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Abstract.This paper is concerned with the approximation of a sys-

tem of nonlinear Carrier wave equations (CEs) by approximating

the Carrier terms with their integral sums. At first, under suitable

conditions, the linear approximate method, the Galerkin method,

and compactness arguments provide the unique existence of a weak

solution (un, vn) of the problem (Pn), for each n ∈ N, for a system

of nonlinear wave equations related to Maxwell fluid between two

infinite coaxial circular cylinders. Next, we prove that {(un, vn)}n

converges to the weak solution (u, v)of the problem for a system of

CEs in a suitable function space. This proof is done by using the

compactness lemma of Aubin-Lions and the method of continuity

with a priori estimates. We end the paper with a remark related

to open problems.
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1 Introduction

In this paper, we consider the following initial boundary value problem

(Pn)



utt − a1(Sn[u](t))(uxx +
1

x
ux − 1

x2
u)

= f(x, t, u, v, ut, vt, ux, vx), x ∈ Ω = (1, R), 0 < t < T,

vtt − a2(Sn[v](t))(vxx +
1

x
vx)

= g(x, t, u, v, ut, vt, ux, vx), x ∈ Ω, 0 < t < T,
ux(1, t)− b1u(1, t) = vx(1, t) = u(R, t) = v(R, t) = 0,
(u(x, 0), v(x, 0)) = (ũ0(x), ṽ0(x)),
(ut(x, 0), vt(x, 0)) = (ũ1(x), ṽ1(x)),
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b1 > 0, R > 1 are given constants, a1, a2, ũ0, ũ1, ṽ0, ṽ1, f, g are given functions,

Sn[u](t)=((R−1)/n)

n∑
i=1

xn,iu
2(xn,i, t), Sn[v](t)=((R−1)/n)

n∑
i=1

xn,iv
2(xn,i, t),

in which xn,i = 1 + (R − 1)(2i − 1)/2n, i = 1, n,∀n ∈ N. By the fact that if
the functions x 7→ xu2(x, t) and x 7→ xv2(x, t) are continuous on [1, R], then

the integral sums Sn[u](t) and Sn[v](t) converge to ∥u(t)∥20 =
∫ R

1
xu2(x, t)dx

and ∥v(t)∥20 =
∫ R

1
xv2(x, t)dx, respectively, Problem (Pn) will be formally led

to the following problem



utt − a1(
∥∥u(t)∥∥2

0
)(uxx +

1

x
ux − 1

x2
u)

= f(x, t, u, v, ut, vt, ux, vx), x ∈ Ω = (1, R), 0 < t < T,

vtt − a2(
∥∥v(t)∥∥2

0
)(vxx +

1

x
vx)

= g(x, t, u, v, ut, vt, ux, vx), x ∈ Ω, 0 < t < T,
ux(1, t)− b1u(1, t) = vx(1, t) = u(R, t) = v(R, t) = 0,
(u(x, 0), v(x, 0)) = (ũ0(x), ṽ0(x)),
(ut(x, 0), vt(x, 0)) = (ũ1(x), ṽ1(x)).

(1.2)

Problems (Pn) and (1.2) here will be investigated from mathematical point
of view in the existing literature for Maxwell fluid between two infinite coaxial
circular cylinders. It is well known that there is a great interest of theoret-
ical and applied scientists relating to the fluid flows in the neighborhood of
translating or oscillating bodies, in which, Maxwell fluid has received special
attention; see for [6]– [10], [21] and the references therein. In [9], M. Jamil and
C. Fetecau studied the following problem



λutt + ut = ν(uxx +
1

x
ux − 1

x2
u), 1 < x < R, t > 0,

λVtt + Vt = ν(Vxx + 1
xVx), 1 < x < R, t > 0,

ux(1, t)− u(1, t) =
F

µ
t, Vx(1, t) =

G

µ
t, t > 0,

u(R, t) = V (R, t) = 0, t > 0,
u(x, 0) = ut(x, 0) = V (x, 0) = Vt(x, 0) = 0, 1 < x < R,

(1.3)

where λ, µ, ν, F, G are the given constants, this is a mathematical model de-
scribing the helical flows of Maxwell fluid in the annular region between two
infinite coaxial circular cylinders of radii 1 and R > 1. The authors have ob-
tained an exact solution for Problem (1.3) by means of finite Hankel transforms
and presented under series form in terms of Bessel functions J0(x), Y0(x), J1(x),
Y1(x), J2(x) and Y2(x), satisfying all imposed initial and boundary conditions.
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Afterward, in [10], M. Jamil et al. studied the problem in the form

λutt + ut = ν(uxx +
1

x
ux − 1

x2
u), R1 < x < R2, t > 0,

λVtt + Vt = ν(Vxx +
1

x
Vx), R1 < x < R2, t > 0,

ux(R1, t)−
1

R1
u(R1, t) =

k1
µ
t2, Vx(R1, t) =

k2
µ
t2, t > 0,

u(R1, t) = V (R2, t) = 0, t > 0,
u(x, 0) = ut(x, 0) = V (x, 0) = Vt(x, 0) = 0, R1 < x < R2,

where λ, µ, ν, k1, k2 are the given constants.
Problem (1.2) has its origin in the canonical model of Kirchhoff and Car-

rier which describes small vibrations of an elastic streched string. In [11],
G.R. Kirchhoff first investigated the following nonlinear vibration of an elastic
string

ρhutt = (P0 +
Eh

2L

∫ L

0

∥∥∥∂u
∂y

(y, t)
∥∥∥2dy)uxx,

where u = u(x, t) is the lateral displacement at the space coordinate x and the
time t, ρ is the mass density, h is the cross-section area, L is the length, E
is the Young modulus, P0 is the initial axial tension. And G.F. Carrier in [2]
established a model of the type

utt − (P0 + P1

∫ L

0
u2(y, t)dy)uxx = 0,

where P0, P1 are given constants, which models vibrations of an elastic string
when changes in tension are not small.

It is also well known that, for during last decades, initial-boundary value
problems of the Kirchhoff-Carrier model have been studied extensively and
obtained many importan results. By using different methods together with
various techniques in functional analysis, several results concerning the exis-
tence and the properties of solutions such as blow-up, decay, stability have been
established. Among the works of the Kirchhoff-Carrier type we can cite, for
example, M.M. Cavalcanti et al. [4, 5], N.A. Larkin [12], N.T. Long et al. [14],
L.A. Medeiros [15], J.Y. Park and J.J. Bae [18], M.L. Santos [19] and the ref-
erences given therein. A survey of the results about the mathematical aspects
of Kirchhoff model can be found in L.A. Medeiros et al. [16, 17].

It is important to have in mind that, an approximate solution of Problem
(1.2) can be obtained via the solution of Problem (Pn), in other words, we can
study Problems (Pn) and (1.2) in a new approach, which is approximation of
a system of nonlinear Carrier wave equations Problem (1.2) by approximating
the Carrier terms with their integral sums. We shall prove that for each n ∈ N,
Problem (Pn) has a unique weak solution (un, vn) and then we continue to
prove that {(un, vn)}n converges to the weak solution (u, v) of Problem (1.2)
in a suitable function space. With this approach, we aim to avoid the integral
calculation for nonlocal terms in the integral form, such as the two Carrier

terms
∥∥u(t)∥∥2

0
=

∫ R

1
xu2(x, t)dx and

∥∥v(t)∥∥2
0
=

∫ R

1
xv2(x, t)dx, by replacing

them with corresponding integral sums, namely Sn[u](t) and Sn[v](t). We note
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that if we do not replace the integral sums Sn[u](t) and Sn[v](t), but instead

keep the Carrier terms
∥∥u(t)∥∥2

0
and

∥∥v(t)∥∥2
0
, we would still proceed in the

usual way by linearizing through an iterative sequence {(um, vm)}, where the
two Carrier terms would also be linearized by a previous iteration step into

the terms
∥∥um−1(t)

∥∥2
0
and

∥∥vm−1(t)
∥∥2
0
. However, these two terms would still

require integral calculations. The integral sums Sn[u](t) and Sn[v](t) are the
rectangle rule approximations of the two Carrier terms, respectively. Obviously,
we also can use other integral sums, such as the trapezoidal rule or Simpson’s
rule. The choice of integral sums that converge quickly to the function under
the integral sign, and even allow for the evaluation of the convergence rate,
requires the smoothness of the function under the integral sign. At the end
of this paper (Remark 4), we will discuss how to choose the integral sums to
approximate the solution (u, v) and how to estimate the error in approximating
the Carrier terms and their integral sums. On the basis of the aforementioned
works and the above ideas, in this paper, we study the existence with the
relation of solutions of Problems (Pn) and (1.2). To the best of our knowledge,
there are relatively few results related to approximation problems (Pn), with
nonlinear expressions containing integral sums which approximates the Carrier
terms, to have the approximation of the solutions of Problem (1.2).

This paper is structured as follows. Section 2 is devoted to preliminaries.
In Section 3, we propose hypotheses in order to state and prove two theorems
on the existence and uniqueness of a local weak solution of Problem (Pn), for
each n ∈ N. In Section 4, we prove that the solution of Problem (Pn) converges
to the solution of Problem (1.2) in a sense as in Theorem 3 below. In the proofs
of results obtained here, the main tools of functional analysis such as the linear
approximate method, the Galerkin method, the arguments of continuity with
priori estimates, compactness arguments including the compactness lemma of
Aubin-Lions are employed. We end the paper with a remark related to open
problems (Remark 5).

