Rjglal;u(ﬁyx)}), (39)
3
(a3 (10 = o (o x(). () [ 222820
2— A 3 uQa; (v,y)
- 0(02—21) _/0 Q2;. (v, y) dv —/0 %dv}
- 5oy {Rﬁg"ﬁm(u,y) — §R382§2;M(3,y)}). (3.10)

Our proof based on the Perov’s FPT, so we prove that IT has exactly one
fixed point, which represents a solution of the system (1.4). Now, for any
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(x1,v1), (x2,y2) € X, u € J, and using (H; )—(Hs), we have,
[ (e, y0)) () = (I (2, 372) ()] < (s 31(0), v )
- X1(U’X2(U),Y2(U))‘(/O MdU‘F |U(201011)| / Qui(v,x1)| dv

T
+/0 7“[31;“;””‘2) dv} + 4|Uf;;_11)\ {Rjgl Q1. (u, x2)| + %Rjgl |Q1;u(5,X2)|D

3
+ |X1(u,x1(u),Y1(U))|{/o u‘m(U’YI(“));M(“’YZ(”)” dv

u 3 ~ —~
+ |U(2<71611)| / \Ql;u(v,m)*Ql;u(v,xzﬂdv+/0 “‘Ql‘“(”’xl);%“(”’m)' dv]

+ oy [ 796 Qs x1) Qe (0, %2+ 2798 Q00 6, 11) Qs 6, 2)1 | }
wLy,, (v
< Ay, (1 () = ()| + [y1 () — y2(w)]) { / 10) gy 2o
“ uwLq, (v o ~O u R~o
X [/OLml( )dUJr/ ql( )d”}ﬂw = {RJolLal(u)JrgRJoanl(é)]}
} wdey 191 (0) 2 (v)| 20, b
Ly | : v+ ity | [ Aa () = xe(o)
1 (a0) = xa ()] + [y1(v) = y2(v)) dv
3
+ / 2 Aq, (11 (0) = x2(0)| + |1 (40) = x2(u0)] + [y1(0) = y2(v)]) o]
it [P0 [Aa, (Ix(w) = xa()] + 1 ) = 2 paw)|
+ ly1(w) = y2(w)] )|
+ 2898 [ Aq, (1x1(6) ~x26)1+ |1 () —x2(03) | + 191.5) — y205)1) ] }
N 2;L; (2—o1) 2;°1L; (o1—1)
< Ay, (I = el + llyn = yall) [328, + Soyt + Fotrontote]
+ L, (Aullys = vl + B2 [Aa, Cllxa = xall + lly1 = vl
+ F(liz’ai)(ﬁ;(;i)filﬂ |:AQ1 (2llx1 = =2l + [ly1 — YzH)} )

23L5 Ay, (2—01)  2391L; Ay, (o1—1)
< (=l +lya—yal) [sL, Ay, + 2 b+ 2]

4305 Aq, (2—01)
+ Ly, Au 1 = voll + —=8G=nr— (%1 = xall + [ly1 — y2ll)
47 Ag, (01-1)
+ TareSmenr (k%2 +Hlyi—yall) < ennllxi—xoll+erz]yi—yall-

Therefore,
|11 (x1,y1) — I (%2, y2) || < extllx1 — yal + exzllx1 — y2- (3.11)

Math. Model. Anal., 30(2):386-404, 2025.


https://doi.org/10.3846/mma.2025.22328

398 S.T.M. Thabet, I. Kedim, M.E. Samei and T. Abdeljawad

Similarly, we find

| 112(x1, 1) — Ha(x2,y2)|| < ea1llx1 — yal + eazllx1 — y2- (3.12)
Hence, by (3.11) and (3.12), yield that

|11 (x1,y1) — I (%2, y2) | < < €11 e12 ) %1 — %o
[ To(x1,y1) — Ma(x2,y2)|| ) = \ €21 ez lyr—v2| )’
which implies that,

0 (I (x1,y1), 1 (x2,y2)) <M ((x1,y1), (x2,72)) -

Since o(M) < 1, then each conditions of the Perov’s theorem are satisfied.
Thus, the hybrid ABC-FPS (1.4) possesses a unique solution in X'. 0O

4 HU stability

Throughout this section, we will establish the HU stability of hybrid ABC—
FPS (1.4), by using its integral solution which given by:

x(u) = I (x,y)(u), y(u) = Ha(x,y)(u),

such that IT; and [T are defined in (3.9) and (3.10), respectively. Additionally,
we suppose that operators Kq, Ky : X — €(7, R) satisfy the following identities:

