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Abstract. In the paper, we obtain a joint limit theorem on weak

convergence for probability measure defined by discrete shifts of

the Epstein and Hurwitz zeta-functions. The limit measure is ex-

plicitly given. For the proof, some linear independence restriction is

required. The proved theorem extends and continues Bohr–Jessen’s

classical results on probabilistic characterization of value distribu-

tion for the Riemann zeta-function.
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1 Introduction

In analytic number theory and mathematics in general, the important role
belongs to zeta-functions. Zeta-functions are functions of a complex variable
s = σ + it defined in some half-plane by Dirichlet series

∞∑
m=1

a(m)

ms
, σ > σ0,

or their modifications. The name ”zeta-functions” comes from the Riemann
zeta-function

ζ(s) =

∞∑
m=1

1

ms
, σ > 1,

which was already studied with real s by L. Euler, though, a powerful potential
of ζ(s) was opened by B. Riemann [35] in connection to distribution of prime
numbers in the set of all natural numbers N.
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After the proof of the asymptotic distribution law of prime numbers p,
see [11,18], ∑

p≤x

1 ∼
∫ x

2

du

log u
, x → ∞,

it was observed that the function ζ(s) appears in solving other theoretical
and practical problems, however, its value distribution is rather complicated.
This suggested to H. Bohr to apply probabilistic methods in the theory of
ζ(s) [5]. Bohr’s ideas were realized in the joint works with B. Jessen [6, 7].
Since this time, a probabilistic approach occupies a significant place in the
theory of zeta-functions and their applications. The results obtained are stated
as limit theorems on weakly convergent probability measures, see, for example,
[1, 23,24,25,36] and [2, 27,31].

In [29], the first limit theorem for the Epstein zeta-function was proven.
Let Z denote the set of all integer numbers, and Q be a positive definite n× n
matrix. The Epstein zeta-function ζ(s;Q) is defined, for σ > n

2 , by the Dirichlet
type series

ζ(s;Q) =
∑

x∈Zn\{0}

(xTQx)−s,

and has analytic continuation to the whole complex plane, except for a simple

pole at the point s = n
2 with residue π

n
2

(
Γ (n2 )

√
detQ

)−1
, where, as usual, Γ (s)

is the Euler gamma-function. The function ζ(s;Q) was introduced in [14] as
an example of the most general zeta-function satisfying the functional equation
proved by Riemann for ζ(s) in [35].

The function ζ(s;Q) is an attractive analytic object, and has been investi-
gated by many mathematicians in [3, 9, 15, 19, 20, 33]. The function is used for
practical applications, see, for example, [12, 13,17].

In [16], a probabilistic limit theorem was obtained for a pair ζ(s, α;Q) =(
ζ(s;Q), ζ(s, α)

)
, where ζ(s, α) is the classical Hurwitz zeta-function with pa-

rameter α, 0 < α ≤ 1. Recall that ζ(s, α), for σ > 1, is defined by the series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and is analytically continued to the whole complex plane, except for a simple
pole at the point s = 1 with residue 1. The function ζ(s, α) was introduced
in [21], its theory, including limit theorems is also given in [28].

The statement of a result from [16] requires some notations and definitions.
Let P be the set of all prime numbers, N0 = N∪ {0}, and Ω = Ω1 ×Ω2, where

Ω1 =
∏
p∈P

{s ∈ C : |s| = 1} and Ω2 =
∏

m∈N0

{s ∈ C : |s| = 1}.

Then, the set Ω is a compact topological group, hence, on (Ω,B(Ω)) (where
B(X) denotes the Borel σ-field of the space X), the probability Haar measure
mH can be defined, and we have the probability space (Ω,B(Ω),mH). Here,

Math. Model. Anal., 30(2):186–202, 2025.

https://doi.org/10.3846/mma.2025.22109


188 H. Gerges, A. Laurinčikas and R. Macaitienė

mH is the product of Haar measures mH1 and mH2, where mH1 is the probabil-
ity Haar measure on the coordinate space (Ω1,B(Ω1)) and mH2 is the probabil-
ity Haar measure on (Ω2,B(Ω2)). We remind that the measure mH is invariant
with respect to shifts by points from Ω, i.e., mH(A) = mH(ωA) = mH(Aω),
for every A ∈ B(Ω) and all ω ∈ Ω. Let ω = (ω1, ω2) be elements of Ω, where
ω1 = (ω1(p) : p ∈ P) ∈ Ω1 and ω2 = (ω2(m) : m ∈ N0) ∈ Ω2.

