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Abstract. The optimization of chaotic systems has been performed

by considering dynamical characteristics of the mathematical mod-

els. The proposed work shows the application of genetic algorithms

(GAs) to optimize the chaotic behavior of three well-known sys-

tems, namely: Lorenz, Chen and Lü. The parameters of the chaotic

systems are varied in a specific range of values considered as the

search space, and the evaluation of the mathematical model is per-

formed by applying the Forward Euler method. The contribution

presented herein is that the chaotic behavior is evaluated by count-

ing the orbits in an attractor and the sparsity of them. In addition,

the chaotic behavior is guaranteed by evaluating the Fourier spec-

trum of the time series. The solutions provided by the GA, are

then implemented on a field-programmable gate array (FPGA) to

verify the experimental generation of chaotic attractors. Finally,

two optimized chaotic systems are synchronized and used to en-

crypt an image, thus confirming the appropriateness of optimizing

the chaotic behavior by orbit counting and Fourier spectrum anal-

ysis.

Keywords: chaotic system; genetic algorithm; orbit; Fourier spectrum; FPGA; image encryption.

AMS Subject Classification: 34-04; 34Hxx; 49-XX.

Corresponding author. E-mail: etlelo@inaoep.mx

1 Introduction

Chaotic systems have attracted the attention of researchers in different fields.
For example, the authors in [16] show a comparative analysis of models of gene
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and neuronal networks, paying emphasis on the chaotic behavior generated
by the ordinary differential equations modeling the systems. Another com-
parative study that applies differential evolution algorithm is given in [17], to
enhance the performance in the offline controller tuning of robotic manipula-
tors with chaos. In [19], a method for the global asymptotic stabilization of
an affine control chaotic Lorenz system, via admissible (bounded and regular)
feedback controls, is introduced. In [10], the authors introduce a generalization
of Bateman equations model mass balance in a linear radioactive decay chain
of isotopes, by applying a fractional derivative to include memory effects, and
by incorporating randomness in the input parameters (decay rate and initial
concentrations), since it is not possible to predict when a particular nuclide will
decay from a quantum-mechanical point of view. The authors in [15], discuss
the different chaotic phenomena, sensitivity analysis, and bifurcation analy-
sis of the planer dynamical system by considering the Galilean transformation
to the Lonngren wave equation (LWE) and the (2 + 1)-dimensional stochastic
Nizhnik-Novikov-Veselov system. As one can infer, these topics make use of
chaotic models that are also suitable to generate randomness through the design
of pseudo-random number generators (PRNGs), as shown in [5,8]. However, to
enhance randomness, chaotic systems must be optimized. On this regard, up
to now the optimization process has been performed through considering the
maximization of dynamical characteristics such as the Lyapunov exponents or
Kaplan-Yorke dimension of a chaotic model, as shown in [24].

Chaotic systems have shown advantages when they are used within an op-
timization algorithm. For example, the authors in [4] propose a hybrid chaos-
cloud salp swarm algorithm, where a chaotic map is used to enhance the di-
versity and to avoid it from falling into local optimum. The authors in [21],
incorporate the chaotic Chimp sine cosine optimization algorithm, employing a
random update strategy, to optimize hyperparameters on network intrusion de-
tection, and segmented image-based network intrusion detection datasets. An
improved chaotic Bat algorithm for optimal coordinated tuning of power sys-
tem stabilizers for multimachine power system, is introduced in [23]. Similarly,
the authors in [11], formulated an energy-efficient clustering mechanism using a
chaotic genetic algorithm (GA), and subsequently developed an energy-saving
routing system using a bio-inspired grey wolf optimizer algorithm. Chaotic
systems have also shown their usefulness in applications including machine
learning and deep learning, as shown in [20], where the authors introduced a
based ensemble model that combines multi-verse through chaotic atom search
optimization for preprocessing, which eliminates unsolicited/recurrent informa-
tion in a dataset. The algorithms mentioned above, can also be used to opti-
mize chaotic systems, as they can replace the optimization algorithms applied
in [24]. In fact, recently one can find a good number of algorithms suitable for
the optimization of chaotic systems. See for example the fractional order whale
optimization algorithm given in [26], which incorporates the idea of fractional
calculus into the mathematical structure of the conventional whale optimiza-
tion algorithm. Other recently published works on optimizing chaotic systems
are given in [2, 22,25,30].

