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Abstract. The paper presents the solution methodology of a multi-objective prob-
abilistic fractional programming problem, where the parameters of the right hand
side constraints follow Cauchy distribution. The proposed mathematical model can
not be solved directly. The solution procedure is completed in three steps. In first
step, multi-objective probabilistic fractional programming problem is converted to
deterministic multi-objective fractional mathematical programming problem. In the
second step, it is converted to its equivalent multi-objective mathematical program-
ming problem. Finally, ε-constraint method is applied to find the best compromise
solution. A numerical example and application are presented to demonstrate the
procedure of proposed mathematical model.

Keywords: multi-objective programming problem, probabilistic programming problem,

fractional programming problem, ε-constraint method.
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1 Introduction

Linear Fractional Programming (LFP) problem is a mathematical program-
ming problem where the objective function is the ratio of two linear functions
subject to the constraints with linear equalities or inequalities. The Hungarian
mathematicians, Martos and Whinston [14] developed linear fractional pro-
gramming problem in 1960s. LFP problem is applied when the constraints and

�
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objective functions are deterministic in nature. But many real world decision
making problems have uncertain objective functions and constraints due to
incomplete or vague or uncertain information. Such type of uncertainties are
addressed via fuzzy programming problem or stochastic programming problem.
The mathematical models are said to be stochastic linear fractional program-
ming problem, if some or all parameters of linear fractional programming are
considered as random variables. There are two methods to deal with stochastic
programming problem, namely two stage programming problem and chance
constrained (probabilistic) programming problem.
Optimizing two or more fractional objective functions which are conflicting
in nature is called multi-objective fractional programming problem. Multi-
objective fractional programming problem is a beneficial means of modeling
real life decision making problems with objective functions in the form of frac-
tions such as minimizing actual cost/standard cost, maximizing profit/cost,
minimizing inventory/sales, etc. Multi-objective LFP problem is also applica-
ble in various disciplines like production planning problem, planning of agricul-
tural problem, inventory problem, health care and hospital planning, financial
planning, etc.

Multi-objective probabilistic linear fractional programming (MOPLFP)
problem is nothing but it is optimizing the multi-objective linear fractional
functions subject to some constraints which follows known random distribu-
tion. MOPLFP problem can not be solved directly. In order to solve it, the
proposed model is transformed to known standard mathematical model in three
steps. In the first step of transformation, MOPLFP problem is converted to
its equivalent deterministic multi-objective linear fractional mathematical pro-
gramming problem. In second step, multi-objective fractional mathematical
programming problem is transformed to its equivalent multi-objective linear
programming problem. Finally, multi-objective mathematical programming
problem is solved using ε-constrained method.

This paper has been organized into nine sections. The Section 1 presents
the brief introduction of fractional programming problem. Section 2 presents
motivation of the study. Section 3 presents review of literatures that are re-
lated to proposed work. Section 4 states the general model of MOPLFP prob-
lem. Section 5 presents the procedure to obtain deterministic equivalence of
probabilistic programming problem. Section 6 presents the conversion of multi-
objective linear fractional programming into equivalent multi-objective linear
programming problem. Section 7 presents the solution procedure of multi-
objective probabilistic linear fractional programming problem. One numerical
and one practical example are given in Section 8 to illustrate the procedure.
Finally, conclusions and references are provided in Section 9.

2 Motivation

Uncertain programming problem is an integral part of real life optimization
problems. In most of the situations decision makers solve optimization prob-
lems that involves specific parameters which are mostly unknown. This leads
to uncertainties in the input model parameters. Therefore parameters are han-
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dled by using known probability distribution functions. Stochastic program-
ming is formulated due to presence of randomness in optimization problems.
Most real life mathematical models involve more than one objective function
which are conflicting in nature. Unlike single objective programming problems
which give unique optimal solution, there may be many compromise solutions in
multi-objective programming problem. Solving multi-objective programming
problem is not an easy task. Sometimes decision makers need to determine the
allocation (ratio) of resources to achieve certain specification that maximize or
minimize the ratios. This motivates us to conduct and consider the proposed
mathematical model as multi-objective probabilistic fractional programming
problem.