In order to define a certain C2-valued random element on the space (Ω, B(Ω),
mH), suppose that xTQx ∈ Z for all x ∈ Zn\{0}. Under the restriction, it fol-
lows that ζ(s;Q) = ζ(s;EQ) + ζ(s;FQ), where

ζ(s;EQ) =

∞∑
m=1

eQ(m)

ms
and ζ(s;FQ) =

∞∑
m=1

fQ(m)

ms
, σ >

n

2
,

are zeta-functions of certain Eisenstein series EQ(s) =
∑∞

m=0 eQ(m)e2πims and
of a certain cusp form FQ(s) =

∑∞
m=1 fQ(m)e2πims, respectively [15]. More-

over, for even n ≥ 4, the Eisenstein series EQ(s) is a modular form of weight n
2

and level q, where q ∈ N is such that q(2Q)−1 is an integral matrix [22]. This
decomposition together with [19,20] and [22] implies that, for σ > n−1

2 ,

ζ(s;Q) =

K∑
k=1

L∑
l=1

akl
ksls

L(s, χk)L

(
s− n

2
+ 1, χ̂l

)
+

∞∑
m=1

bQ(m)

ms
,

where akl ∈ C, k and l are positive divisors of q, χk and χ̂l are Dirichlet
characters modulo q

k and q
l , respectively, and L(s, χk) and L(s, χ̂l) are Dirichlet

L-functions. Besides, the series with coefficients bQ(m) is absolutely convergent
for σ > n−1

2 . We recall that the Dirichlet L-function L(s, χ) with character χ
modulo q, for σ > 1, is given by

L(s, χ) =

∞∑
m=1

χ(m)

ms
=

∏
p∈P

(
1− χ(p)

ps

)−1

and is analytically continued to the whole complex plane, except for a simple
pole at the point s = 1 if χ is the principal character.

Let σ = (σ1, σ2). Now, for σ1 > n−1
2 and σ2 > 1

2 , on the probability space
(Ω,B(Ω),mH), define the C2-valued random element

ζ(σ, ω, α;Q) =
(
ζ(σ1, ω1;Q), ζ(σ2, ω2, α)

)
,

where

ζ(σ1, ω1;Q) =

K∑
k=1

L∑
l=1

aklω1(k)ω1(l)

kσ1 lσ1
L(σ1, ω1, χk)L

(
σ1 −

n

2
+ 1, ω1, χ̂l

)
+

∞∑
m=1

bQ(m)ω1(m)

mσ1

and

ζ(σ2, α, ω2) =

∞∑
m=0

ω2(m)

(m+ α)σ2
.
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Here,

L(σ1, ω1, χk) =
∏
p∈P

(
1− χk(p)ω1(p)

pσ1

)−1

,

L

(
σ1−

n

2
+1, ω1, χ̂l

)
=
∏
p∈P

(
1− χ̂l(p)ω1(p)

pσ1−n
2 +1

)−1

,

ω1(m)=
∏
pr|m

pr+1∤m

ωr
1(p), m∈N.

We note that the second product is convergent for σ1 > n−1
2 for almost all ω1 ∈

Ω1. Denote by Pζ,σ,Q,α the distribution of the random element ζ(σ, ω, α;Q),
i.e.,

Pζ,σ,Q,α(A) = mH

{
ω ∈ Ω : ζ(σ, ω, α;Q) ∈ A

}
, A ∈ B(C2).

Set

ζ(σ + it, α;Q) =
(
ζ(σ1 + it;Q), ζ(σ2 + it, α)

)
,

denote by measA the Lebesgue measure on R, and define

PT,ζ,σ,Q,α(A) =
1

T
meas

{
t ∈ [0, T ] : ζ(σ + it, α;Q) ∈ A

}
, A ∈ B(C2).

The main result of [16] is the following theorem.

Theorem 1. Suppose that the set{
(log p : p ∈ P) ,

(
log(m+ α) : m ∈ N0

) }
is linearly independent over the field of rational numbers Q, σ1 > n−1

2 and
σ2 > 1

2 are fixed. Then PT,ζ,σ,Q,α converges weakly to the measure Pζ,σ,Q,α as
T → ∞.

Theorem 1 is of continuous type, since t in the definition of PT,ζ,σ,Q,α takes

arbitrary values from [0, T ]. The purpose of this paper is to prove a discrete
version of Theorem 1 with the values t from a certain discrete set.

For positive h1 and h2, define the set

L(α, h1, h2, π) =
{
(h1 log p : p ∈ P) ,

(
h2 log(m+ α) : m ∈ N0

)
, 2π

}
.