2 Preliminaries

In this paper, we put Ω = (1, R), QT = Ω × (0, T ), T > 0, and denote the
norm in the space L2 by ∥·∥ . The notations of the function spaces used here,
such as L2 ≡ L2(Ω), H1 ≡ H1(Ω), are standard and can be found in H.
Brezis [1] or J.L. Lions’s book [13]. On H1, we shall use the following norm

∥v∥H1 = (∥v∥2 + ∥vx∥2)1/2. Considering the set V = {v ∈ H1 : v(R) = 0},
then V is a closed subspace of H1 and on V two norms ∥v∥H1 and ∥vx∥ are
equivalent norms. We note that L2, H1 are also the Hilbert spaces with respect

to the corresponding scalar products ⟨u, v⟩ =
∫ R

1
xu(x)v(x)dx, ⟨u, v⟩+⟨ux, vx⟩.

These scalar products induce the corresponding norms in L2 and H1 which are
denoted by ∥·∥0 and ∥·∥1 , respectively. We note more that V is continuously
and densely embedded in L2. Identifying L2 with (L2)′ (the dual of L2), we
have V ↪→ L2 ↪→ V ′, therefore, the notation ⟨·, ·⟩ is also used for the pairing
between H1 and (H1)′. Corresponding to the above norms and spaces, we have
the following lemmas, the proofs of which can be found in the paper [21].

Math. Model. Anal., 30(2):362–385, 2025.

https://doi.org/10.3846/mma.2025.22230


366 L.T.P. Ngoc, N.V. Dzung and N.T. Long

Lemma 1. The following inequalities are fulfilled

(i) ∥v∥ ≤ ∥v∥0 ≤
√
R ∥v∥ , for all v ∈ L2,

(ii) ∥v∥H1 ≤ ∥v∥1 ≤
√
R ∥v∥H1 , for all v ∈ H1.

Lemma 2. The imbedding H1 ↪→ C0(Ω) is compact and

∥v∥C0(Ω) ≤ α0 ∥v∥H1 for all v ∈ H1,

where α0 = 1√
2(R−1)

(
1 +

√
1 + 16(R− 1)2

)0.5
.

Lemma 3. The imbedding V ↪→ C0(Ω) is compact and for all v ∈ V ,

(i) ∥v∥C0(Ω) ≤
√
R− 1 ∥vx∥ ≤

√
R− 1 ∥vx∥0 ,

(ii) ∥v∥0 ≤
√

R+ 1

2
(R− 1) ∥vx∥0 ,

(iii)

∫ R

1

x
∥∥v(x)∥∥γ dx ≤ R2 − 1

2
(
√
R− 1)γ ∥vx∥γ0 , for all γ > 0.

We set a(u,w) = ⟨ux, wx⟩+ b1u(1)w(1) + ⟨ 1
x
u,

1

x
w⟩, and

b(v, ϕ) = ⟨vx, ϕx⟩, for allu, v, w, ϕ ∈ V, (2.4)

∥v∥a =
√

a(v, v) =
[
∥vx∥20 + b1v

2(1) +
∥∥v/x∥∥2

0

]1/2
,

∥v∥b =
√
b(v, v) = ∥vx∥0 , v ∈ V,

with b1 > 0 is given constant. Then, a(·, ·) and b(·, ·) are the symmetric bilinear
forms on V. Moreover, it is not difficult to prove the following lemma.

Lemma 4. The following inequalities are fulfilled

(i) ∥vx∥0 ≤ ∥v∥a ≤ a∗1 ∥vx∥0 , for all v ∈ V,

(ii) ∥vx∥0 ≤ ∥v∥1 ≤ ā∗1 ∥vx∥0 , for all v ∈ V.

where a∗1=[1 + (b1+0.5(R2 − 1)(R− 1)]1/2, ā∗1=[1+0.5(R+ 1)2(R− 1)2]1/2.

Remark 1. On L2, two norms v 7−→ ∥v∥ and v 7−→ ∥v∥0 are equivalent. It
is similar to two norms v 7−→ ∥v∥H1 and v 7−→ ∥v∥1 on H1, and five norms
v 7−→ ∥v∥H1 , v 7−→ ∥v∥1 , v 7−→ ∥vx∥ , v 7−→ ∥vx∥0 and v 7−→ ∥v∥a on V .

Lemma 5. There exists the Hilbert orthonormal base {wj} of L2 consisting
of the eigenfunctions wj corresponding to the eigenvalue λ̄j such that 0 <
λ̄1 ≤ λ̄2 ≤ . . . ≤ λ̄j ≤ λ̄j+1 ≤ . . . , lim

j→+∞
λ̄j = +∞, a(wj , w) = λ̄j⟨wj , w⟩

for all w ∈ V, j = 1, 2, . . . . Furthermore, the sequence {wj/
√
λ̄j}jis the Hilbert

orthonormal base of V with respect to a(·, ·). On the other hand, wj , j =

1, 2, . . . , satisfy the problem L1wj ≡ −(wjxx+
1

x
wjx)+

1

x2
wj = λ̄jwj , in (1, R),

wjx(1)− b1wj(1) = wj(R) = 0, wj ∈ C∞([1, R]).
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The proof of Lemma 5 can be found in [20], Theorem 7.7, with H = L2,
V = {v ∈ H1 : v(R) = 0} and a(·, ·) defined by (2.4). Similarly, we have

Lemma 6. There exists the Hilbert orthonormal base {ϕj} of L2 consisting of
the eigenfunctions ϕj corresponding to the eigenvalue µ̄j such that 0 < µ̄1 ≤
µ̄2 ≤ . . . ≤ µ̄j ≤ µ̄j+1 ≤ . . . , lim

j→+∞
µ̄j = +∞, b(ϕj , ϕ) = µ̄j⟨ϕj , ϕ⟩ for all ϕ ∈

V, j = 1, 2, . . . . Furthermore, the sequence {ϕj/
√
µ̄j}is the Hilbert orthonormal

base of V with respect to the scalar product b(·, ·). On the other hand, ϕj ,

j = 1, 2, . . . , satisfy the problem L2ϕj ≡ −(ϕjxx +
1

x
ϕjx) = µ̄jϕj , in (1, R),

ϕjx(1) = ϕj(R) = 0, ϕj ∈ C∞([1, R]).

Lemma 7. Put ∥v∥H2∩V =
√

∥vx∥20 + ∥vxx∥20 and

L1v ≡ −(vxx + vx/x) + v/x2, L2v ≡ −(vxx + vx/x), v ∈ H2 ∩ V.

Then, there exist constants γ1, γ̄1, γ2, γ̃1, γ̃2 > 0 such that, for all v ∈ H2 ∩ V,

(i) ∥L1v∥0 ≤ γ̄1 ∥v∥H2∩V , ∥L2v∥0 ≤
√
2 ∥v∥H2∩V ,

(ii)γ1 ∥v∥2H2∩V ≤ ∥L1v∥20 + ∥v∥2a ≤ γ̃1 ∥v∥2H2∩V ,

(iii)γ2 ∥v∥2H2∩V ≤ ∥L2v∥20 + ∥vx∥20 ≤ γ̃2 ∥v∥2H2∩V .

The proof of this lemma is not difficult, so we omit it. To make it more concise,
we rewrite the function spaces as follows

L2 = L2 × L2, V = V × V, H2 ∩ V = (H2 ∩ V )× (H2 ∩ V ).

Remark 2. The weak formulation of the initial-boundary value problem (1.2)
can be given in the following manner.

Definition 1. The weak solution of Problem (1.2) is the couple of functions
(u, v) such that (u, v) ∈ W̄T , where the set W̄T = {(u, v) ∈ L∞(0, T ;H2 ∩ V) :
(u′, v′) ∈ L∞(0, T ;V), (u′′, v′′) ∈ L∞(0, T ;L2)}, furthermore (u, v) satisfies the
following variational equation, for all (w, ϕ) ∈ V, a.e., t ∈ (0, T ),{

⟨u′′(t), w⟩+ a1(
∥∥u(t)∥∥2

0
)a(u(t), w) = ⟨f [u, v](t), w⟩,

⟨v′′(t), ϕ⟩+ a2(
∥∥v(t)∥∥2

0
)⟨vx(t), ϕx⟩ = ⟨g[u, v](t), ϕ⟩,

with the initial conditions (u(0), u′(0)) = (ũ0, ũ1) and (v(0), v′(0)) = (ṽ0, ṽ1),
where f [u, v](t), g[u, v](t) are defined in the same form as follows

f [u, v](x, t) = f(x, t, u(x, t), v(x, t), u′(x, t), v′(x, t), ux(x, t), vx(x, t)). (2.10)

Remark 3. (see [13]) The set W̄T contains all the elements (u, v) which belong
to L∞(0, T ;H2 ∩ V) ∩ C([0, T ];V) ∩ C1([0, T ];L2) satisfying

(u′, v′) ∈ L∞(0, T ;V) ∩ C([0, T ];L2), (u′′, v′′) ∈ L∞(0, T ;L2).
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3 Existence and uniqueness of approximation problems

This section is devoted to the study of existence and uniqueness of a local weak
solution for the approximation problems (Pn). For each n ∈ N, Problem (Pn) is
considered with given constants b1 > 0, R > 1, and the following assumptions
for given functions a1, a2, ũ0, ũ1, ṽ0, ṽ1, f, g.