3 Literature survey

To solve fractional programming problem, researchers presented the transfor-
mation of fractional programming problem into its equivalent mathematical
programming problem. Chakraborty and Gupta [3] presented fuzzy program-
ming method to obtain solution of multi-objective fractional mathematical pro-
gramming problem after converting multi-objective fractional programming to
multi-objective linear mathematical programming problem. An iterative para-
metric method is suggested by Valipour et al. [26] to obtain the solution of
multi-objective linear fractional mathematical programming problem. A com-
puter based method is developed by Hasan and Acharjee [1] to solve single ob-
jective linear fractional mathematical programming after converting into equiv-
alent linear mathematical programming. Kornbluth and Steuer [12] presented
a simplex-based method for the solution of multi-objective fractional mathe-
matical programming problem. Latter Ponnaiah and Mohan [16] proposed a
simplex method to find the solution of linear fractional mathematical program-
ming problems by restricting the denominator of objective function. A fortran
computer programme is developed by Saha et al. [20] to find the solution of
LFP by transforming to a linear programming problem where the constant
term of the denominator and numerator are negative. Odior [15] adopted a
solution method for linear fractional mathematical programming problems us-
ing the concept of duality and partial fractions. Taylor series method was
proposed by Güzel and Sivri [11] to find the solution of multi-objective linear
fractional programming problem. Tantawy [24] developed iterative technique
to find solution of linear fractional mathematical programming problems based
on conjugate gradient projection. A method to convert stochastic sum of prob-
abilistic fractional program problems in to stochastic constraints is presented
by Charles and Dutta [6]. Wen and Wu [27] proposed a parametric method to
solve linear fractional mathematical programming problems. Gradient method
presented by Enkhbat et al. [10] to find the solution of convex concave frac-
tional minimization problems. Roy [19] proposed genetic algorithm for solving
single objective fractional programming problems. It is possible to convert
linear fractional mathematical programming to equivalent linear mathematical
programming by adding one extra [9]constraint and variable. Marchi [13] ex-
tended the transformation of Charnes and Cooper to other problems, where
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the functional involves quotient of linear functions. As Borza et al. [2] pre-
sented, the methodology for solution of LFP problems having interval coeffi-
cients in the objective function by using variable transformation. Bibliography
on fractional mathematical programming has been presented by Stancu [22,23].
Udhayakumar et al. [25] solved probabilistic fractional programming problems
using stochastic simulation based genetic algorithm, where random variables
follow any continuous distribution. Charles and Dutta [5] obtained the effi-
cient solution of multi-objective stochastic fractional mathematical program-
ming problems when the continuous random variables involved in the objective
functions and constraints. Charles and Dutta [8] presented a method to rec-
ognize redundant objective functions for a given multi-objective probabilistic
fractional mathematical programming.

Some applications of linear fractional mathematical programming problems
are studied by many researchers. Charles and Dutta [4] applied linear prob-
abilistic fractional mathematical programming by using branch and bounded
method for machine manufacturing problem. Ren et al. [17] developed a model
for the uncertainty of water resources allocation for industry having probabilis-
tic mathematical programming problem and fractional programming problem.
Ren et al. [18] developed a model for optimal allocation of uncertain water re-
sources for industries by mixing probabilistic mathematical programming and
fractional programming. Charles and Dutta [7] presented application of multi-
objective stochastic fractional programming for assembled printed circuit board
problem. Zhu and Huang [28] presented the application of probabilistic frac-
tional programming problem for maintaining municipal solid waste controlling
under uncertainty. Latter Zhu and Huang [29] presented dynamic stochastic
fractional programming approach for sustainable management of electric power
under uncertainty.

In this paper, we study MOPLFP problem where parameters in the right
hand side of the constraints follow Cauchy distribution. To solve the problem,
we convert the fractional mathematical programming problem having multi-
objective functions into equivalent multi-objective mathematical programming
problem and probabilistic programming problem into equivalent deterministic
programming problem. Finally, ε-constraint technique is used to obtain the
solution.

4 Formulation of multi-objective probabilistic linear
fractional programming problem

A MOPLFP problem is expressed as:

max : Zq =
Nq(xj)

Dq(xj)
=

∑n
j=1 cqjxj + αq∑n
j=1 dqjxj + βq

, q = 1, 2, ..., Q (4.1)

subject to

P

 n∑
j=1

aijxj ≤ bi

 ≥ ηi, i = 1, 2, ...,m, (4.2)
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0 < ηi < 1, i = 1, 2, ...,m, xj ≥ 0, j = 1, 2, ..., n, (4.3)

where

Nq(xj) =

n∑
j=1

cqjxj + αq, Dq(xj) =

n∑
j=1

dqjxj + βq.

The functions Nq(xj) and Dq(xj) are linear functions of xj , cqj , dqj ∈ Rn,
aij ∈ Rm×n, αq and βq are scalars, ”P” indicates probability, ηi is the given
probability at which the ith constraint violations are admitted.

5 Deterministic equivalence of probabilistic constraints

We assumed that the random variables bi follow Cauchy distribution with two
parameters γi and δi. The parameters δi and γi denote locations and scales
of the random variables bi. The probability density function (pdf) of Cauchy
random variable bi is expressed by:

f(bi) =
γi

π(γ2i + (bi − δi)2)
, −∞ < bi <∞, −∞ < δi <∞, γi > 0.

There are different methods of estimating parameters of Cauchy distribution.
To select the location and scale parameters of random sample of Cauchy dis-
tribution, one can use maximum likelihood estimation.

The procedure of selecting parameters of Cauchy distribution is described
as follows. Let x1, x2, ..., xn be random sample of Cauchy distribution. The
likelihood function L(δ, γ|x1, x2, ..., xn) is a function that selects the value of
the parameter values δ and γ where the data is most probable. Maximum
likelihood is a technique that helps to find the value of the parameters that
maximize the likelihood function. The log-likelihood function of the Cauchy
distribution is given by:

L̂(δ, γ|x1, x2, ..., xn) = − log(πγ)−
n∑
i=1

log(1 +
(xi − δ)2

γ2
).