We note that L(α, h1, h2, π) is a multiset, it can have identical elements. Denote
by #A the cardinality of a set A, and let h = (h1, h2). For N ∈ N0 and
A ∈ B(C2), set

P
h
N,ζ,σ,Q,α(A)=

1

N+1
#
{
0 ≤ k ≤ N :

(
ζ(σ1+ikh1;Q), ζ(σ2+ikh2, α)

)
∈ A

}
.

In this paper, we will prove the following statement.
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Theorem 2. Suppose that the set L(α, h1, h2, π) is linearly independent over

Q, and σ1 > n−1
2 and σ2 > 1

2 are fixed. Then P
h
N,ζ,σ,Q,α converges weakly to

the measure Pζ,σ,Q,α as N → ∞.

For the proof of Theorem 2, we will apply the Fourier transform method.
The identification of the limit measure is based on the ergodic theory. By the
Nesterenko theorem [34], the numbers π and eπ are algebraically independent
over Q. This means that there are no polynomials p(s1, s2) ̸≡ 0 with rational
coefficients such that p(π, eπ) = 0. From this, it follows easily that the set
L( 1π , h1, h2, π) with rational h1 and h2 is linearly independent over Q.

2 Case of Ω

In this section, we prove a limit lemma for the probability measure

P
h
N,Ω,α(A)

def
=

1

N + 1
#
{
0 ≤ k ≤ N :

(
(p−ikh1 : p ∈ P),(

(m+ α)−ikh2 : m ∈ N0)
)
∈ A

}
, A ∈ B(Ω).

Lemma 1. Suppose that the set L(α, h1, h2, π) is linearly independent over Q.

Then P
h
N,Ω,α converges weakly to the Haar measure mH on (Ω,B(Ω)) as N →

∞.

Proof. We use the Fourier transform approach. It is sufficient to show that
the Fourier transform of the measure P

h
N,Ω,α, as N → ∞, converges to that of

the measure mH . The characters of the group Ω are of the form∏o

p∈P
ω
k1p

1 (p)
∏o

m∈N0

ωk2m
2 (m),

where the sign ”o” indicates that only a finite number of k1p ∈ Z and k2m ∈
Z are not zeros. Hence, the Fourier transform f

h
N,Ω,α(k1, k2), where k1 =(

k1p : k1p ∈ Z, p ∈ P
)
, k2 = (k2m : k2m ∈ Z,m ∈ N0), of P

h
N,Ω,α is given by

f
h
N,Ω,α(k1, k2) =

∫
Ω

(∏o

p∈P
ω
k1p

1 (p)
∏o

m∈N0

ωk2m
2 (m)

)
dP

h
N,Ω,α

=
1

N + 1

N∑
k=0

∏o

p∈P
p−ikk1ph1

∏o

m∈N0

(m+ α)−ikk2mh2

=
1

N+1

N∑
k=0

exp

{
− ik

(
h1

∑o

p∈P
k1p log(p)+h2

∑o

m∈N0

k2m log(m+α)
)}

. (2.1)

Since the set L(α, h1, h2, π) is linearly independent over Q, we have

H
def
= h1

∑o

p∈P
k1p log p+ h2

∑o

m∈N0

k2m log(m+ α) ̸= 2πr, r ∈ Z,
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for (k1, k2) ̸= (0, 0), with 0 = (0, . . . , 0, . . . ). Therefore, in view of (2.1),

f
h
N,Ω,α(k1, k2) =

1− e−i(N+1)H

(N + 1)(1− e−iH)
. (2.2)

Obviously, f
h
N,Ω,α(0, 0) = 1. This and (2.2) yield

lim
N→∞

f
h
N,Ω,α(k1, k2) =

{
1, if (k1, k2) = (0, 0),
0, otherwise,

(2.3)

and the lemma is proved as the right-hand side of (2.3) is the Fourier transform
of mH . ⊓⊔

3 Case of absolute convergence

In this section, we will apply Lemma 1 to obtain a limit lemma for absolutely
convergent series connected to the functions ζ(s;Q) and ζ(s, α).

Let θ > 1
2 be a fixed number, and M ∈ N. Define the arithmetic functions

vM (m) = exp

{
−
(
m

M

)θ
}
, m ∈ N,

vM (m,α) = exp

{
−
(
m+ α

M

)θ
}
, m ∈ N0.

Moreover, let

LM

(
s− n

2
+ 1, χ̂l

)
=

∞∑
m=1

χ̂l(m)vM (m)

ms−n
2 +1

,

ζM (s, α) =

∞∑
m=0

vM (m,α)

(m+ α)s
,

LM

(
s− n

2
+ 1, χ̂l, ω1

)
=

∞∑
m=1

χ̂l(m)ω1(m)vM (m)

ms−n
2 +1

,

ζM (s, α, ω2) =

∞∑
m=0

ω2(m)vM (m,α)

(m+ α)s
.