(A1) (ũ0, ũ1), (ṽ0, ṽ1) ∈ (V ∩H2)× V, ũ0x(1)− b1ũ0(1) = ṽ0x(1) = 0;

(A2) a1, a2 ∈ C1(R+), ai(z) ≥ ai∗ > 0,∀z ≥ 0, i = 1, 2;

(A3) f, g ∈ C1([1, R]× [0, T ∗]× R6), such that ∀(t, y5, y6) ∈ [0, T ∗]× R2,

f(R, t, 0, 0, 0, 0, y5, y6) = g(R, t, 0, 0, 0, 0, y5, y6) = 0,

Definition 2. The weak solution of Problem (Pn) is the couple of functions
(u, v) ∈ W̄T satisfying the following variational equation{

⟨u′′(t), w⟩+ a1(Sn[u](t))a(u(t), w) = ⟨f [u, v](t), w⟩,
⟨v′′(t), ϕ⟩+ a2(Sn[v](t))⟨vx(t), ϕx⟩ = ⟨g[u, v](t), ϕ⟩,

(3.1)

for all (w, ϕ) ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

(u(0), u′(0)) = (ũ0, ũ1), (v(0), v′(0)) = (ṽ0, ṽ1), (3.2)

where f [u, v], g[u, v] as in (2.10). Fixed T ∗ > 0, let T ∈ (0, T ∗], we define

WT={(u, v)∈L∞(0, T ;H2 ∩ V) : (u′, v′)∈L∞(0, T ;V), (u′′, v′′)∈L2(0, T ;L2)},

then WT is the Banach space with norm

∥(u, v)∥WT
=max{∥(u, v)∥L∞(0,T ;H2∩V), ∥(u′, v′)∥L∞(0,T ;V),

∥∥(u′′, v′′)
∥∥
L2(0,T ;L2)

}.

For M > 0, we put W (M,T ) =
{
v ∈ WT : ∥v∥WT

≤ M
}
, and

W1(M,T ) = {(u, v) ∈ W (M,T ) : (u′′, v′′) ∈ L∞(0, T ;L2)}.

We construct the recurrent sequence, with (u0, v0) = (ũ0, ṽ0), and suppose that

(um−1, vm−1) ∈ W1(M,T ),

then Problem (3.1)–(3.2) is associated with the problem: Find (um, vm) ∈
W1(M,T ), (m ≥ 1), satisfying the following linear variational problem

⟨u′′
m(t), w⟩+ a1m(t)a(um(t), w) = ⟨Fm(t), w⟩,

⟨v′′m(t), ϕ⟩+ a2m(t)⟨vmx(t), ϕx⟩ = ⟨Gm(t), ϕ⟩, ∀(w, ϕ) ∈ V,
(um(0), u′

m(0)) = (ũ0, ũ1), (vm(0), v′m(0)) = (ṽ0, ṽ1),

(3.7)

where Fm(x, t) = f [um−1, vm−1](x, t), Gm(x, t) = g[um−1, vm−1](x, t), a1m(t) =
a1(Sn[um−1](t)), a2m(t) = a2(Sn[vm−1](t)), and

Sn[u](t) = ((R− 1)/n)
∑n

i=1
xn,iu

2(xn,i, t), Sn[v](t)

= ((R− 1)/n)
∑n

i=1
xn,iv

2(xn,i, t),

xn,i = 1 + (R− 1)(2i− 1)/2n, i = 0, n,∀n ∈ N. (3.8)
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Theorem 1. Let T ∗ > 0 and (A1)–(A3) hold. Then, there exist positive con-
stants M, T > 0 such that, for (u0, v0) = (ũ0, ṽ0), there exists a recurrent
sequence {(um, vm)} ⊂ W1(M,T ) defined by (3.7) and (3.8).

Proof. To prove this theorem, we use the Faedo-Galerkin method. Consider
Hilbert orthonormal bases {wj}, {ϕj} on L2 mentioned in Lemmas 5 and 6.
Put

u(k)
m (t) =

∑k

j=1
c
(k)
mj(t)wj , v(k)m (t) =

∑k

j=1
d
(k)
mj(t)ϕj ,

where c
(k)
mj(t), d

(k)
mj(t) satisfy the system of nonlinear differential equations

⟨ü(k)
m (t), wj⟩+ a1m(t)a(u(k)

m (t), wj) = ⟨Fm(t), wj⟩,
⟨v̈(k)m (t), ϕj⟩+ a2m(t)⟨v(k)mx(t), ϕjx⟩ = ⟨Gm(t), ϕj⟩, 1 ≤ j ≤ k,

(u(k)
m (0), u̇(k)

m (0)) = (ũ0k, ũ1k), (v
(k)
m (0), v̇(k)m (0)) = (ṽ0k, ṽ1k),

(3.10)

with (ũ0k, ũ1k) =
∑k

j=1(α
(k)
j , β

(k)
j )wj , (ṽ0k, ṽ1k) =

∑k
j=1(α̃

(k)
j , β̃

(k)
j )ϕj , further,

(ũ0k, ũ1k) → (ũ0, ũ1) strongly in (H2 ∩ V ) × V, (ṽ0k, ṽ1k) → (ṽ0, ṽ1) strongly
in (H2 ∩ V )× V. By using Banach’s contraction principle, it is not difficult to

prove that the above fixed point equation admits a unique solution (u
(k)
m , v

(k)
m )

on [0, T ]. Taking the constant M∗ = max{M2, 1
2 (R

2−1)(R−1)M2}, and noting
that

∑n
i=1 xn,i = n(1 +R)/2 and (um−1, vm−1) ∈ W1(M,T ), it implies that

∥∥Sn[um−1](t)
∥∥ ≤ ((R− 1)/n)

∑n

i=1
xn,i(R− 1)M2 ≤ M∗,∥∥Sn[vm−1](t)

∥∥ ≤ M∗.

Put KM (f, g) = max{KM (f),KM (g)}, K̃M (a1, a2) = max{K̃M (a1), K̃M (a2)},
with KM (f) = ∥f∥C1(AM ) = ∥f∥C0(AM ) +

∑8
i=1 ∥Dif∥C0(AM ) ,

∥f∥C0(AM ) = sup
(x,t,y1,...,y6)∈AM

∥∥f(x, t, y1, . . . , y6)∥∥ ,
K̃M (ai) = ∥ai∥C1([0,M∗])

= ∥ai∥C0([0,M∗])
+
∥∥a′i∥∥C0([0,M∗])

, i = 1, 2,

AM = [1, R]× [0, T ∗]× [−R1M,R1M ]4 × [−α0M,α0M ]2,

R1=
√
R− 1, α0=

1√
2(R−1)

(
1+

√
1+16(R−1)2)

1
2=

(
1+

√
1+16R4

1

)1/2
√
2R1

,

f = f(x, t, y1, . . . , y6), D1f =
∂f

∂x
, D2f =

∂f

∂t
, Di+2f =

∂f

∂yi
, i = 1, . . . , 6,

S(k)
m (t) = ∥u̇(k)

m (t)∥20 + ∥u̇(k)
m (t)∥2a + ∥v̇(k)m (t)∥20 + ∥v̇(k)mx(t)∥20 + a1m(t)

(
∥u(k)

m (t)∥2a

+ ∥L1u
(k)
m (t)∥20

)
+a2m(t)

(
∥v(k)mx(t)∥20+∥L2v

(k)
m (t)∥20

)
+

∫ t

0

(
∥ü(k)

m (s)∥20+∥v̈(k)m (s)∥20ds.
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Then, it follows that

γ∗S̄
(k)
m (t) ≤ S(k)

m (t) = S(k)
m (0) + 2

∫ t

0

a′1m(s)(
∥∥∥u(k)

m (s)
∥∥∥2
a
+
∥∥∥L1u

(k)
m (s)

∥∥∥2
0
)ds

+ 2

∫ t

0

a′2m(s)(
∥∥∥v(k)mx(s)

∥∥∥2
0
+
∥∥∥L2v

(k)
m (s)

∥∥∥2
0
)ds

+ 2

∫ t

0

[⟨Fm(s), u̇(k)
m (s)⟩+ ⟨Gm(s), v̇(k)m (s)]ds+ 2

∫ t

0

[
a(Fm(s), u̇(k)

m (s))

+ ⟨Gmx(s), v̇
(k)
mx(s)⟩

]
ds+

∫ t

0

(∥ü(k)
m (s)∥20 + ∥v̈(k)m (s)∥20)ds,

where γ∗ = min{1, a1∗γ1, a2∗γ2} and

S̄(k)
m (t) = ∥u̇(k)

m (t)∥20 + ∥u̇(k)
m (t)∥2a + ∥v̇(k)m (t)∥20 + ∥v̇(k)mx(t)∥20

+ ∥u(k)
m (t)∥2H2∩V +∥v(k)m (t)∥2H2∩V +

∫ t

0

(
∥ü(k)

m (s)∥20 + ∥v̈(k)m (s)∥20
)
ds.