Putting ∂L̂
∂δ = 0 and ∂L̂

∂γ = 0, it is possible to find the maximum value of the
likelihood function.

∂L̂

∂δ
(δ, γ|x1, x2, ..., xn) =

n∑
i=1

xi − δ
(xi − δ)2 + γ2

= 0, (5.1)

∂L̂

∂γ
(δ, γ|x1, x2, ..., xn) =

n∑
i=1

γ2

(xi − δ)2 + γ2
=
n

2
. (5.2)

Solving (5.1) and (5.2) simultaneously, one can find the values of the two pa-
rameters γ and δ. From the probabilistic constraint (4.2), we have

P (

n∑
j=1

aijxj ≤ bi) ≥ ηi, ⇒ P (bi ≥
n∑
j=1

aijxj) ≥ ηi. (5.3)
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Let yi =
∑n
j=1 aijxj . Then the probabilistic constraint (5.3) is written as∫ ∞

yi

γi
π(γ2i + (bi − δi)2)

dbi ≥ ηi, i = 1, 2, ...,m.

After integration, we have

1

π
[tan−1

(bi − δi
γi

)
]∞yi ≥ ηi.

Substituting the limit of integration, we obtain the following result

π

2
− tan−1

yi − δi
γi

≥ ηiπ,

which is simplified as

tan−1
yi − δi
γi

≤ π

2
− ηiπ. (5.4)

Taking tangent both sides of (5.4), we obtain

yi − δi
γi

≤ tan(
π

2
− ηiπ),

solving for yi, we have

yi ≤ δi + γi tan(
π

2
− ηiπ) ⇒

n∑
j=1

aijxj ≤ δi + γi tan(
π

2
− ηiπ). (5.5)

Substituting (5.5) in (4.2), the deterministic equivalent of the MOPLFP prob-
lem (4.1)–(4.3) is expressed as follows:

max : Zq =
Nq(xj)

Dq(xj)
, q = 1, 2, ..., Q (5.6)

subject to

n∑
j=1

aijxj ≤ δi + γi tan(
π

2
− ηiπ), i = 1, 2, ...,m,

0 < ηi < 1, i = 1, 2, ...,m, xj ≥ 0, j = 1, 2, ..., n. (5.7)

6 Conversion of multi-objective linear fractional
programming problem into equivalent multi-objective
linear programming problem

Consider a single objective linear fractional mathematical programming prob-
lem

max : Z1 =
c1jxj + α

d1jxj + β
(6.1)
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subject to

n∑
j=1

aijxj ≤ bi, i = 1, 2, ...,m, xj ≥ 0, c1j , d1j ∈ Rn, α, β ∈ R. (6.2)

For simplicity, assume that d1jxj + β > 0 , xj ≥ 0 and
∑n
j=1 aijxj ≤ bi. Using

the transformation

yj = xjt, t =
1

d1jxj + β

then (6.1)–(6.2) is equivalent to

max : Z1 = c1jyj + αt

subject to

d1jyj + βt = 1,

n∑
j=1

aijyj − tbi ≤ 0, i = 1, 2, ...,m,

t > 0, yj ≥ 0, t ∈ R.

Consider the concave-convex programming problem

max : Z1 =
N1(xj)

D1(xj)
(6.3)

subject to

n∑
j=1

aijxj ≤ bi, i = 1, 2, ...,m, D1(xj) > 0, xj ≥ 0. (6.4)

Using the transformation yj = xjt and t = 1
D1(xj)

, the programming problem

(6.3)–(6.4) is written as

max : Z1 = tN1(yj/t) (6.5)

subject to

n∑
j=1

aij(yj/t) ≤ bi, i = 1, 2, ...,m, tD1(yj/t) = 1, yj ≥ 0, t > 0. (6.6)

Definition 1. Equation (6.3)–(6.4) is called concave-convex fractional pro-
gramming if the following conditions are satisfied:

i) N1(xj) is concave function and N1(xj) > 0, for some xj in the feasible space.

ii) D1(xj) is convex function and positive.

Theorem 1 [Schaible [21]]. If (6.3)–(6.4) has global maximum at xj = x∗j ,
then (6.5)–(6.6) has global maximum at (t, yj) = (t∗, y∗j ), x∗j = y∗j /t

∗.

Math. Model. Anal., 24(3):385–403, 2019.
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Theorem 2 [Schaible [21]]. If (6.3)–(6.4) is concave-convex LFP problem
having global maximum at point x∗, then (6.5)–(6.6) attains maximum value at
the point (t∗, y∗j ), x∗j = y∗j /t

∗.

But if N1(xj) is concave and negative and D1(xj) concave and positive, then
−N1(xj) is convex and positive. Hence (6.3)–(6.4) is changed to the following
linear mathematical programming problem

max : tD1(yj/t)

subject to

n∑
j=1

aij(yj/t) ≤ bi, i = 1, 2, ...,m, −tN1(yj/t) = 1, yj ≥ 0, t > 0.