All above series are absolutely convergent in every half-plane σ > σ0 with finite
σ0, whereas vM (m) and vM (m,α) decrease exponentially to zero with respect
to m. For σ1 > n−1

2 and σ2 > 1
2 , set

ζ
M
(σ + ikh, α;Q) =

(
ζM (σ1 + ikh1;Q), ζM (σ2 + ikh2, α)

)
,

where

ζM (s;Q) =

K∑
k=1

L∑
l=1

akl
ksls

L(s, χk)LM

(
s− n

2
+ 1, χ̂l

)
+

∞∑
m=1

bQ(m)

ms
,
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and

ζ
M
(σ + ikh, α, ω;Q) =

(
ζM (σ1 + ikh1, ω1;Q), ζM (σ2 + ikh2, α, ω2)

)
,

where

ζM (s, ω1;Q) =

K∑
k=1

L∑
l=1

aklω1(k)ω1(l)

ksls
L(s, χk, ω1)LM

(
s− n

2
+ 1, χ̂l, ω1

)

+

∞∑
m=1

bQ(m)ω1(m)

ms
.

We notice that all functions that occur in ζ
M
(σ, α;Q) are given by absolutely

convergent series for σ1 > n−1
2 and σ2 > 1

2 .
In this section, we will obtain the weak convergence for

P
h
N,M,ζ,σ,Q,α(A)

def
=

1

N+1

{
0 ≤ k ≤ N : ζ

M
(σ+ikh, α;Q)∈A

}
, A∈B(C2),

P
h,Ω
N,M,ζ,σ,Q,α(A)

def
=

1

N+1

{
0 ≤ k ≤ N : ζ

M
(σ+ikh, α, ω;Q)∈A

}
, A∈B(C2),

as N → ∞.
Before the statement of a limit lemma, we introduce the mapping uQ,α

M,ζ,σ :

Ω → C2 given, for σ1 > n−1
2 and σ2 > 1

2 , by the formula

uQ,α
M,ζ,σ(ω) = ζ

M
(σ, α, ω;Q).

The absolute convergence of series defining ζ
M
(σ, α, ω;Q) ensures the con-

tinuity of uQ,α
M,ζ,σ. Hence, the mapping uQ,α

M,ζ,σ is (B(Ω),B(C2))-measurable.

Therefore, the probability measure UQ,α
M,ζ,σ = mH

(
uQ,α
M,ζ,σ

)−1

on (C2,B(C2)),

where, for A ∈ B(C2),

UQ,α
M,ζ,σ(A) = mH

(
uQ,α
M,ζ,σ

)−1

(A) = mH

((
uQ,α
M,ζ,σ

)−1

A

)
,

can be defined.

Lemma 2. Suppose that the hypotheses of Theorem 2 are fulfilled. Then,
P

h
N,M,ζ,σ,Q,α and P

h,Ω
N,M,ζ,σ,Q,α both converge weakly to the same probability mea-

sure UQ,α
M,ζ,σ as N → ∞.

Proof. The definitions of the measures P
h
N,M,ζ,σ,Q,α and P

h
N,Ω,α, and mapping

uQ,α
M,ζ,σ imply that, for every A ∈ B(C2),

P
h
N,M,ζ,σ,Q,α(A) =

1

N + 1

{
0 ≤ k ≤ N :

(
(p−ikh1 : p ∈ P),(

(m+ α)−ikh2 :m ∈ N0

))
∈ (uQ,α

M,ζ,σ)
−1A

}
=P

h
N,Ω,α

(
(uQ,α

M,ζ,σ)
−1A

)
.
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Thus,

P
h
N,M,ζ,σ,Q,α = P

h
N,Ω,α

(
uQ,α
M,ζ,σ

)−1

.

This and continuity of uQ,α
M,ζ,σ show that the principle of preservation of weak

convergence under mappings is applicable, see [4], Theorem 5.1. Therefore, in

view of Lemma 1, we obtain that P
h
N,M,ζ,σ,Q,α converges weakly to

mH(uQ,α
M,ζ,σ)

−1 as N → ∞.

Now, consider the case of P
h,Ω
N,M,ζ,σ,Q,α. For ω̂ ∈ Ω, let the mapping ûQ,α

M,ζ,σ :

Ω → C2 be defined by

ûQ,α
M,ζ,σ(ω) = ζ

M
(σ, α, ωω̂;Q).