ABCDE | sy | + O R(w), R(w), §(w)) = Ka (&, 9)(w),

ez [ ]+ Qo %), §(0), §(u0)) = Ka(,5) (u),

(4.1)

for u € J. Additionally, we suppose that, for u € 7, and some €1, €5 > 0,

K1 (%,3)(w)]| < e, | Ka(%,3)(w)]| < e
DEFINITION 4 [ [27]]. The hybrid ABC-FPS (1.4) is HU stable if there are
constants ¢; > 0, (i = 1,2,34) where Ve, eo > 0 and for all solution (%,y) € X
of inequality (4.1), there is a solution (x,y) € X' of (1.4), where for u € J,

Hf{(u) - X(U)H < Gr€1 + S€o,
H?(u) - Y(U)H < ¢3€1 + Su€2.

Theorem 6. Consider the assumptions of Theorem 5 hold. Then, the hybrid
ABC-FPS (1.4) is HU stable.

Proof. Let (x,y) € X is the solution of hybrid ABC-FPS (1.4) verifying (3.9)
and (3.10). Also, assume that (x,y) is any solution verifying (4.1) and

x1(u,x(u),¥(u))
Asege |t | + e %(w), 5(w), 7)) — Ka(%,5) (u) = 0,

X2 (u,%(u)

A [ s | (s (), R (), §(0) — Ko (5, §) () = 0,
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foru € J. So,

&) = 1(5.9) 0 + (w50, 500) 2 [ [ 59

FR
+A1&@wmd4+Ugfmﬁxm&@ﬁxw+wﬁ$Kaawwﬂ)
¥(u) = (%, 7)(u)+x2(u, %(uw), (u) <U(02 D) {/ Ka(x

3 =~
n /0 uKz(J;Y)(U) dv} + s [Rjgz]KQ(fc,?)(U)+ZR532K2(5(73~7)(U)})'

It implies that

i) ~ &))< b K0 5D ey [ [ s 5 @) o

u|K s v o ~O
+A%””d4+zgﬂi[ ()| + 2R3 K (3,9)6)l ] |
x| 23€1(2—01) 23%1e1(01—1)
<Ly, [|225(10171)1| + 7 1101 \U(lol 1) } Vi€, (4.2)

and

= x| 23€2(2—02) 2372€1(02—1) *
||Y( — (%, 3)( || <Ly { \0(2172 1)2| + r(1+02)1|0(202—1)| < L,V €, (4.3)

where »
2(2 = o) 2% (0; — 1)

|U(0’1—1)| F(1+O'Z)|U(UZ—1)‘7
Then, according to inequalities (4.2) and (4.3), we have

[%(w) = x(u)|| = ||&(w) — 1 (%,5)(u) + (%, 5)( ()
SM@—M@?uWWM&wU—M®wMH
< L;lVl €1+ (611”5( — XH + 612”}7 — y||) .

Vi = Z=1,2

Hence, we find
12— x| < L3, Vi &1 + (en||x — x|l +ew2lly — l) -

Similarly, we get ||y — y|| < L%, Vs e + (ea1]|x — x|| + e[|y — yl|). These
inequalities, can be reformulate as

X — LY Vqe
I—M ||}f x||)< X 1€1 ’ 44
( ) < 17—yl ) =\ L, Vae (4.4)
where the matrix M is given by (3.8) with spectral radius o(M) < 1. Thus,

by Theorem 1, we conclude that (I — M) is nonsingular, and (I — M)~! has
non-negative components. Hence, (4.4) is equivalent to the following format:

||}~( — X” ) -1 L* V161
X <(I[-M X ,
(Hyﬂl SE=MTH [y,

Math. Model. Anal., 30(2):386-404, 2025.


https://doi.org/10.3846/mma.2025.22328

m S.T.M. Thabet, I. Kedim, M.E. Samei and T. Abdeljawad
which follows that,
[ —x|| < gL}, Vier + g2 L], Vaer,
|7 —yll < asly, Vier +qal}, Vaea,
such that ¢;,j = 1,2,3,4 are the components of (I — M)~'. Hence, the hybrid
ABC-FPS (1.4) is HU stable. O

5 Illustrative application

We present in this section one concrete example to illustrate the validity of the
main results. In this regard, first in Example 1, we check the accuracy of our
outcomes for different values of oy.