Now, let us extend the single objective LFP problem into multi-objective frac-
tional programming problem which is expressed in Section 5 by:

max : Zq =
Nq(xj)

Dq(xj)
, q = 1, 2, ...Q, (6.7)

n∑
j=1

aijxj ≤ δi + γi tan(
π

2
− ηiπ), i = 1, 2, ...,m,

0 < ηi < 1, i = 1, 2, ...,m, xj ≥ 0, j = 1, 2, ..., n. (6.8)

For some xj in the feasible set, consider the two index sets

I = {q : Nq(xj) ≥ 0}, Ic = {q : Nq(xj) < 0},

where
I
⋃
Ic = {1, 2, ..., Q}.

Let Dq(xj) be positive on the feasible set. For simplicity let us take⋂
q∈I

1

dqjxj + βi
= t,

⋂
q∈Ic

−1

cqjxj + αi
= t.

This is equivalent to

1

dqjxj + βi
≥ t, q ∈ I, −1

cqjxj + αi
≥ t, q ∈ Ic.

Using the transformation yj = txj , the equivalent multi-objective linear pro-
gramming problem for (6.7)–(6.8) is given by:

max : Zq = tNq(yj/t), if q ∈ I, tDq(yj/t), if q ∈ Ic, q = 1, 2, ..., Q

subject to

n∑
j=1

aij(yj/t)− (δi + γi tan(π/2− ηiπ)) ≤ 0, i = 1, 2, ...,m,

tDq(yj/t) = 1, if q ∈ I, −tNq(yj/t) = 1, if q ∈ Ic,
0 < ηi < 1, i = 1, 2, ...,m, t > 0, yj ≥ 0, j = 1, 2, ..., n,

where the constraint set is convex set having feasible points.
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7 Solution procedure

It is difficult to solve the mathematical programming problem (4.1)–(4.3) di-
rectly. In this paper, we use ε-constraint approach after the problem is changed
to deterministic multi-objective programming problem. The basic steps of
ε-constraint method for multi-objective linear programming problem are de-
scribed as follows.

Step 1 : Find the first ideal solution X(1) by solving the first objective
function disregarding the other objective functions.

max : Z1 = tN1(yj/t), if 1 ∈ I, tD1(yj/t), if 1 ∈ Ic

subject to

n∑
j=1

aij(yj/t)− (δi + γi tan(π/2− ηiπ)) ≤ 0, i = 1, 2, ...,m,

tD1(yj/t) = 1, if 1 ∈ I, −tN1(yj/t) = 1, if 1 ∈ Ic,
0 < ηi < 1, i = 1, 2, ...,m, t > 0, yj ≥ 0, j = 1, 2, ..., n.

Similarly, ideal solutions for second, third and so on are obtained by solving
individual mathematical programming problem.

Step 2 : With the help of ideal solutions found in Step 1, construct a pay-off
matrix which is shown in Table 1. Estimate the upper and lower bounds of the
objective functions from the pay-off matrix as Lq ≤ Zq ≤ Uq, q = 1, 2, ..., Q.

Step 3 : Determine the bounds of εq, q = 1, 2, ..., Q which is the point in the
range of Zq.

Step 4 : Using εq(q = 1, 2, ..., Q), construct and solve Q different single
objective programming problem.

i) : For q = 1 optimize Z1(x) subject to the original constraints and new
constraints Zq(x) ≥ εq, q = 1, 2, ..., Q(q 6= 1), i.e.,

max : Z1 = tN1(yj/t), if 1 ∈ I, tD1(yj/t), if 1 ∈ Ic (7.1)

subject to

n∑
j=1

aij(yj/t)− (δi + γi tan(π/2− ηiπ)) ≤ 0, i = 1, 2, ...,m,

tNq(yj/t) ≤ εq, if q ∈ I, q 6= 1, tDq(yj/t) ≤ εq, if q ∈ Ic, q 6= 1,

tD1(yj/t) = 1, if 1 ∈ I, −tN1(yj/t) = 1, if 1 ∈ Ic,
0 < ηi < 1, i = 1, 2, ...,m, t > 0, yj ≥ 0, j = 1, 2, ..., n. (7.2)

ii) : For q = 2 optimize Z2 subject to the original constraints and new con-
straints Zq(x) ≥ εq, q = 1, 2, ..., Q(q 6= 2).

iii) : Proceed the procedure Q times for Q objective functions.

Step 5 : Solve the single objective mathematical model by using suitable mathe-
matical method or software to obtain optimal compromise solution for different
values of εq, q = 1, 2, ..., Q.

Math. Model. Anal., 24(3):385–403, 2019.
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Table 1. Pay-off matrix.

Z1(X) Z2(X) ... ZQ(X)

X(1) Z1(X(1)) Z2(X(1)) ... ZQ(X(1))

X(2) Z1(X(2)) Z2(X(2)) ... ZQ(X(2))
...

...
... ...

...

X(Q) Z1(X(Q)) Z2(X(Q) ... ZQ(X(Q)

8 Examples

In this section, we see one numerical example and one practical example on
nurse scheduling problem to illustrate the proposed model.