Then, by the definition of uQ,α
M,ζ,σ,

ûQ,α
M,ζ,σ(ω) = uQ,α

M,ζ,σ(a(ω)) (3.1)

with a : Ω → Ω given by a(ω) = ωω̂. Repeating the above arguments shows

that P
h,Ω
N,M,ζ,σ,Q,α converges weakly to the measure mH(ûQ,α

M,ζ,σ)
−1 as N → ∞.

It is well known that the Haar measure is invariant with respect to shifts by
elements from Ω, i.e.,

mH(A) = mH(ωA) = mH(Aω)

for all A ∈ B(Ω) and ω ∈ Ω. Therefore, in view of (3.1), we have

mH

(
ûQ,α
M,ζ,σ

)−1

=
(
mHa−1

)(
uQ,α
M,ζ,σ

)−1

= mH

(
uQ,α
M,ζ,σ

)−1

.

Thus, the measure P
h,Ω
N,M,ζ,σ,Q,α, as N → ∞, converges weakly to UQ,α

M,ζ,σ as

well. The lemma is proved. ⊓⊔

4 Approximation result

In this section, we will show that ζ
M
(σ, α;Q) and ζ

M
(σ, α, ω;Q) are close to

ζ(σ, α;Q) and ζ(σ, α, ω;Q), respectively, in the mean. We note that ζ(σ +
ikh, α;Q) and ζ(σ+ ikh, α, ω;Q) are defined similarly to ζ

M
(σ+ ikh, α;Q) and

ζ
M
(σ + ikh, α, ω;Q), respectively. Denote by ρ the usual metric in C2. Then

the following statement is valid.

Lemma 3. Suppose that σ1 > n−1
2 and σ2 > 1

2 are fixed. Then,

lim
M→∞

lim sup
N→∞

1

N + 1

N∑
k=1

ρ
(
ζ(σ + ikh, α;Q), ζ

M
(σ + ikh, α;Q)

)
= 0, (4.1)

and, if the set
{
(h2 log(m+ α) : m ∈ N0), 2π

}
is linearly independent over Q,

for almost all ω ∈ Ω,

lim
M→∞

lim sup
N→∞

1

N+1

N∑
k=1

ρ
(
ζ(σ+ikh, α, ω;Q), ζ

M
(σ+ikh, α, ω;Q)

)
= 0. (4.2)
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Proof. Equality (4.1) follows from the equalities

lim
M→∞

lim sup
N→∞

1

N + 1

N∑
k=1

∣∣ζ(σ1 + ikh1;Q)− ζM (σ1 + ikh1;Q)
∣∣ = 0

and

lim
M→∞

lim sup
N→∞

1

N + 1

N∑
k=1

∣∣ζ(σ2 + ikh2, α)− ζM (σ2 + ikh2, α)
∣∣ = 0.

The first of them has been proven in [30]. For its proof, the integral represen-
tation for the function

LM (s, χ) =
1

2πi

∫ θ+i∞

θ−i∞
L (s+ z, χ) lM (z)dz

with

lM (s) =
1

θ
Γ

(
s

θ

)
Ms

has been used. Moreover, the discrete mean square estimate for the Dirichlet
L-function L(s, χ), with σ > 1

2 , τ ∈ R and h > 0,

N∑
k=0

∣∣L(σ + ikh+ iτ, χ)
∣∣2 ≪h N(1 + |τ |),

which follows from the continuous mean square estimate with application of
the Gallagher lemma [32] connecting continuous and discrete mean square of
some functions, has been essentially applied.

The second equality has been obtained in [8], Lemma 5.
Similarly, Equality (4.2) is a consequence of the equalities

lim
M→∞

lim sup
N→∞

1

N + 1

N∑
k=1

∣∣ζ(σ1 + ikh1, ω1;Q)− ζM (σ1 + ikh1, ω1;Q)
∣∣ = 0

and

lim
M→∞

lim sup
N→∞

1

N + 1

N∑
k=1

∣∣ζ(σ2 + ikh2, α, ω2)− ζM (σ2 + ikh2, α, ω2)
∣∣ = 0,

that are valid for almost all ω1 and ω2, respectively. The first of them is given
in [30], the second follows from [26], Lemma 2.6. ⊓⊔

5 Relative compactness

Let {P} be a family of probability measures in the space (X,B(X)). In the
theory of the weak convergence of probability measures, the notion of relative
compactness of families of probability measures often is useful. Recall that
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the family {P} is relatively compact if every sequence {Pn} ⊂ {P} possesses
a subsequence {Pnr

} weakly convergent to a certain probability measure on
(X,B(X)) as r → ∞. However, it is not easy to prove relative compactness.
Therefore, it is a simple notion, tightness of {P}, which implies its relative
compactness. Thus, {P} is tight if, for every ϵ > 0, there is a compact set
K ⊂ X such that

P (K) > 1− ϵ

for all P ∈ {P}.