To continue the estimate, we note that the following inequalities are fulfilled∥∥Fmx(t)
∥∥ ≤(1 + 6M)KM (f, g),

∥∥Gmx(t)
∥∥ ≤ (1 + 6M)KM (f, g),∥∥a′1m(t)

∥∥ ≤ā∗(M),
∥∥a′2m(t)

∥∥ ≤ ā∗(M),

where ā∗(M) = (R2 − 1)(R− 1)M2K̃M (a1, a2). Therefore, we have

2

∫ t

0

a′1m(s)
(
∥u(k)

m (s)∥2a + ∥L1u
(k)
m (s)∥20

)
ds ≤ 2γ̃1ā∗(M)

∫ t

0

S̄(k)
m (s)ds;∫ t

0

a′2m(s)
(
∥v(k)mx(s)∥20 + ∥L2v

(k)
m (s)∥20

)
ds ≤ 2γ̃2ā∗(M)

∫ t

0

S̄(k)
m (s)ds;

2

∫ t

0

[⟨Fm(s), u̇(k)
m (s)⟩+⟨Gm(s), v̇(k)m (s)⟩]ds≤T (R2−1)K2

M (f, g)+

∫ t

0

S̄(k)
m (s)ds;

2

∫ t

0

[a(Fm(s), u̇(k)
m (s)) + ⟨Gmx(s), v̇

(k)
mx(s)⟩]ds

≤ 2

∫ t

0

[
a∗1∥Fmx(s)∥0∥u̇(k)

m (s)∥a + ∥Gmx(s)∥0∥v̇(k)mx(s)∥0
]
ds

≤ T (a∗21 + 1)(1 + 6M)2K2
M (f, g) +

∫ t

0

S̄(k)
m (s)ds.

We note that, Equation (3.10)1 can be rewritten as follows

⟨ü(k)
m (t), wj⟩+ a1m(t)⟨L1u

(k)
m (t), wj⟩ = ⟨Fm(t), wj⟩, 1 ≤ j ≤ k.

Then, it follows that ∥ü(k)
m (t)∥20≤2K̃2

M (a1, a2)γ̄
2
1 S̄

(k)
m (t)+(R2−1)K2

M (f, g). Si-
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milarly, we get ∥v̈(k)m (t)∥20 ≤ 4K̃2
M (a1, a2)S̄

(k)
m (t)+(R2−1)K2

M (f, g). Hence,∫ t

0

(
∥ü(k)

m (s)∥20 + ∥v̈(k)m (s)∥20
)
ds

≤ 2T (R2−1)K2
M (f, g) + 2(γ̄2

1+2)K̃2
M (a1, a2)

∫ t

0

S̄(k)
m (s)ds.

It leads to S̄
(k)
m (t) ≤ 1

γ∗
S
(k)
m (0) + TD1(M) +D2(M)

∫ t

0
S̄
(k)
m (s)ds, where

D1(M) = (1/γ∗)[3(R
2 − 1) + (a∗21 + 1)(1 + 6M)2]K2

M (f, g),

D2(M) = (2γ∗)
[
1 + (γ̃1 + γ̃2)ā∗(M) + (γ̄2

1 + 2)K̃2
M (a1, a2)

]
,

S(k)
m (0) = ∥ũ1k∥20 + ∥ũ1k∥2a + ∥ṽ1k∥20 + ∥ṽ1kx∥20
+ a1m(0)(∥ũ0k∥2a + ∥L1ũ0k∥20) + a2m(0)(∥ṽ0kx∥20 + ∥L2ṽ0k∥20),

with a1m(0)=a1(((R−1)/n)
∑n

i=1 xn,iũ
2
0(xn,i)) and a2m(0)=a2(((R− 1)/n)

×
∑n

i=1 xn,iṽ0(xn,i)). Remark that 0 ≤ ((R−1)/n)
∑n

i=1 xn,iũ
2
0(xn,i) and ((R−

1)/n)
∑n

i=1 xn,iũ
2
0(xn,i) ≤ 1

2 (R
2 − 1)(R− 1) ∥ũ0x∥20 ≡ ρ(ũ0),

a1m(0) = a1(((R− 1)/n)
∑n

i=1 xn,iũ
2
0(xn,i)) ≤ sup

0≤z≤ρ(ũ0)

a1(z).

Simlarly, a2m(0) = a2(((R − 1)/n)
∑n

i=1 xn,iṽ0(xn,i)) ≤ sup
0≤z≤ρ(ṽ0)

a2(z), with

ρ(ṽ0) = 1
2 (R

2 − 1)(R − 1) ∥ṽ0x∥20 . The above convergences of (ũ0k, ũ1k) and
(ṽ0k, ṽ1k) lead to there exists a constant M > 0 independent of k and m such

that 2S
(k)
m (0) ≤ γ∗M

2, for all k and m ∈ N. We choose T ∈ (0, T ∗], such that(
M2/2+TD1(M)

)
exp(TD2(M))≤M2, kT = 4

√
TC1(M) exp(TC2(M)) < 1,

with C1(M) =
γ̄2
1+2
a∗

ā2∗(M), and C2(M) = 1
a∗
[1+2ā∗(M)+4(ā∗1+1)KM (f, g)].

Using Gronwall’s Lemma, we get S̄
(k)
m (t) ≤ M2, for all t ∈ [0, T ], for all m and

k ∈ N. Hence, u(k)
m ∈ W (M,T ), for all m and k ∈ N. Therefore, there exists a

subsequence of the sequence of {u(k)
m }, with the same notation, such that

(u
(k)
m , v

(k)
m ) → (um, vm) in L∞(0, T ;H2 ∩ V) weak*,

(u̇
(k)
m , v̇

(k)
m ) → (u′

m, v′m) in L∞(0, T ;V) weak*,
(ü

(k)
m , v̈

(k)
m ) → (u′′

m, v′′m) in L2(0, T ;L2) weak,

and (um, vm) ∈ W (M,T ). Passing to limit in (3.10), we have (um, vm) satisfying
(3.7) in L2 weak. Moreover, u′′

m = −a1m(t)L1um + Fm ∈ L∞(0, T ;L2) and
v′′m = −a2m(t)L2vm +Gm ∈ L∞(0, T ;L2), hence (um, vm) ∈ W1(M,T ), so the
proof of Theorem 1 is completed. ⊓⊔

Next, we state and prove the main result in this section, where we consider the
Banach space W1(T ) = C([0, T ];V) ∩ C1([0, T ];L2), with respect to the norm
∥(u, v)∥W1(T ) = ∥(u, v)∥C([0,T ];V) + ∥(u′, v′)∥C([0,T ];L2).
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Theorem 2. Let T ∗ > 0 and (A1)–(A3) hold. Then, there exist positive
constants M, T > 0 such that: Problem (Pn) has a unique weak solution
(ū, v̄) ∈ W1(M,T ). The recurrent sequence {(um, vm)} defined by(3.7)–(3.8)
converges to the weak solution (ū, v̄) of Problem (Pn) strongly in the space
W1(T ). Furthermore, we have the estimate

∥∥(um, vm)− (ū, v̄)
∥∥
W1(T )

≤ CT k
m
T ,∀m ∈ N, (3.11)

where kT ∈ (0, 1) and CT are chosen such that kT , CT depend only on T, f, g,
a1, a2, ũ0, ũ1, ṽ0, ṽ1.

Proof. Let ūm = um+1 − um, v̄m = vm+1 − vm. Then (ūm, v̄m) satisfies


⟨ū′′

m(t), w⟩+ a1,m+1(t)a(ūm(t), w)
= −[a1,m+1(t)− a1m(t)]⟨L1um(t), w⟩+ ⟨Fm+1(t)− Fm(t), w⟩,
⟨v̄′′m(t), ϕ⟩+ a2,m+1(t)⟨v̄mx(t), ϕx⟩ = −[a2,m+1(t)− a2m(t)]⟨L2vm(t), ϕ⟩
+⟨Gm+1(t)−Gm(t), ϕ⟩, ∀(w, ϕ) ∈ V,
(ūm(0), v̄m(0)) = (ū′

m(0), v̄′m(0)) = (0, 0).

By taking (w, ϕ) = (ū′
m(t), v̄′m(t)), after integrating in t, we get the estimation

a∗Z̄m(t) ≤ 2
∫ t

0
[
〈
Fm+1(s)− Fm(s), ū′

m(s)
〉
+
〈
Gm+1(s)−Gm(s), v̄′m(s)

〉
]ds

−2
∫ t

0
[a1,m+1(s)− a1m(s)]⟨L1um(s), ū′

m(s)⟩ds
−2

∫ t

0
[a2,m+1(s)− a2m(s)]⟨L2vm(s), v̄′m(s)⟩ds

+2
∫ t

0
a′1,m+1(s)

∥∥ūm(s)
∥∥2
a
ds+ 2

∫ t

0
a′2,m+1(s)

∥∥v̄mx(s)
∥∥2
0
ds,

with a∗ = min{1, a1∗, a2∗} and Z̄m(t) =
∥∥ū′

m(t)
∥∥2
0
+

∥∥v̄′m(t)
∥∥2
0
+

∥∥ūm(t)
∥∥2
a
+∥∥v̄mx(t)

∥∥2
0
. We continue to estimate terms in the above estimation, based on

the following inequalities

∥∥Fm+1(t)− Fm(t)
∥∥
0
≤ 2(ā∗1 + 1)KM (f, g)

√
Z̄m(t),∀m ∈ N,∀t ∈ [0, T ],∥∥Gm+1(t)−Gm(t)

∥∥
0
≤ 2(ā∗1 + 1)KM (f, g)

√
Z̄m(t),∀m ∈ N,∀t ∈ [0, T ],∥∥a1,m+1(t)− a1m(t)

∥∥ ≤ ā∗(M)

M

∥∥(ūm−1, v̄m−1)
∥∥
W1(T )

,∥∥a2,m+1(t)− a2m(t)
∥∥ ≤ ā∗(M)

M

∥∥(ūm−1, v̄m−1)
∥∥
W1(T )

.
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2

∫ t

0

[
〈
Fm+1(s)− Fm(s), ū′

m(s)
〉
+
〈
Gm+1(s)−Gm(s), v̄′m(s)

〉
]ds

≤ 8(ā∗1 + 1)KM (f, g)

∫ t

0

Z̄m(s)ds;

− 2

∫ t

0

[
a1,m+1(s)− a1m(s)

]
⟨L1um(s), ū′

m(s)⟩ds

≤ T γ̄2
1 ā

2
∗(M)

∥∥(ūm−1, v̄m−1)
∥∥2
W1(T )

+

∫ t

0

Z̄m(s)ds;

− 2

∫ t

0

[
a2,m+1(s)− a2m(s)

]
⟨L2vm(s), v̄′m(s)⟩ds

≤ 2T ā2∗(M)
∥∥(ūm−1, v̄m−1)

∥∥2
W1(T )

+

∫ t

0

Z̄m(s)ds;

2

∫ t

0

a′1,m+1(s)
∥∥ūm(s)

∥∥2
a
ds ≤ 2ā∗(M)

∫ t

0

Z̄m(s)ds;

2

∫ t

0

a′2,m+1(s)
∥∥v̄mx(s)

∥∥2
0
ds ≤ 2ā∗(M)

∫ t

0

Z̄m(s)ds.