8.1 Numerical example

Consider a MOPLFP problem where the parameters of the right hand side
constraints follow Cauchy distribution.

min : Z1 =
2x1 + 5x2 + 4x3 + 8

3x1 + 6x2 + 5x3 + 2
, max : Z2 =

5x1 + 4x2 + 6x3 + 7

5x1 + 3x2 + 4x3 + 5

subject to

P (7x1 + 2x2 + 4x3 ≤ b1) ≥ 0.90, P (5x1 + 1x2 + 6x3 ≤ b2) ≥ 0.75,

P (x1 + 2x2 + x3 ≤ b3) ≥ 0.80, P (x1 + x2 + 2x3 ≤ b4) ≥ 0.95,

xj ≥ 0, j = 1, 2, 3,

where b1, b2, b3, b4 are random variables that have Cauchy distribution with
two known parameters δ1 = 200, γ1 = 2, δ2 = 400, γ2 = 4, δ3 = 100, γ3 = 3,
δ4 = 300, γ4 = 6. Now, first let us change the MOPLFP problem into it’s deter-
ministic equivalent multi-objective linear fractional mathematical programming
problem using (5.6)–(5.7).

min : Z1 =
2x1 + 5x2 + 4x3 + 8

3x1 + 6x2 + 5x3 + 2
, max : Z2 =

5x1 + 4x2 + 6x3 + 7

5x1 + 3x2 + 4x3 + 5

subject to

7x1 + 2x2 + 4x3 ≤ δ1 + γ1 tan(π/2− η1π),

5x1 + 1x2 + 6x3 ≤ δ2 + γ2 tan(π/2− η2π),

x1 + 2x2 + x3 ≤ δ3 + γ3 tan(π/2− η3π),

x1 + x2 + 2x3 ≤ δ4 + γ4 tan(π/2− η4π), xj ≥ 0, j = 1, 2, 3.

Substituting all the values of δi, γi , ηi, i = 1, 2, 3, 4 and simplifying the above
mathematical problem we obtain.

min : Z1 =
2x1 + 5x2 + 4x3 + 8

3x1 + 6x2 + 5x3 + 2
, max : Z2 =

5x1 + 4x2 + 6x3 + 7

5x1 + 3x2 + 4x3 + 5
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subject to

7x1 + 2x2 + 4x3 ≤ 194, 5x1 + 1x2 + 6x3 ≤ 396,

x1 + 2x2 + x3 ≤ 96, x1 + x2 + 2x3 ≤ 262, xj ≥ 0, j = 1, 2, 3.

Using the transformation yj = xjt, yj ≥ 0, j = 1, 2, 3 and t > 0, the equivalent
multi-objective linear mathematical programming is given by:

min : f1 = 2y1 + 5y2 + 4y3 + 8t,

max : f2 = 5y1 + 4y2 + 6y3 + 7t

subject to

3y1 + 6y2 + 5y3 + 2t = 1, 5y1 + 3y2 + 4y3 + 5t = 1,

7y1 + 2y2 + 4y3 − 194t ≤ 0, 5y1 + y2 + 6y3 − 396t ≤ 0,

y1 + 2y2 + y3 − 96t ≤ 0, y1 + y2 + 2y3 − 262t ≤ 0, yj ≥ 0, j = 1, 2, 3, t > 0.

The above multi-objective linear programming problem is solved by using ε-
constraint method. Solving the two functions separately, the two ideal solutions
are:

y(1) = (y1, y2, y3, t) = (0.1361059, 0.09664461, 0, 0.005907372),

y(2) = (y1, y2, y3, t) = (0, 0, 0.1764706, 0.05882353),

where the value of f1 = 0.8026938 and f2 = 1.470588. To determine the bounds
of ε for each objective function, we have to construct a pay-off matrix. Hence
using these ideal solutions a pay-off matrix is constructed as in Table 2.

Table 2. Pay-off matrix to find bounds of ε.

f1(Y ) f2(Y )

y(1) 0.8026938 1.108459544

y(2) 1.17647064 1.470588

From the pay-off matrix given by Table 2, the lower and the upper bounds
of the two objective functions are given by:

0.8026938 ≤ f1(y) ≤ 1.17647064, 1.108459544 ≤ f2(y) ≤ 1.470588.

Therefore the bounds of εq, q = 1, 2 is the point in the range of the objective
function fq(y), i.e.,

0.8026938 ≤ ε1 ≤ 1.17647064, 1.108459544 ≤ ε2 ≤ 1.470588.