Lemma 4. Under the hypotheses of Theorem 2, the sequence {UQ,α
M,ζ,σ : M ∈ N}

is tight.

Proof. Denote the marginal measures of UQ,α
M,ζ,σ by

UQ
M,σ1

(A) = UQ,α
M,ζ,σ(A× C), A ∈ B(C),

and
Uα
M,σ2

(A) = UQ,α
M,ζ,σ(C×A), A ∈ B(C).

Then, UQ
M,σ1

= m1H(uQ
M,σ1

)−1 and Uα
M,σ2

= m2H(uα
M,σ2

)−1, where mjH is the

probability Haar measure on (Ωj ,B(Ωj)), j = 1, 2. Also, uQ
M,σ1

: Ω1 → C is
given by

uQ
M,σ1

(ω1) = ζM (σ1, ω1;Q)

and uα
M,σ2

: Ω2 → C by

uQ
M,σ2

(ω2) = ζM (σ2, ω2;α).

In the proof of Lemma 8 from [30], it was obtained that the measure UQ
M,σ1

is
tight. Therefore, for every ϵ > 0, there is a compact set K1 ⊂ C such that

UQ
M,σ1

(K1) > 1− ϵ/2 (5.1)

for all M ∈ N. Similarly, in the proof of Lemma 2.7 from [26], it was proved
that there exists a compact set K2 ⊂ C such that

Uα
M,σ2

(K2) > 1− ϵ/2 (5.2)

for all M ∈ N. Note that in [26] the linear independence over Q for the
set {log(m + α) : m ∈ N0,

2π
h2
} is required, which is ensured by the linear

independence of the set L(α, h1, h2, π). Let K = K1 × K2. Then K is a
compact set in C2. Moreover,

UQ,α
M,ζ,σ

(
C2 \K

)
≤ UQ,α

M,ζ,σ

(
C \K1,C

)
+ UQ,α

M,ζ,σ

(
C,C \K2

)
= UQ

M,σ1

(
C \K1

)
+ Uα

M,σ2

(
C \K2

)
for all M ∈ N. Therefore, in view of (5.1) and (5.2),

UQ,α
M,ζ,σ

(
C2 \K

)
≤ ϵ

2
+

ϵ

2
= ϵ

for all M ∈ N, and this proves the lemma. ⊓⊔
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6 Proof of Theorem 2: the first step

For ω ∈ Ω and A ∈ B(C2), define

P
Ω,h
N,ζ,σ,Q,α(A) =

1

N + 1
#
{
0 ≤ k ≤ N :

(
ζ(σ1 + ikh1, ω1;Q),

ζ(σ2 + ikh2, ω2, α)
)
∈ A

}
.

In this section, we will prove that the measures P
h
N,ζ,σ,Q,α and P

Ω,h
N,ζ,σ,Q,α have

the same limit measure in the sense of the weak convergence. More precisely,
the following lemma is true.

Lemma 5. Under the hypotheses of Theorem 2, on (C2,B(C2)) there exists a

probability measure P
h
ζ,σ,Q,α such that both measures P

h
N,ζ,σ,Q,α and P

Ω,h
N,ζ,σ,Q,α

converge weakly to P
h
ζ,σ,Q,α as N → ∞.

Proof. Let the random variable θN be defined on a certain probability space
(Π,A, ν), and let

µ {θN = k} = 1/(N + 1), k = 0, 1, . . . , N.

Consider the C2-valued random elements

X
h
N,M,ζ = X

h
N,M,ζ(σ, α;Q) = ζ

M
(σ + ihθN , α;Q)

X
h
N,ζ = X

h
N,ζ(σ, α;Q) = ζ(σ + ihθN , α;Q),

and the C2-valued random element YM,ζ = YM,ζ(σ, α;Q) with the distribution

UQ,α
M,ζ,σ. Then, denoting by

D−→ the convergence in distribution, by Lemma 2,

we have
X

h
N,M,ζ

D−−−−→
N→∞

YM,ζ . (6.1)

Now, we will apply Lemma 4. Since the sequence {UQ,α
M,ζ,σ : M ∈ N} is tight,

by the Prokhorov theorem, see [4], Theorem 6.1, this sequence is relatively

compact. Hence, there exists a subsequence {UQ,α
Mr,ζ,σ

} ⊂ {UQ,α
M,ζ,σ} and a prob-

ability measure UQ,α
ζ,σ on (C2,B(C2)) satisfying the relation

YMr,ζ
D−−−→

r→∞
UQ,α
ζ,σ . (6.2)