Consequently, we obtain that

Z̄m(t) ≤ TC(1)(M)
∥∥(ūm−1, v̄m−1)

∥∥2
W1(T )

+ 2C(2)(M)

∫ t

0

Z̄m(s)ds.

By Gronwall’s lemma, we get
∥∥(ūm, v̄m)

∥∥
W1(T )

≤ kT
∥∥(ūm−1, v̄m−1)

∥∥
W1(T )

,

which implies that, for all m, p ∈ N,

∥∥(um, vm)− (um+p, vm+p)
∥∥
W1(T )

≤

∥∥(u1, v1)− (ũ0, ṽ0)
∥∥
W1(T )

1− kT
kmT . (3.12)

Then, {(um, vm)} is a Cauchy sequence in W1(T ), so there exists (ū, v̄) such
that (um, vm) → (ū, v̄) strongly in W1(T ). Note that (um, vm) ∈ W1(M,T ),
then there exists a subsequence {(umj

, vmj
)} of {(um, vm)} such that

(umj
, vmj

) → (ū, v̄) in L∞(0, T ; (H2 ∩ V )× (H2 ∩ V )) weak*,
(u′

mj
, v′mj

) → (ū′, v̄′) in L∞(0, T ;V) weak*,
(u′′

mj
, v′′mj

) → (ū′′, v̄′′) in L2(0, T ;L2) weak, (ū, v̄) ∈ W (M,T ).

Since ∥Fm − f [ū, v̄]∥C([0,T ];L2) ≤ KM (f)(ā∗1 + 1)∥(um−1 − ū, vm−1 − v̄)∥W1(T ),
Fm → f [ū, v̄] strongly in C([0, T ];L2). Similarly, Gm → g[ū, v̄] strongly in
C([0, T ];L2). We have

∥a1m(t)− a1((Sn[ū])(t))∥ ≤
(
ā∗(M)/M

)
∥(um−1 − ū, vm−1 − v̄)∥W1(T ),

sup
0≤t≤T

∥∥a1m(t)−a1((Sn[ū])(t))
∥∥ ≤

(
ā∗(M)/M

) ∥∥(um−1−ū, vm−1−v̄)
∥∥
W1(T )

.

Hence, a1m → a1(Sn[ū]) strongly in C([0, T ]). By

sup
0≤t≤T

∥∥a2m(t)−a2((Sn[v̄])(t))
∥∥≤ ā∗(M)

M

∥∥(um−1−ū, vm−1−v̄)
∥∥
W1(T )

,
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similarly, we also have a2m → a2(Sn[v̄]) strongly in C([0, T ]). Finally, passing to
limit in (3.7), (3.8) as m = mj → ∞, there exists (ū, v̄) ∈ W (M,T ) satisfying{

⟨ū′′(t), w⟩+ a1(Sn[ū](t))a(ū(t), w) = ⟨f [ū, v̄](t), w⟩,
⟨v̄′′(t), ϕ⟩+ a2(Sn[v̄](t))b(v̄(t), ϕ) = ⟨g[ū, v̄](t), ϕ⟩,

(3.13)

for all (w, ϕ) ∈ V, a.e., t ∈ (0, T ), and the initial conditions

(ū(0), ū′(0)) = (ũ0, ũ1), (v̄(0), v̄′(0)) = (ṽ0, ṽ1).

On the other hand, from the assumption (A2), we obtain from (ū, v̄) ∈ W (M,T )
and (3.13) that ū′′ = −a1(Sn[ū](t))L1ū + f [ū, v̄] ∈ L∞(0, T ;L2) and v̄′′ =
−a2(Sn[v̄](t))L2v̄ + g[ū, v̄] ∈ L∞(0, T ;L2). Thus, we have (ū, v̄) ∈ W1(M,T ).
Now, let (u1, v1), (u2, v2) ∈ W1(M,T ) be two weak solutions of (Pn). Then
(û, v̂) = (u1, v1)− (u2, v2) = (u1 − u2, v1 − v2) satisfies the system

⟨û′′(t), w⟩+a11(t)a(û(t), w)+[a11(t)−a12(t)]⟨L1u2(t), w⟩=⟨F1(t)−F2(t), w⟩,
⟨v̂′′(t), ϕ⟩+a21(t)⟨v̂x(t), ϕx⟩+[a21(t)−a22(t)]⟨L2v2(t), ϕ⟩=⟨G1(t)−G2(t), ϕ⟩,
(û(0), v̂(0)) = (û′(0), v̂′(0)) = (0, 0),

for all (w, ϕ)∈V, a.e., t∈(0, T ), in which Fj(x, t)=f [uj , vj ](x, t), Gj(x, t)=
g[uj , vj ](x, t), and a1j(t)=a1(Sn[uj ](t)), a2j(t)=a2(Sn[vj ](t)), j=1, 2. By
taking (w, ϕ) = (û′(t), v̂′(t)) in the above system and integrating in t, we get

γ̄∗Z̄(t) ≤
∫ t

0

[a′11(s)
∥∥û(s)∥∥2

a
+ a′21(s)

∥∥v̂x(s)∥∥20]ds− 2

∫ t

0

[
a11(s)− a12(s)

]
× ⟨L1u2(s), u

′(s)⟩ds− 2

∫ t

0

[a21(s)− a22(s)]⟨L2v2(s), v
′(s)⟩ds

+ 2

∫ t

0

[
⟨F1(s)− F2(s), u

′(s)⟩+ ⟨G1(s)−G2(s), v
′(s)⟩

]
ds,

where

γ̄∗ = min{1, a1∗, a2∗}, Z̄(t) = ∥û′(t)∥20 + ∥v̂′(t)∥20 + ∥û(t)∥2a + ∥v̂x(t)∥20.

Put q̃M = (4/γ̄∗)[(1+
√
3+ γ̄1)ā∗(M)+4

√
2(1+ ā∗1)KM (f, g)]. Then, we obtain

that Z̄(t) ≤ q̃M
∫ t

0
Z̄(s)ds. Using Gronwall’s lemma, we verify that Z(t) ≡ 0, it

leads to (u1, v1) = (u2, v2). Passing to the limit in (3.12) as p → +∞ for fixed
m, we get (3.11). Theorem 2 is proved completely. ⊓⊔

4 Convergence of solutions of approximation problems

For each fixed n ∈ N, Theorem 2 shows that Problem (Pn) has a unique weak
solution depending on n, which we denote as (un, vn). In this section, we will
prove that the sequence {(un, vn)}n converges to the weak solution (u, v) of
Problem (1.2) in a suitable function space. We note more that the positive
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constants M,T chosen as above will be independent of n, m and k. Therefore,

we obtain the estimate for the sequence {(u(k)
m , v

(k)
m )} satisfying

(u
(k)
m , v

(k)
m ) ∈ W1(M,T ), for all n,m, k ∈ N,

where M and T are positive constants independent of n, m and k. Hence, the

limitation (un, vn) of {(u(k)
m , v

(k)
m )}, as k → +∞ and m → +∞ later, is the

unique weak solution of (Pn) and satisfying

(un, vn) ∈ W1(M,T ), for all n ∈ N. (4.1)

By (4.1), there exists a subsequence of {(un, vn)}, with the same symbol, such
that 

(un, vn) → (u∞, v∞) in L∞(0, T ;H2 ∩ V) weak*,
(u̇n, v̇n) → (u′

∞, v′∞) in L∞(0, T ;V) weak*,
(ün, v̈n) → (u′′

∞, v′′∞) in L2(0, T ;L2) weak,
(u∞, v∞) ∈ W (M,T ).