Using εq(q = 1, 2), we define two different single objective programming prob-
lems by taking one objective function as constraint as follows:

The first single objective programming problem is given by considering the
second objective function f2 as constraint.

min : f1 = 2y1 + 5y2 + 4y3 + 8t (8.1)

Math. Model. Anal., 24(3):385–403, 2019.
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subject to

5y1 + 4y2 + 6y3 + 7t ≥ ε2, 3y1 + 6y2 + 5y3 + 2t = 1,

5y1 + 3y2 + 4y3 + 5t = 1, 7y1 + 2y2 + 4y3 − 194t ≤ 0,

5y1 + y2 + 6y3 − 396t ≤ 0, y1 + 2y2 + y3 − 96t ≤ 0,

y1 + y2 + 2y3 − 262t ≤ 0, yj ≥ 0, j = 1, 2, 3, t > 0. (8.2)

Solving (8.1)–(8.2) by taking different values of ε2 in the interval [1.108459544,
1.470588] by LINGO software and applying the transformation xi = yi/t, i =
1, 2, 3, the solution of the original programming problem is given by Table 3.
From Table 3, we obtained different compromise solutions for the given pro-

Table 3. Solution of Z1 and Z2 for different values of ε2.

ε2 x1 x2 x3 Z1 Z2

1.17 19.98946 11.784188 7.626354 0.8044557 1.1700
1.25 15.94074 5.711112 17.748151 0.8067461 1.25000
1.35 3.727271 0.000000 10.454542 0.8750000 1.3500
1.4 1.000000 0.000000 5.000005 1.000000 1.4000

1.47 0.047394 0.0000000 3.009478 1.175000 1.4700

gramming problem. The optimal value of Z2 is similar to ε2. The decision
maker can select best compromise solutions by selecting appropriate value of
ε2. The second single objective programming problem is given by considering
the first objective function f1 as a constraint.

max : f2 = 5y1 + 4y2 + 6y3 + 7t (8.3)

subject to

2y1 + 5y2 + 4y3 + 8t ≤ ε1, 3y1 + 6y2 + 5y3 + 2t = 1,

5y1 + 3y2 + 4y3 + 5t = 1, 7y1 + 2y2 + 4y3 − 194t ≤ 0,

5y1 + y2 + 6y3 − 396t ≤ 0, y1 + 2y2 + y3 − 96t ≤ 0,

y1 + y2 + 2y3 − 262t ≤ 0, yj ≥ 0, j = 1, 2, 3, t > 0. (8.4)

Solving (8.3)–(8.4) by taking different values of ε1 in the interval [0.8026938,
1.17647064] by LINGO software and applying the transformation xi = yi/t, i =
1, 2, 3, the solution of the original programming problem is given by Table 4.
From Table 4, we obtain set of compromise solutions which optimize the two
conflicting objective functions. A decision maker can choose one optimal so-
lution among the set compromise solutions by selecting the appropriate value
of ε1.

8.2 Application on nurses schedule problem

Nurses scheduling problem helps for any health organization to have sufficient
number of nurses in each shift. In this example, we focus on nurse scheduling
problem where the nurses manager wants to create a schedule for two shifts
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Table 4. Solution of Z1 and Z2 for different values of ε1

ε1 x1 x2 x3 Z1 Z2

0.8 16.0000001 0.000000 35.000045 0.800 1.320000
0.9 2.764705 0.000000 8.529411 0.900 1.360000
1.0 1.000000 0.0000000 5.0000006 1.000 1.400000
1.1 0.302325 0.0000000 3.604650 1.100 1.440000

1.176 0.001513 0.0000000 3.003024 1.1720 1.470400

namely day and night shifts for 1 week. The schedule is done by optimizing
two objectives. The primary objective of any health organization is minimizing
the total cost assigned for nurses. In this problem, the manager wants to
minimize the the ratio of total over time cost and regular time cost assigned
for nurses at each shift. The second objective is maximizing the ratio of senior
nurses and junior nurses in each shift. The total number of over time hours
assigned for each nurse in each shit must satisfy the maximum stay period of
patients in the health care at each shift. Since the stay period of patients in the
health care are unknown at each shift, the maximum stay period of patients
in the health care is uncertain which is expressed by random variable following
Cauchy distribution having location and scale parameters. The mathematical
programming problem is expressed by:

min : Z1 =

∑2
n=1

∑2
s=1

∑7
t=1 onhstxnst∑2

n=1

∑2
s=1

∑7
t=1 rnxnst

, max : Z2 =

∑2
s=1

∑7
t=1 x1st∑2

s=1

∑7
t=1 x2st

,

P (

2∑
n=1

hstxnst ≥Mst) ≥ ηst, xnst > 0,

where n is index of nurse in health care, n = 1 represents senior nurse and
n = 2 represents junior nurse. s = 1, 2 is index of shift, t = 1, 2, ..., 7 is index
of date in a week, xnst is number of nurses needed in each shift on each day.
ons is over time cost assigned for each nurse at each shift, rns is regular time
cost assigned for each nurse at each shift, hnst are over time hours assigned for
nurse n for each shift and date. Mst is the maximum period of patients staying
in the health care at each shift in each time, ηst is the probability at which the
constraint violations are admitted.

Assume that the total over time cost for senior and junior nurses is $30 and
$20 per hour respectively, where as the total over time needed at each shift and
date is given by Table 5.