Example 1. Let the hybrid ABC-FPS is given as follows:

ABC s 1 — X(“)u ]
2 + W + % ‘COS_1 (Y(u))‘
1 -1 ‘X (U/B)’ U o1
—— tan (x(u)) — — ——sin (Y(“)) )
25 25
19 (1 + [ () D 51)
Azsc@z/s : ~ - y(u) NG
U+ % |tan (x(u))’ + m

R ly(w)] Lot (o
_—msm (X(U))_9(1+|y(u)|)_16tan 1(y(/3)),

for u € J, 3 = 1, via conditions x(0) = y(0) = 0,

1
x(1) _ (g 1 y() )d
it1s (1+\,1((1)\>+%| cos~1(y(1))] /0 2t Ty ) 4

_ FZ60) :/ (
— 1
145l tan =1 (x(1) 1+ g1 @D 0

where 01 = {22 10 20 9% C (1,2], 05 = 2 € (1,2], p = 5 € (0,1),

i (x(w),y(0) = § 4+ X5 ey + fleos™ )],
g (et 4 V@
x2 (u,x(u), y(u)) = -t [tan™" (x(u)) | + 81 (3+ |y(u)])’
e y(u) _ Ve, x(u)
) = 5 * gy ) = )
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and

~

Qi (u,x) = 5= tan™" (x(u)) + )x(u/3)| )) + 3 sin~! (y(w)),

49 <1+‘x(“/3)
agm(u, y) = 16-:\/6 sin~ ! (x(u)) —+ é% + %tan_l (Y (%)) .

Thus, we get

Qx T S g+ 35+ g5 LRI S e+ 1
W%y YIS o5 + 49 T o RURYYIS [ Ty
here Ly, (u) = 55+ 75+ 35, Lg, = 13557 Lao(u) = 16+f+ tir> Ly, = 13- Also,
et 1 y(w)
=& < L.,
Ve 1 (u)
VA < L,
then Ly, (u) = % + and Ly, (u) = % + -, which these follow that

1
L7, ~0.233468, L* —% and

70
@ ! — ‘ i cos™! U

— | cos™ (y2(u) |‘ < Ay, (%1 — %2 + y1 — v21),

Ix1(u, x1,y1)—x1 (1, %2, y2)|<

[X2(u, %1, ¥1) — x2(u, x2,y2)| < —— 31 ’ |tan x1(u))| — | tan™" (Xz(u))”
V| fyi(u) |Y2( )| ‘
<7 - <Ay, (|x1—x2[+]y1—y2l) -
ST |@lyal) Grlyatup | =4 (o elnsye)
Thus, Ay, = 15, Ay, = g7 Next, by Mathematica software, employing (3.5),

geting data and taking nonmalized function U(c) = 1.25 — (o — 0.5)%, we have
0.483284, oy = 20/17,

s 2;L5 (2—01) 23°1Lg (n=1) 0.461306, o1 = 10/9,
Ay = 3Lw1 + |ZS(1;171)| + F(1+01)\IU(0171)\ - 0.445807, o1 = 20/19,
0.333876, o1 = 2,
and Ao — 2L 23Lq, (2—02) 2372 Ly, (02—1) N 194
2 =310, + Toler t Tren oy = 357124
Then,

0.73889, oy = 20/17,
0.73488, oy = 10/o,
0.73206, o1 = 20/19,
0.71166, o) = 2,

Thus, each conditions of Theorem 4 hold. Hence, the hybrid ABC-FPS (5.1)
possesses at least one solution in Y.

(Axs + Ay, ) (A1 + Ag) = <L
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6 Conclusions

The PE has several applications in various fields, such as physics, applied and
pure mathematics, probability, electrodynamics, quantum mechanics, control
systems, and number theory. Throughout this work, we inspected a hybrid
ABC-FPS under hybrid integral boundary conditions (1.4).  Dhage’s FPT
was utilized to discuss the existence theorem of the hybrid ABC-FPS (1.4).
Furthermore, the uniqueness theorem and HU-stability of solutions for the
proposed system were established by Lipschitz’s matrix and Perov’s FPT. At
the end, one example was provided to interpret the effectiveness of essential
findings. The hybrid system (1.4) covers various problems that haven’t been
studied yet and includes several research studies existing in the literature as
problems (1.1), (1.2), and (1.3).
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