(4.2)

Applying the compactness lemma of Aubin-Lions, there exists a subsequence
of {(un, vn)}, also with the same symbol, such that{

(un, vn) → (u∞, v∞) in C([0, T ];V) strongly,
(u̇n, v̇n) → (u′

∞, v′∞) in C([0, T ];L2) strongly.
(4.3)

Because (un, vn) is the unique weak solution of (Pn), we get
∫ T

0
⟨ün(t), w⟩φ(t)dt

+
∫ T

0
a1(Sn[u

n](t))a(un(t), w)φ(t)dt =
∫ T

0
⟨f [un, vn](t), w⟩φ(t)dt, and∫ T

0

⟨v̈n(t), ϕ⟩φ(t)dt+
∫ T

0

a2(Sn[v
n](t))b(vn(t), ϕ)φ(t)dt

=

∫ T

0

⟨g[un, vn](t), ϕ⟩φ(t)dt,
(4.4)

for all (w, ϕ) ∈ V, ∀φ ∈ C∞
c (0, T ). By (4.2)3, it leads to∫ T

0

⟨ün(t), w⟩φ(t)dt →
∫ T

0

⟨u′′
∞(t), w⟩φ(t)dt,∫ T

0

⟨v̈n(t), ϕ⟩φ(t)dt →
∫ T

0

⟨v′′∞(t), ϕ⟩φ(t)dt.
(4.5)

From (4.3), we deduce that∫ T

0

⟨f [un, vn](t), w⟩φ(t)dt →
∫ T

0

⟨f [u∞, v∞](t), w⟩φ(t)dt,∫ T

0

⟨g[un, vn](t), ϕ⟩φ(t)dt →
∫ T

0

⟨g[u∞, v∞](t), ϕ⟩φ(t)dt.
(4.6)

Indeed, we prove (4.6) as follows. With (4.6)1, from the following inequality∥∥f [un, vn](t)− f [u∞, v∞](t)
∥∥
0

≤ KM (f)[∥un(t)− u∞(t)∥0 + ∥vn(t)− v∞(t)∥0 + ∥u̇n(t)− u′
∞(t)∥0

+ ∥v̇n(t)− v′∞(t)∥0 + ∥un
x(t)− u∞x(t)∥0 + ∥vnx (t)− v∞x(t)∥0
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≤ (1 +
√
R− 1)KM (f)

×
[
∥(un, vn)− (u∞, v∞)∥C([0,T ];V) + ∥(u̇n, v̇n)− (u′

∞, v′∞)∥C([0,T ];L2)

]
,

f [un, vn] → f [u∞, v∞] in L∞(0, T ;L2) strongly. (4.7)

From (4.7), we deduce that (4.6)1 is true. Similarly, we also have

g[un, vn] → g[u∞, v∞] in L∞(0, T ;L2) strongly,

from which we deduce that (4.6)2 is true. Now, we have to show that∫ T

0

a1(Sn[u
n](t))a(un(t), w)φ(t)dt →

∫ T

0

a1(
∥∥u∞(t)

∥∥2
0
)a(u∞(t), w)φ(t)dt,∫ T

0

a2(Sn[v
n](t))b(vn(t), ϕ)φ(t)dt →

∫ T

0

a2(
∥∥v∞(t)

∥∥2
0
)b(v∞(t), ϕ)φ(t)dt. (4.8)

Lemma 8. The following properties are fulfilled

(i) ∥Sn[u
n]− Sn[u∞]∥C([0,T ]) → 0,

(ii) ∥Sn[u∞]− ∥u∞(·)∥20 ∥C([0,T ]) ≤ (1/4n)(R− 1)2(1 + 2R)C̄2
RM

2 → 0,

(iii) ∥Sn[u
n]− ∥u∞(·)∥20 ∥C([0,T ]) → 0,

as n → ∞, where C̄R = sup
0̸=w∈H2∩V

∥w∥C1([1,R])

∥w∥H2∩V
. The results (i)–(iii) still hold

with (un, u∞) replaced by (vn, v∞).

Proof. By u∞, un ∈ L∞(0, T ;H2 ∩ V ) ∩ C([0, T ];V ) ∩ C1([0, T ];L2), we
first note that u∞, un ∈ C([0, T ];V ). From here, we deduce that the functions
t 7→

∥∥u∞(t)
∥∥
0
, t 7→ Sn[u∞](t) and t 7→ Sn[u

n](t) are continuous on [0, T ].
Therefore, all three functions in (i), (ii), and (iii) are also continuous on [0, T ].
Next, we note that, we have the following estimation

∥Sn[u
n](t)−Sn[u∞](t)∥≤((R− 1)/n)

∑n

i=1
xn,i

∣∣∣|un(xn,i, t)|2−u2
∞(xn,i, t)

∣∣∣
≤ (2/n)(R− 1)2M

∑n

i=1
xn,i ∥un − u∞∥C([0,T ];V ) (4.9)

= (R− 1)(R2 − 1)M ∥un − u∞∥C([0,T ];V ) .

Then, by (4.3)1, we deduce from (4.9) that∥∥Sn[u
n]− Sn[u∞]

∥∥
C([0,T ])

≤ (R− 1)(R2 − 1)M ∥un − u∞∥C([0,T ];V ) → 0,

as n → ∞. Thus, (i) is valid. In order to prove (ii), by simple calculations with
F ∈ C1([a, b]), we first note that the following inequality is true∣∣∣ ∫ b

a

F (x)dx− b− a

n

n∑
i=1

F (a+
i(b− a)

2n
)
∣∣∣ ≤ (b− a)2

4n

∥∥F ′∥∥
C([a,b])

.



Approximation of a system of nonlinear Carrier wave equations 377

Consequently, with F ∈ C1([1, R]), a = 1, b = R, xi = 1 + i(R−1)
n , xi − xi−1 =

((R− 1)/n), xi−1+xi

2 = 1 + i(R−1)
2n = xn,i, we obtain∣∣∣ ∫ R

1

F (x)dx− ((R− 1)/n)

n∑
i=1

F (xn,i)
∣∣∣ ≤ (R− 1)2

4n

∥∥F ′∥∥
C([1,R])

. (4.10)

Since the embeddings H2 ∩ V ↪→ C1([1, R]) ∩ V ↪→ C1([1, R]) are continuous,
there exists a constant C̄R > 0 such that ∥w∥C1([1,R]) ≤ C̄R ∥w∥H2∩V , for all

w ∈ H2 ∩ V. We also deduce that the following embeddings are continuous

L∞(0, T ;H2 ∩ V ) ↪→ L∞(0, T ;C1([1, R]) ∩ V ) ↪→ L∞(0, T ;C1([1, R])).

From this, with the property u∞ ∈ L∞(0, T ;H2∩V ) ↪→ L∞(0, T ;C1([1, R])),
we have that x 7−→ F (x, t) = xu2

∞(x, t) belongs to C1([1, R]) for almost every
t ∈ [0, T ]. Applying (4.10), with F (x, t) = xu2

∞(x, t), we obtain∣∣∥u∞(t)∥20 − Sn[u∞](t)
∣∣ ≤ (1/n)(R− 1)2∥Fx(t)∥C([1,R]). (4.11)

On the other hand, by the estimate

∥Fx(t)∥C([1,R]) = ∥u2
∞(t) + 2xu∞(t)u∞x(t)∥C([1,R])

≤ ∥u∞(t)∥2C([1,R]) + 2R∥u∞(t)∥C([1,R])∥u∞x(t)∥C([1,R])

≤ (1 + 2R)∥u∞(t)∥2C1([1,R]) ≤ (1 + 2R)C̄2
R∥u∞(t)∥2H2∩V

≤ (1 + 2R)C̄2
R∥u∞∥2L∞(0,T ;H2∩V ) ≤ (1 + 2R)C̄2

RM
2,

it follows from (4.11) that∣∣∥u∞(t)∥20 − Sn[u∞](t)
∣∣ ≤ (1/4n)(R− 1)2(1 + 2R)C̄2

RM
2.

Thus, (ii) is true. It follows from (i), (ii) that

∥Sn[u
n]− ∥u∞(·)∥20∥C([0,T ])

≤ ∥Sn[u
n]−Sn[u∞]∥C([0,T ])+∥Sn[u∞]−∥u∞(·)∥20∥C([0,T ]) → 0,

as n → ∞. Hence, (iii) also holds. Therefore, Lemma 8 is proved. ⊓⊔

Lemma 9. The following convergence is valid

(i) ∥a1(Sn[u
n])− a1(∥u∞(·)∥20)∥C([0,T ]) → 0, as n → ∞,

(ii) ∥a2(Sn[v
n])− a2(∥v∞(·)∥20)∥C([0,T ]) → 0, as n → ∞.

Proof. Due to∣∣a1(Sn[u
n](t))− a1(∥u∞(t)∥20)

∣∣ ≤ K̃M (a1)
∣∣Sn[u

n](t)− ∥u∞(t)∥20
∣∣, (4.12)

hence it follows from (4.12) and Lemma 8 (iii) that∥∥a1(Sn[u
n])−a1(∥u∞(·)∥20)

∥∥
C([0,T ])

≤K̃M (a1)
∥∥Sn[u

n]−∥u∞(·)∥20
∥∥
C([0,T ])

→ 0,

as n → ∞. Moreover, (ii) is similar to (i). Thus, Lemma 9 is proved. ⊓⊔
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Now, we continue the proof of (4.8). By the following inequality∣∣∣ ∫ T

0

a1(Sn[u
n](t))a(un(t), w)φ(t)dt−

∫ T

0

a1(∥u∞(t)∥20)a(u∞(t), w)φ(t)dt
∣∣∣

≤
∣∣∣ ∫ T

0

[a1(Sn[u
n](t))− a1(∥u∞(t)∥20)]a(un(t), w)φ(t)dt

∣∣∣
+
∣∣∣ ∫ T

0

a1(∥u∞(t)∥20)a(un(t)− u∞(t), w)φ(t)dt
∣∣∣

≤ M∥w∥a∥φ∥L2(0,T )

√
T
∥∥a1(Sn[u

n])− a1(∥u∞(·)∥20)
∥∥
C([0,T ])

+ K̃M (a1)∥w∥a∥φ∥L1(0,T )∥un−u∞∥C([0,T ];V ) → 0, as n → ∞.