Table 5. Over time values in hours.

h11 h21 h12 h22 h13 h23 h14 h24 h15 h25 h16 h26 h17 h27

4 6 3 4 2 2 3 4 4 3 5 6 4 5

Since the maximum over time in each shift and date is random variable fol-
lowing Cauchy distribution, the values of the two parameters δ and γ are given

Math. Model. Anal., 24(3):385–403, 2019.
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by Table 6. The probabilities at which the constraint violations admitted are

Table 6. Random variable parameter values.

M11 M21 M12 M22 M13 M23 M14 M24 M15 M25 M16 M26 M17 M27

δ 80 60 90 75 65 70 85 95 70 100 80 50 60 70
γ 4 2 3 4 5 1 3 6 4 2 6 3 4 5

given by Table 7. The regular time cost assigned for senior and junior nurses is

Table 7. Values of probabilities.

η11 η21 η12 η22 η13 η23 η14 η24 η15 η25 η16 η26 η17 η27

0.95 0.7 0.75 0.6 0.5 0.45 0.65 0.35 0.9 0.7 0.55 0.5 0.65 0.85

$185 and $120 per day respectively. The total regular time per day is 8 hours.
Since the formulated nurses scheduling problem is multi-objective probabilistic
fractional programming problem, it is impossible to solve the problem directly.
After substituting all given values, first change the probabilistic programming
problem into deterministic equivalent programming problem using (5.6)–(5.7).
In the next step, we transform the multi-objective fractional programming
problem into equivalent multi-objective programming problem by the transfor-
mation given in (7.1)–(7.2) using ynst = txnst. Finally, we apply ε-constraint
method to solve the multi-objective programming problem. Solving each ob-
jective functions separately subject to the given constraints, we obtain ideal
solutions. By contracting pay-off matrix using each individual solution, we
obtain the bounds of ε1 and ε2 which are in the bounds of the first objective
function and second objective function respectively. 0.2657 ≤ ε1 ≤ 0.456851
and 0.001 ≤ ε2 ≤ 0.005256. By taking εq(q = 1, 2), we formulate the follow-
ing two different single objective programming problem by taking one objective
function as constraint. The first single objective programming problem is given
by considering the second objective function as constraint.

min : Z1 =

2∑
n=1

2∑
s=1

7∑
t=1

onhstynst (8.5)

subject to

2∑
s=1

7∑
t=1

y1st ≥ ε2,
2∑

n=1

2∑
s=1

7∑
t=1

rnynst = 1,

2∑
s=1

7∑
t=1

y2st = 1,

2∑
n=1

hstynst ≤ t(δ + γ tan(π/2− ηstπ)), ynst ≥ 0, t > 0. (8.6)

Solving (8.5)–(8.6) by taking different values of ε2 in [0.001, 0.005256] by
LINGO software and applying the transformation xnst = ynst/t , n = 1, 2,
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Table 8. Solutions of Z1 and Z2 for different values of ε2.

ε2 0.001 0.002 0.003 0.004 0.456

x111 10 10 17 17 17
x112 10 17 18 18 18
x113 10 41 67 167 292
x114 10 10 22 22 22
x115 10 10 14 14 14
x116 10 10 12 12 12
x117 10 1 0 16 16 16
x121 10 10 12 12 12
x122 10 10 22 22 22
x123 10 31 32 32 32
x124 10 10 23 23 23
x125 10 10 24 24 24
x126 10 10 10 10 10
x127 10 10 10 10 10
x211 8 8 1 1 1
x212 9 2 1 1 1
x213 32 1 1 1 1
x214 13 13 1 1 1
x215 5 5 1 1 1
x216 3 3 1 1 1
x217 7 7 1 1 1
x221 3 3 1 1 1
x222 13 13 1 1 1
x223 22 13 1 1 1
x224 13 14 1 1 1
x225 15 15 1 1 1
x226 1 1 1 1 1
x227 10 10 1 1 10
Z1 0.2657 0.278395 0.321491 0.381491 0.4568510
Z2 0.0014 0.002 0.0032 0.004 0.005256

s = 1, 2 and t = 1, 2, ..., 7, the solution of the nurses scheduling programming
problem is given by the Table 8. The results in Table 8 shows that for dif-
ferent values of ε2, we obtain the compromise solution of the nurse scheduling
problem which minimize the ratio of over time cost to regular time cost and
maximize the ratio of number of senior nurses to number of junior nurses. If we
take ε2 ≥ 0.0032, the number of junior nurses is much more less than number
of senior nurses. The nurses manager has a great chance to select how many
nurses must be assigned for each shift so as to a chive his objective.

The second single objective programming problem is maximized by consid-
ering the first objective function as constraint.

max : Z2 =

2∑
s=1

7∑
t=1

y1st (8.7)

subject to

2∑
n=1

2∑
s=1

7∑
t=1

onhstynst ≤ ε1,
2∑

n=1

2∑
s=1

7∑
t=1

rnynst = 1,
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2∑
s=1

7∑
t=1

y2st = 1,

2∑
n=1

hstynst ≤ t(δ + γ tan(π/2− ηstπ)),

ynst ≥ 0, t > 0. (8.8)

Again solving (8.7)–(8.8) by taking different values of ε1 in the interval [0.2657,
0.4568510] by LINGO software and applying the transformation xnst = ynst/t,
n = 1, 2, s = 1, 2 and t = 1, 2, ..., 7, the solution of the nurses scheduling
programming problem is given by the Table 9.