The proposed work applies the well-known GA [9], to evaluate the chaotic
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behavior of three systems, namely: Lorenz [12], Chen [3], and Lü [13] sys-
tems. In this manner, the contribution of this article is oriented to evaluate
the number of orbits in the attractor, and the incorporation of the Fourier
spectrum analysis to rank the chaotic behavior. The solutions provided by the
GA are used to implement the three oscillators into a field-programmable gate
array (FPGA), as one can find a huge number of applications using FPGA
based chaotic systems, see for instance the works in [1,6,7,28,29,31]. The rest
of the manuscript is organized as follows: Section 2 shows the mathematical
models and simulated attractors of Lorenz [12], Chen [3], and Lü [13] systems.
Section 3 shows the introduction of two procedures to evaluate the chaotic
behavior, namely: Fourier spectrum and counting of orbits. The proposed
optimization algorithm based on GA, is detailed in Section 4. A couple of op-
timal solutions for each chaotic system are implemented on FPGA, as shown
in Section 5. Section 6 shows the experimental chaotic attractors observed on
an oscilloscope and the use of an optimized Lorenz system in a secure commu-
nication system performing the encryption/decryption of a grey-scale image.
The conclusions are summarized in Section 7.

2 Lorenz, Chen and Lü oscillators

The chaotic oscillators that are case study in the proposed work are the well-
known Lorenz, Chen and Lü systems. These chaotic systems are modeled by
three ordinary differential equations (ODEs), thus they are 3D systems. The
ODEs modeling Lorenz system are given in Table 1 [12], where the parameters
σ, ρ and β, are varied in the proposed work within the GA to find optimal
solutions. The original parameter values to generate chaotic behavior are also
listed in Table 1, and the attractor is given in Figure 1.

Table 1. Mathematical models, parameter values and equilibrium points for Lorenz, Chen
and Lü oscillators.

System Equations Parameter Equilibrium points EP1,2,3

Lorenz
[12]

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

σ = 10
ρ = 28
β = 8

3

[0, 0, 0] ,[√
b(r − 1),

√
b(r − 1), r − 1

]
,[

−
√

b(r − 1),−
√

b(r − 1), r − 1
]

Chen
[3]

ẋ = a(y − x)

ẏ = x(c− a)− xz + cy

ż = xy − bz

a = 35
b = 3
c = 28

[0, 0, 0] ,[
b(2c− a), b(2c− a), 2c− a

]
,[

−b(2c− a),−b(2c− a), 2c− a
]

Lü
[13]

ẋ = a(y − x)

ẏ = −xz + cy

ż = xy − bz

a = 36
b = 3
c = 20

EP1 = [0, 0, 0],

EP2 = [
√
bc,

√
bc, c],

EP3 = [−
√
bc,−

√
bc, c]

The Chen chaotic system is described by the ODEs given in the second row
in Table 1, where now the parameters a, b and c, are varied to find optimal
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solutions. The original parameter values to generate chaotic behavior are also
listed in that Table, and the attractor is given in Figure 2.

The Lü chaotic system is described by the ODEs given in the third row in
Table 1, where similar to the Chen system, the parameters a, b and c, are varied
to find optimal solutions. The parameter values to generate chaotic behavior
are listed in Table 1, and the attractor is given in Figure 3.

Figure 1. Lorenz attractor. Figure 2. Chen attractor.

Figure 3. Lü attractor.

3 Chaotic behavior evaluation

As mentioned above, to enhance randomness, chaotic systems can be optimized.
However, the optimization process has been performed through considering the
maximization of dynamical characteristics such as the Lyapunov exponents or
Kaplan-Yorke dimension [24]. These processes can be performed statistically
or by manipulating the ODEs. However, as the main goal is to generate an
attractor, then this section shows how to evaluate chaotic behavior by comput-
ing the Fourier spectrum of a time series and by counting the orbits between
two state variables forming a 2D attractor. Both procedures are used as fitness
functions within the genetic algorithm (GA) that is detailed in Section 4.