Combining (4.3)1 and Lemma 9, we get (4.8)1. Using a similar approach, we
also have that (4.8)2 is true. Finally, by (4.5), (4.6) and (4.8), giving n → ∞
in (4.4), we obtain that (u∞, v∞) ∈ W (M,T ) satisfies the equation∫ T

0

⟨u′′
∞(t), w⟩φ(t)dt+

∫ T

0

a1(
∥∥u∞(t)

∥∥2
0
)a(u∞(t), w)φ(t)dt

=

∫ T

0

⟨f [u∞, v∞](t), w⟩φ(t)dt, (4.13)∫ T

0

⟨v′′∞(t), ϕ⟩φ(t)dt+
∫ T

0

a2(
∥∥v∞(t)

∥∥2
0
)b(v∞(t), ϕ)φ(t)dt

=

∫ T

0

⟨g[u∞, v∞](t), ϕ⟩φ(t)dt,

for all (w, ϕ) ∈ V, ∀φ ∈ C∞
c (0, T ), together with the initial conditions

(u∞(0), u′
∞(0)) = (ũ0, ũ1), (v∞(0), v′∞(0)) = (ṽ0, ṽ1).

Consequently,
⟨u′′

∞(t), w⟩+ a1(
∥∥u∞(t)

∥∥2
0
)a(u∞(t), w) = ⟨f [u∞, v∞](t), w⟩,

⟨v′′∞(t), ϕ⟩+a2(
∥∥v∞(t)

∥∥2
0
)b(v∞(t), ϕ)=⟨g[u∞, v∞](t), ϕ⟩, ∀(w, ϕ)∈V,

(u∞(0), u′
∞(0)) = (ũ0, ũ1), (v∞(0), v′∞(0)) = (ṽ0, ṽ1),

and (u∞, v∞) ∈ W (M,T ). Furthermore, (4.13) implies that

u′′
∞ = −a1(

∥∥u∞(t)
∥∥2
0
)L1u∞ + f [u∞, v∞] ∈ L∞(0, T ;L2),

v′′∞ = −a2(
∥∥v∞(t)

∥∥2
0
)L2v∞ + g[u∞, v∞] ∈ L∞(0, T ;L2),

so (u∞, v∞) ∈ W1(M,T ), hence (u∞, v∞) ∈ W1(M,T ) is a weak solution of
(1.2). Moreover, we can verify that this weak solution (u∞, v∞) is unique.

By uniqueness of (1.2), we have (u, v) = (u∞, v∞). We note more that, the
sequence {(un, vn)} converges to (u, v) in the sense as in (4.2) and (4.3).

The above result leads to the following theorem.
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Theorem 3. Let (A1)–(A3) hold. Then there exist positive constants M, T
such that

(i) Problem (1.2) has a unique weak solution (u, v) ∈ W1(M,T ).
(ii) The solution sequence {(un, vn)}n of Problem (Pn) converges to the

weak solution (u, v) of Problem(1.2) in the sense
(un, vn) → (u, v) in L∞(0, T ;H2 ∩ V) weak*,
(u̇n, v̇n) → (u′, v′) in L∞(0, T ;V) weak*,
(ün, v̈n) → (u′′, v′′) in L2(0, T ;L2) weak,
(un, vn) → (u, v) in W1(T ) strongly.

(iii) Furthermore, we have the following estimates

∥(un, vn)− (u, v)∥W1(T ) ≤ CT ∥En∥C([0,T ]) , ∀n ∈ N, (4.14)

En(t) =
∣∣Sn[u

n](t)− ∥u(t)∥20
∣∣+ ∣∣Sn[v

n](t)−
∥∥v(t)∥∥2

0

∣∣,
∥En∥C([0,T ]) ≤

∥∥Sn[u
n]− ∥u(·)∥20

∥∥
C([0,T ])

+
∥∥Sn[v

n]−∥v(·)∥20
∥∥
C([0,T ])

→ 0,

as n→∞, and CT is a constant depending only on T, a1, a2, f, g, ũ0, ũ1, ṽ0, ṽ1.
(iv) On the other hand, if T > 0 is chosen small enough, we have the

following estimate

∥(un, vn)− (u, v)∥W1(T ) ≤ C∗
T /n, ∀n ∈ N, (4.15)

where, C∗
T is a constant depending only on T, a1, a2, f, g, ũ0, ũ1, ṽ0, ṽ1.

Proof. It remains to prove (iii) and (iv).
We set (ūn, v̄n) = (un, vn)− (u, v) = (un − u, vn − v) and

f̄n(t) = f [un, vn](t)− f [u, v](t), ḡn(t) = g[un, vn](t)− g[u, v](t),

Ān
1 (t)=a1(Sn[u

n](t))− a1(∥u(t)∥20), Ān
2 (t)=a2(Sn[v

n](t))−a2(∥v(t)∥20),
ã1n(t) = a1(Sn[u

n](t)), ã2n(t) = a2(Sn[v
n](t)), (4.16)

then, (ūn, v̄n) ∈ W̄T satisfies the variational problem
⟨ū′′

n(t), w⟩+ ã1n(t)a(ūn(t), w) + Ān
1 (t)a(u(t), w) = ⟨f̄n(t), w⟩,

⟨v̄′′n(t), ϕ⟩+ã2n(t)b(v̄n(t), ϕ)+Ān
2 (t)b(v(t), ϕ)=⟨ḡn(t), ϕ⟩,∀(w, ϕ)∈V,

(ūn(0), ū
′
n(0)) = (v̄n(0), v̄

′
n(0)) = (0, 0).

(4.17)

Taking (w, ϕ) = (ū′
n(t), v̄

′
n(t)) in (4.17)1,2 and then integrating in t, we have

â∗X̄n(t) ≤
∫ t

0

(ã′1n(s)
∥∥ūn(s)

∥∥2
a
+ ã′2n(s)

∥∥v̄nx(s)∥∥20)ds
+ 2

∫ t

0

Ān
1 (s)⟨L1u(s), ū

′
n(s)⟩+ Ān

2 (s)⟨L2v(s), v̄
′
n(s)⟩ds

+ 2

∫ t

0

[
⟨f̄n(s), ū′

n(s)⟩+ ⟨ḡn(s), v̄′n(s)⟩
]
ds,

(4.18)
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where â∗ = min{1, a1∗, a2∗} and

X̄n(t) =
∥∥(ū′

n(t), v̄
′
n(t))

∥∥2
L2 +

∥∥(ūn(t), v̄n(t))
∥∥2
V .

First, we need to evaluate the terms ã′1n(t), ã
′
2n(t), Ā

n
1 (t), Ā

n
2 (t), f̄n(t), ḡn(t)

as follows. Estimating ã′1n(t), ã
′
2n(t) : Note that

ã′1n(t) = a′1(Sn[u
n](t))

d

dt
Sn[u

n](t)

= 2a′1(Sn[u
n](t))((R− 1)/n)

n∑
i=1

xn,iu
n(xn,i, t)u̇

n(xn,i, t),

hence∥∥ã′1n(t)∥∥ ≤ 2K̃M (a1)((R− 1)/n)
∑n

i=1
xn,i(R− 1)

∥∥un
x(t)

∥∥
0

∥∥u̇n
x(t)

∥∥
0

≤ 2K̃M (a1)((R− 1)/n)
n(1 +R)

2
(R− 1)M2

= K̃M (a1)(R− 1)(R2 − 1)M2 ≤ 2K̃M (a1)M∗ ≤ 2K̃M (a1, a2)M∗. (4.19)

Similarly, ∥∥ã′2n(t)∥∥ ≤ 2K̃M (a2)M∗ ≤ 2K̃M (a1, a2)M∗.

Estimating Ān
1 (t), Ā

n
2 (t) : by (4.16) we deduce that

∥Ān
1 (t)∥≤K̃M (a1)

∥∥Sn[u
n](t)−∥u(t)∥20

∥∥≤K̃M (a1, a2)
∥∥Sn[u

n]−∥u(·)∥20
∥∥
C([0,T ])

,∥∥Ān
2 (t)

∥∥ ≤ K̃M (a1, a2)
∥∥Sn[v

n]− ∥v(·)∥20
∥∥
C([0,T ])

.