The latter relation shows that YMr,ζ converges in distribution to a random

element having the distribution UQ,α
ζ,σ . Having in mind the above definitions,

we obtain, for every ϵ > 0,

ν
{
ρ
(
X

h
N,ζ , X

h
N,Mr,ζ

)
≥ ϵ

}
=

1

N + 1
#
{
0 ≤ k ≤ N : ρ

(
ζ(σ + ikh, α;Q), ζ

Mr
(σ + ikh, α;Q)

)
≥ ϵ

}
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≤ 1

ϵ(N + 1)

N∑
k=0

ρ
(
ζ(σ + ikh, α;Q), ζ

Mr
(σ + ikh, α;Q)

)
.

Thus, in view of Lemma 3,

lim
r→∞

lim sup
N→∞

ν
{
ρ
(
X

h
N,ζ , X

h
N,Mr,ζ

)
≥ ϵ

}
= 0.

The latter equality, relations (6.1) and (6.2), show that, for the above random
elements, Theorem 4.2 from [4] is applicable. This procedure leads to the
relation

X
h
N,ζ

D−−−−→
N→∞

UQ,α
ζ,σ , (6.3)

and we have the weak convergence for P
h
N,ζ,σ,Q,α to UQ,α

ζ,σ as N → ∞.

Now, we deal with the measure P
Ω,h
N,ζ,σ,Q,α. First, we observe that relation

(6.3) implies that the measure UQ,α
ζ,σ is independent of the sequence {Mr}. From

this and relative compactness of {UQ,α
M,ζ,σ}, it follows that

YM,ζ
D−−−−→

M→∞
UQ,α
ζ,σ . (6.4)

Similarly to the random elements X
h
N,M,ζ and X

h
N,ζ , introduce

X
Ω,h
N,M,ζ = X

Ω,h
N,M,ζ(σ, α, ω;Q) = ζ

M
(σ + ihθN , α, ω;Q)

X
Ω,h
N,ζ = X

Ω,h
N,ζ (σ, α, ω;Q) = ζ(σ + ihθN , α, ω;Q).

Then, by Lemma 2,

X
Ω,h
N,M,ζ

D−−−−→
N→∞

YM,ζ , (6.5)

and, in virtue of Lemma 3, for ϵ > 0,

lim
M→∞

lim sup
N→∞

ν
{
ρ
(
X

Ω,h
N,ζ , X

Ω,h
N,M,ζ

)
≥ ϵ

}
≤ lim

M→∞
lim sup
N→∞

1

ϵ(N+1)

N∑
k=0

ρ
(
ζ(σ+ikh, α, ω;Q), ζ

M
(σ+ikh, α, ω;Q)

)
= 0.

Thus, this equality, (6.4), (6.5) and Theorem 4.2 of [4] give the weak conver-

gence for P
Ω,h
N,ζ,σ,Q,α to UQ,α

ζ,σ as N → ∞. The lemma is proved. ⊓⊔

7 Proof of Theorem 2: the second step

In this section, we identify the measure P
h
ζ,σ,Q,α in Lemma 5. For this, some

elements of ergodic theory will be applied. Let

eh,α =
((

p−ih1 : p ∈ P
)
,
(
(m+ α)−ih2 : m ∈ N0

))
.

Math. Model. Anal., 30(2):186–202, 2025.

https://doi.org/10.3846/mma.2025.22109


198 H. Gerges, A. Laurinčikas and R. Macaitienė

Clearly, we have eh,α ∈ Ω. Define the transformation Th,α : Ω → Ω by

Th,α(ω) = eh,αω, ω ∈ Ω.

Since the Haar measure mH is invariant with respect to shifts by elements of
Ω, the transformation Th,α is measurable measure preserving.

Recall that a setA ∈ B(Ω) is invariant with respect to Th,α if the setsAh,α =
Th,α(A) and A can differ one from another at most by a set of mH -measure
zero. All invariant sets constitute the σ-subfield of B(Ω). The transformation
Th,α is called ergodic if the σ-field of invariant sets consists only from sets
having mH -measure zero or one.

In what follows, the ergodicity Th,α plays an important role.

Lemma 6. Suppose that the set L(α, h1, h2, π) is linearly independent over Q.
Then, Th,α is ergodic.