3.1 Frequency spectrum of chaotic time series

The frequency spectrum of a time series is the distribution of amplitudes for
each frequency that is found across an undulatory phenomenon, which is a
superposition of numerous frequencies. This definition can be used to evaluate
the characteristic of the 3D oscillators, because their chaotic time series are a
composition of arrays of multiple frequencies on each state variable (x, y, z). To
demonstrate the undulatory phenomenon of a chaotic system, Figure 4 shows
the three time series of Lorenz system by using the default parameters given
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in Table 1. The Fourier spectrum of these time series is computed by applying
the Fast Fourier Transform (FFT) to produce the plots given in Figure 5.

Figure 4. Time series of Lorenz system.

Figure 5. Frequency spectrum of the state variables of Lorenz system.

Looking at the frequency spectrum of the state variables of Lorenz system
shown in Figure 5, it is possible to quantify the number of dominant frequencies
that each state variable has. This article counts the most dominant pikes in the
spectrum and depreciates the ones that are on minor amplitude around a given
threshold. Therefore, it is important to mention that the proposed method
maintains a certain relation among the amplitudes of the three dominant fre-
quencies or otherwise the form of the attractor could be lost. In addition, it
was found out that the number of dominant frequencies must guard a certain
proximity amongst them to generate the attractor. For example, taking the
frequency spectrum of Lorenz system, it was counted on each state variable
x, y, and z, over 979, 1159 and 1107 dominant frequencies, respectively. The
amplitudes of the dominant frequencies, are close enough to each other in or-
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der to generate the attractor in the butterfly form. In fact, after performing
several tests on different chaotic systems, it was found that Lorenz, Chen and
Lü attractors have the same relation rule, which can be established as when
the distance among the dominant frequencies in a state variable (axis), must
be around ±18% the highest axis amplitude.

In summary, in order to adopt the Fourier spectrum as a fitness to evaluate
chaotic behavior of time series, it is necessary to count the number of pikes
over the frequency spectrum but taking into account the relation among the
dominant frequencies. The frequencies that do not have a given percentage
relation, can be penalized on their fitness, meaning that the solutions that do
not have this desired characteristic will not be taken as an appropriate solution.

3.2 Counting of orbits in 2D portraits

It is well-known that a periodic signal has one orbit in a portrait, so that a
chaotic signal must have as many orbits as possible. This idea leads us to
introduce a procedure to count orbits and their sparsity in a 2D portrait. In
this manner, the way in which the orbits are evaluated, is by considering or
drawing a straight line over an attraction region, as sketched in Figure 6, where
the line intercepts the attractor. By counting the intersections that the straight
line has with the attractor, it provides the number of orbits and the sparsity
or difference of length among the orbits.

Figure 6. Procedure to evaluate the orbits in a 2D portrait and their sparsity.

For the three case study, as the attractors are similar, the straight line can
be placed over one stability point. The points of stability can be calculated by
solving the ODEs given in Table 1, when the derivatives are equal to zero. In
this manner, this process leads to find the equilibrium points (EP), which are
also given in the right side in Table 1.

In the proposed work, the intersection lines are placed over the equilibrium
points on the state variable x. For Lorenz system, the line is placed over one of
the wings because the number of orbits in their wings also helps to evaluate the
sparsity among the orbits. For the Chen and Lü systems, the line is placed in
the center of the attractor, because it is important to procure the crown form
that makes it distinct from the Lorenz attractor form.
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Adding this procedure and the Fourier spectrum as fitness functions to
perform the optimization by applying a GA, not only makes the optimization
process more robust when finding new solutions, but also it guarantees that
the form of the attractor is more defined, as shown in the next sections.

4 Optimization of chaotic systems by Genetic Algorithm

The GA is one of the most used in optimization problems, and it is adapted
herein to evaluate chaotic behavior of a mathematical model by performing
fitness evaluations of the Fourier spectrum and orbits counting. A GA is based
on the reproduction and the evolution of the living beings in which only the
more profitable will be surpassing upon the next generation.