Estimating f̄n(t), ḡn(t) : we have∥∥f̄n(t)∥∥0 ≤ KM (f)
[
∥ūn(t)∥0 + ∥v̄n(t)∥0

+
∥∥ū′

n(t)
∥∥
0
+
∥∥v̄′n(t)∥∥0 + ∥∥ūnx(t)

∥∥
0
+
∥∥v̄nx(t)∥∥0 ] (4.20)

≤ 2(1 +
√
R− 1)KM (f)

√
X̄n(t) ≤ 2(1 +

√
R− 1)KM (f, g)

√
X̄n(t),

∥ḡn(t)∥0≤∥g[un, vn](t)−g[u, v](t)∥0≤2(1 +
√
R− 1)KM (f, g)

√
X̄n(t). (4.21)

From the estimates (4.19)–(4.21), we evaluate the terms on the right-hand
side of (4.18) as follows.∫ t

0

(ã′1n(s)
∥∥ūn(s)

∥∥2
a
+ ã′2n(s)

∥∥v̄nx(s)∥∥20)ds
≤ 2K̃M (a1, a2)M∗

∫ t

0

X̄n(s)ds ≡ η
(1)
M

∫ t

0

X̄n(s)ds

2

∫ t

0

Ān
1 (s)⟨L1u(s), ū

′
n(s)⟩+ Ān

2 (s)⟨L2v(s), v̄
′
n(s)⟩ds

≤ K̃2
M (a1, a2)(γ̄1 +

√
2)2M2

∫ T

0

E2
n(s) +

∫ t

0

X̄n(s)ds
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≤ K̃2
M (a1, a2)(γ̄1 +

√
2)2M2T ∥En∥2C([0,T ]) +

∫ t

0

X̄n(s)ds

≡ Tη
(2)
M ∥En∥2C([0,T ]) +

∫ t

0

X̄n(s)ds;

2

∫ t

0

[
⟨f̄n(s), ū′

n(s)⟩+ ⟨ḡn(s), v̄′n(s)⟩
]
ds

≤ 2

∫ t

0

[∥∥f̄n(s)∥∥0 ∥∥ū′
n(s)

∥∥
0
+
∥∥ḡn(s)∥∥0 ∥∥v̄′n(s)∥∥0] ds

≤ 8(1 +
√
R− 1)KM (f, g)

∫ t

0

X̄n(s)ds ≡ η
(3)
M

∫ t

0

X̄n(s)ds.

It follows from (4.16) and (4.20) that

X̄n(t) ≤
Tη

(2)
M

â∗
∥En∥2C([0,T ]) +

1

â∗
(1 + η

(1)
M + η

(3)
M )

∫ t

0

X̄n(s)ds. (4.22)

Using Gronwall’s lemma, it follows from (4.22) that

X̄n(t)≤
Tη

(2)
M

â∗
exp

[
T

â∗
(1+η

(1)
M +η

(3)
M )

]
∥En∥2C([0,T ]) ≡ η

(4)
M (T ) ∥En∥2C([0,T ]) .

(4.23)

We deduce from (4.23) that∥∥(un, vn)− (u, v)
∥∥
W1(T )

=
∥∥(ūn, v̄n)

∥∥
W1(T )

≤ 4

√
η
(4)
M (T ) ∥En∥C([0,T ]) .

Hence, (4.14) holds. From Lemma 9, we have∥∥Sn[u
n]−∥u(·)∥20

∥∥
C([0,T ])

≤
∥∥Sn[u

n]−Sn[u]
∥∥
C([0,T ])

+
∥∥Sn[u]−∥u(·)∥20

∥∥
C([0,T ])

≤ (R− 1)(R2 − 1)M ∥un − u∥C([0,T ];V ) +
(R− 1)2

4n
(1 + 2R)C̄2

RM
2.

Similarly,∥∥Sn[v
n]− ∥v(·)∥20

∥∥
C([0,T ])

≤ (R− 1)(R2 − 1)M ∥vn − v∥C([0,T ];V ) +
(R− 1)2

4n
(1 + 2R)C̄2

RM
2.

Therefore,

∥En∥C([0,T ]) ≤
∥∥Sn[u

n]− ∥u(·)∥20∥C([0,T ]) + ∥Sn[v
n]− ∥v(·)∥20

∥∥
C([0,T ])

≤ (R−1)(R2−1)M
∥∥(un, vn)−(u, v)

∥∥
W1(T )

+
(R−1)2

2n
(1+2R)C̄2

RM
2.

From here, we deduce that

∥(un, vn)− (u, v)∥W1(T ) ≤ 4
(
η
(4)
M (T )

)1/2∥En∥C([0,T ])

≤ 4
(
η
(4)
M (T )

)1/2
(R− 1)(R2 − 1)M∥(un, vn)− (u, v)∥W1(T ) (4.24)

+ 4

√
η
(4)
M (T )

(R− 1)2

2n
(1 + 2R)C̄2

RM
2.
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By

lim
T→0+

√
η
(4)
M (T ) = lim

T→0+

(
Tη

(2)
M

â∗
exp

[
T

â∗
(1 + η

(1)
M + η

(3)
M )

])1/2

= 0,

we deduce that there exists a sufficiently small T > 0 such that

4

√
η
(4)
M (T )(R− 1)(R2 − 1)M < 1. (4.25)

Combining (4.24) and (4.25), (4.15) holds. Theorem 3 is proved. ⊓⊔

Remark 4. We would like to discuss the possibility of replacing the integral sums
Sn[u](t) and Sn[v](t) with trapezoidal rule or Simpson’s rule. These rules pro-

vide better approximations of the two Carrier terms
∥∥u(t)∥∥2

0
=

∫ R

1
xu2(x, t)dx

and
∥∥v(t)∥∥2

0
=

∫ R

1
xv2(x, t)dx if (u, v) are sufficiently smooth in terms of the

variable x. To gain a clearer perspective, we return to the beginning with a
function F defined on [a, b] instead of [1, R].

(i) For the trapezoidal rule, it allows us to approximate the integral∫ b

a

F (x)dx ≈ b− a

2n

n∑
i=1

(F (xi−1) + F (xi))

=
b−a

n
[
F (x0)+F (xn)

2
+

n−1∑
i=1

F (xi)], xi=a+
i(b−a)

n
, i=0, n.

If F ∈ C2([a, b]), then the error of this approximation is estimated by∣∣∣∣ ∫ b

a

F (x)dx−b− a

2n

n∑
i=1

(F (xi−1) + F (xi))

∣∣∣∣ ≤ (b−a)3

12n2

∥∥F ′′∥∥
C([a,b])

.

(ii) For the Simpson’s rule, it allows us to approximate the integral∫ b

a

F (x)dx ≈ b−a

6n

n∑
i=1

[
f(x2i−2) + 4f(x2i−1) + f(x2i)

]
,

xi = a+ i(b− a)/(2n), i = 0, 2n.

If F ∈ C4([a, b]), then the error of this approximation is estimated by∣∣∣∣ ∫ b

a

f(x)dx−b−a

6n

n∑
i=1

[
f(x2i−2) + 4f(x2i−1) + f(x2i)

] ∣∣∣∣
≤ 1

90n4

(b− a

2

)5

∥f (4)∥C([a,b]).

Now, we try to replace the integral sums Sn[u](t) and Sn[v](t) with the trape-
zoidal formulas as follows

S̃n[u](t) =
R− 1

2n

n∑
i=1

[xi−1u
2(xi−1, t) + xiu

2(xi, t)],

S̃n[v](t)=
R−1

2n

n∑
i=1

[
xi−1v

2(xi−1, t)+xiv
2(xi, t)

]
, xi=1+

i(R−1)

n
, i=0, n,
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for all n ∈ N. Therefore, in order to estimate the error of the trapezoidal for-

mulas with the integrals
∫ R

1
xu2(x, t)dx and

∫ R

1
xv2(x, t)dx, it requires that

the functions x 7−→ xu2(x, t) and x 7−→ xv2(x, t) belong to C2([1, R]) for al-
most every t ∈ [0, T ]. Meanwhile, we only have u, v ∈ L∞(0, T ;H2 ∩ V ) ↪→
L∞(0, T ;C1([1, R])). Similarly, if we replace Sn[u](t) and Sn[v](t) with the
Simpson’s formulas, it would require that x 7−→ xu2(x, t) and x 7−→ xv2(x, t)
belong to C4([1, R]) for almost every t ∈ [0, T ]. For this reason, in order
to approximate Sn[u](t) and Sn[v](t), we use the rectangle rule to approxi-

mate
∫ R

1
xu2(x, t)dx and

∥∥v(t)∥∥2
0
=

∫ R

1
xv2(x, t)dx, which is consistent with

the smoothness of the solution (u, v).

Remark 5. We can consider Problem (Pn) with Sn[u](t), Sn[v](t) replaced by
the following integral sums respectively

Sn[ux](t) =((R− 1)/n)
∑n

i=1
xn,iu

2
x(xn,i, t),

Sn[vx](t) =((R− 1)/n)
∑n

i=1
xn,iv

2
x(xn,i, t),

in which xn,i = 1+ (R−1)(2i−1)
2n , i = 0, . . . , n, ∀n ∈ N. This leads to the following

open problem

(P̄n)



utt − a1(Sn[ux](t))
(
uxx +

(
1/x

)
ux −

(
1/x2

)
u
)

= f(x, t, u, v, ut, vt, ux, vx), 1 < x < R, 0 < t < T,

vtt − a2(Sn[vx](t))(vxx +
(
1/x

)
vx)

= g(x, t, u, v, ut, vt, ux, vx), 1 < x < R, 0 < t < T,

ux(1, t)− b1u(1, t) = vx(1, t) = u(R, t) = v(R, t) = 0,

(u(x, 0), v(x, 0)) = (ũ0(x), ṽ0(x)), (ut(x, 0), vt(x, 0)) = (ũ1(x), ṽ1(x)),

where b1 > 0, R > 1 are given constants, and a1, a2, ũ0, ũ1, ṽ0, ṽ1, f and g are
given functions, with two questions:

(i) What is the sufficient condition for the unique existence of a weak solu-
tion (un, vn) of Problem (P̄n)?

(ii) Does the sequence {(um, vm)}n converge to a weak solution (u, v) of the
correspondence problem (P̄∞) in a certain sense?
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