Table 9. Solutions of Z1 and Z2 for different values of ε1.

ε1 0.26752 0.34 0.4 0.45685

x111 10 17 17 17
x112 10 18 18 18
x113 10 98 198 292
x114 10 22 22 22
x115 10 14 14 14
x116 10 12 12 13
x117 10 16 16 16
x121 10 12 12 13
x122 10 22 22 2
x123 10 32 32 32
x124 10 23 23 23
x125 10 24 24 24
x126 10 10 10 10
x127 10 10 10 10
x211 8 1 1 1
x212 9 1 1 1
x213 32 1 1 1
x214 13 1 1 1
x215 5 1 1 1
x216 3 1 1 1
x217 7 1 1 1
x221 3 1 1 1
x222 13 1 1 1
x223 22 1 1 1
x224 14 1 1 1
x225 15 1 1 1
x226 1 1 1 1
x227 10 10 10 10
Z1 0.26572 0.345 0.42 0.456851
Z2 0.0014 0.00331 0.00431 0.005256

The results in Table 9 shows that for different values of ε1, we obtain the
compromise solutions of the nurses scheduling problem which minimizes the
ratio of over time cost to regular time cost and maximizes the ratio of number
of senior nurses to number of junior nurses. If we take ε1 > 0.26752, the num-
ber of junior nurses is much more less than number of senior nurses.
From the two tables we see that a single point cannot optimize the two ob-
jective functions simultaneously. By choosing different values of ε1 in [0.2657,
0.4568510] and ε2 in [0.001, 0.005256], we obtain the compromise solutions of
the nurse scheduling problem.



Multi-Objective Probabilistic Fractional Programming Problem 401

9 Conclusions

In this study, we have considered MOPLFP problem, where the parameters
of the right hand side constraints are random variables following Cauchy dis-
tribution. We have assumed other parameters of the mathematical model as
deterministic variables. In the methodology, MOPLFP problem is converted
to deterministic equivalent multi-objective linear fractional mathematical pro-
gramming and the deterministic multi-objective linear fractional mathematical
programming is transformed to multi-objective linear mathematical program-
ming problem using the transformation yj = txj , t > 0, j = 1, 2, . . . , n. The re-
sulting multi-objective linear programming problem is solved using ε-constraint
method. Numerical example and a real life application are provided. Depend-
ing on different situations independent random variables following other dis-
tributions may be considered. This problem may be solved by using genetic
algorithm approach.

References

[1] H.M. Babul and A. Sumi. Solving LFP by converting it into a single LP. Inter-
national Journal of Operations Research, 8(3):1–14, 2011.

[2] M. Borza, A.S. Rambely and M. Saraj. Solving linear fractional programming
problems with interval coefficients in the objective function. a new approach.
Applied Mathematical Sciences, 6(69-72):3443–3459, 2012.

[3] M. Chakraborty and S. Gupta. Fuzzy mathematical programming for multi
objective linear fractional programming problem. Fuzzy sets and systems,
125(3):335–342, 2002. https://doi.org/10.1016/S0165-0114(01)00060-4.

[4] V. Charles and D. Dutta. Linear stochastic fractional programming with branch-
and-bound technique. In Proceedings of the National Conference on Mathemat-
ical and Computational Methods, pp. 131–139, 2001.

[5] V. Charles and D. Dutta. Bi-weighted multi-objective stochastic fractional pro-
gramming problem with mixed constraints. In Proceedings of the 2nd National
Conference on Mathematical and Computational Methods, pp. 29–36. Allied New
Delhi, India, 2003.

[6] V. Charles and D. Dutta. Linear stochastic fractional programming with sum-
of-probabilistic-fractional objective. Optimization Online, 2005.

[7] V. Charles and D. Dutta. Extremization of multi-objective stochastic fractional
programming problem. Annals of Operations Research, 143(1):297–304, 2006.
https://doi.org/10.1007/s10479-006-7389-7.

[8] V. Charles and D. Dutta. Identification of redundant objective func-
tions in multi-objective stochastic fractional programming problems.
Asia-Pacific Journal of Operational Research, 23(02):155–170, 2006.
https://doi.org/10.1142/S0217595906000863.

[9] A. Charnes and W.W. Cooper. Programming with linear fractional functionals.
Naval research logistics (NRL), 9(3-4):181–186, 1962.

[10] R. Enkhbat, Ya. Bazarsad and J. Enkhbayar. Convex–concave fractional mini-
mization problem. J. Mong. Math. Soc, 15:3–10, 2011.

Math. Model. Anal., 24(3):385–403, 2019.

https://doi.org/10.1016/S0165-0114(01)00060-4
https://doi.org/10.1007/s10479-006-7389-7
https://doi.org/10.1142/S0217595906000863


402 S. Acharya, B. Belay and R. Mishra
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