Proof. Let A be an invariant set with respect to Th,α, and IA its indicator
function. In the proof of Lemma 1, it was noted that the characters χ(ω) of Ω
are given by

χ(ω) =
∏o

p∈P
ω
kp

1 (p)
∏o

m∈N0

ωlm
2 (m),

where only a finite number of integers kp and lm are non-zeros. First, suppose
that χ(ω) ̸≡ 1 for all ω ∈ Ω. Then,

χ(eh,α) =
∏o

p∈P
p−ikh1

∏o

m∈N0

(m+ α)−ilh2

=exp
{
− ih1

∑o

p∈P
kp log(p)− ih2

∑o

m∈N0

lm log(m+ α)
}
.

Since the set L(α, h1, h2, π) is linearly independent over Q,

−ih1

∑o

p∈P
kp log(p)− ih2

∑o

m∈N0

lm log(m+ α) ̸= 2πr, r ∈ Z,

for kp ̸≡ 0 and lm ̸≡ 0. Therefore,

χ(eh,α) ̸= 1. (7.1)

By the invariance of A, for almost all ω ∈ Ω,

IA(Th,α) = IA(ω). (7.2)

Denoting by f̂ the Fourier transform of f , using the invariance of the measure
mH and multiplicativity of characters, we obtain by (7.2) that

ÎA(χ) =

∫
Ω

IA(ω)χ(ω)dmH = χ(eh,α)

∫
Ω

IA(ω)χ(ω)dmH = χ(eh,α)ÎA(χ).

Hence, in view of (7.1),
ÎA(χ) = 0. (7.3)
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Now, let χ(ω) ≡ 1, and ÎA(χ) = a with arbitrary χ. Then, by orthogonality of
characters,

â(χ) =

∫
Ω

a(ω)χ(ω)dmH = a

∫
Ω

χ(ω)dmH =

{
a, if χ(ω) ≡ 1,
0, otherwise.

This and (7.3) show that ÎA(χ) = â. Hence, IA(ω) = a for almost all ω ∈ Ω.
Thus, IA(ω) = 1 or IA(ω) = 0 for almost all ω ∈ Ω. From this, we have
mH(A) = 1 or mH(A) = 0. The lemma is proved. ⊓⊔

For convenience of application, we recall the classical Birkhoff-Khinchine
ergodic theorem, see, for example, [10]. Denote by EX the expectation of the
random element X.

Lemma 7. Let g be a measurable measure preserving ergodic transformation
on the space (Ω̂,B(Ω̂),m). Then, for every function g ∈ L1(Ω̂,B(Ω̂),m),

lim
n→∞

1

(n+ 1)

n∑
k=0

f
(
gk(ω̂)

)
= Ef

for almost all ω̂ ∈ Ω̂.

Proof of Theorem 2. We have to show that P
h
ζ,σ,Q,α in Lemma 5 coincides

with Pζ,σ,Q,α.

Let A be a continuity set of the measure P
h
ζ,σ,Q,α. Then, in view of Lemma 5

and the equivalent of the weak convergence in terms of continuity sets, see [4],
Theorem 2.1,

lim
N→∞

P
Ω,h
N,ζ,σ,Q,α(A) = P

h
ζ,σ,Q,α(A). (7.4)

On (Ω,B(Ω),mH), define the random variable

ξ(ω) =

{
1, if ζ(σ, ω, α;Q) ∈ A,
0, otherwise.

Hence,

Eξ =

∫
Ω

ξdmH = mH

{
ω ∈ Ω : ζ(σ, ω, α;Q) ∈ A

}
= Pζ,σ,Q,α(A). (7.5)

Moreover, Lemmas 6 and 7 imply

lim
N→∞

1

N + 1

n∑
k=0

ξ
(
Th,α(ω)

)
= Eξ

for almost all ω ∈ Ω. The definitions of ξ and Th,α show that

1

N+1

n∑
k=0

ξ
(
Th,α(ω)

)
=

1

N+1
#
{
ω∈Ω : ζ(σ+ikh, α, ω;Q)∈A

}
=P

Ω,h
N,ζ,σ,Q,α(A).
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Therefore, Equality (7.5) yields

lim
N→∞

P
Ω,h
N,ζ,σ,Q,α(A) = Pζ,σ,Q,α(A)

for almost all ω ∈ Ω. This and (7.4) show that P
h
ζ,σ,Q,α(A) = Pζ,σ,Q,α(A) for

all continuity sets of the measure P
h
ζ,σ,Q,α. Since all continuity sets form the

determining class, we obtain that P
h
ζ,σ,Q,α(A) = Pζ,σ,Q,α(A) for all A ∈ B(C2).

The theorem is proved. ⊓⊔
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[25] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dor-
drecht, 1996. https://doi.org/10.1007/978-94-017-2091-5.
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