As described in [9, 14, 27]. The GA adapted herein performs seven steps
for the optimization of 3D chaotic systems from their mathematical models.
The first step consists on the creation of an initial population, which number
of individuals is varied until the algorithm shows better convergence. The
second step evaluates the individuals according to a defined fitness function,
which in this case it is associated to the Fourier spectrum and orbits counting,
as described in Section 3. Once the individuals are evaluated, they can be
classified to be selected according to some criteria. Afterwards, the individuals
are evolved by performing genetic operations, such as crossover between pairs
of individuals. In the fifth step, a certain percentage is considered to mutate the
individuals. The best individuals are saved to evolve in the next generation,
and finally, the seventh step considers the selection, which in this case this
process is performed by elitism.

As the adapted GA to optimize chaotic systems works with bits encoding the
population, then the crossover and mutation operations affect the composition
of the individuals by changing their bits. The method of crossing the different
individuals used in this GA is called Niching using Adaptive Mating (NAM),
which cross the individuals in a crossed way, meaning that the best fit solutions
will cross with the worst fit solutions. The NAM method guarantees that the
search can be more extensive because it will allow to try different combinations
and avoid settling on just one kind of solution. The crossover operation is then
performed as follows:

1. Sort of the individuals in descending order.

Order the populationP as: fitness(I1) ≥ fitness(I2) ≥ · · · ≥ fitness(In)

2. Matching of the individuals:

Individual1 =I1 with Individualn = In,

Individual2 =I2 with Individualn−1 = In−1,

...

Individualn/2 = In/2 with Individualn/2+1 = In/2+1.
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It is important to mention that in the GA, not every pair of the individuals
will cross because there is a certain percentage or probability of crossing. This
step provides a more extensive search of solutions, thus avoiding the algorithm
to stay on a single type of solutions.

The mutation operation performed in the proposed work is called bit flip
mutation. This method operates randomly by selecting the chromosome to
mutate and then flipping their bits from 0 to 1, or 1 to 0. This method also
introduces randomness in the optimization algorithm and allows the diversity
in the creation of generations. This mutation operation is developed as follows,

1. From the current population of individuals from P , select randomly the
individuals I[j] to be mutated.

2. Flip the bits from the selected individuals:

If I[j] = 0, I[j]← 1,

If I[j] = 1, I[j]← 0.

The mutations in the evolution of the chromosomes is crucial due to the
perturbations over the genetic material of the individuals, and this helps to
make the exploration in a more efficient way. The mutation process guarantees
more probabilities on providing optimal or near-optimal solutions that with the
current generation would not be possible.

For the selection of the best solutions, the GA creates an initial population
Pn and then by crossing and mutating the individuals, a new and evolved pop-
ulation Pn+1 will emerge. Subsequently, these two generations are compared
among each other according to their fitness and at the end, there will be a
population combining the best of the two previous populations. Table 2 shows
the process on how the solutions are compared.

Table 2. Comparison of the solutions between generation Pn and Pn+1.

Generation Pn Comparison Generation Pn+1 New generation

I(1) < J(4) J(4)
I(4) > J(2) I(4)
I(5) > J(3) I(5)
I(2) > J(1) I(2)
I(3) < J(5) J(5)

For the selection process, the proposed work uses the elitism method, which
is also called replacement of the worst. The main objective of the elitism is
to preserve the best solutions upon the next generation, so that this method
consists in replacing the worst solution of a population with the best one. This
method is quite simple but offers a great advantage when creating the solutions.
The selection process is given in Table 3, where a current generation is updated
by replacement of the worst individual.

Math. Model. Anal., 30(2):322–341, 2025.
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Table 3. Selection process by executing the method called replacement of the worst
Current Generation:

Fitness Individual

4 J(4)
4 I(4)
5 I(5)
2 I(2)
5 J(5)

Updated Generation:

Fitness Individual

4 J(4)
4 I(4)
5 I(5)
5 I(5)
5 J(5)

The optimization of chaotic systems by applying the GA is then given in
the pseudocode detailed in Algorithm 1. It includes the parameters for the
simulation of the chaotic systems by applying a numerical method, which in-
cludes a step size h that is required to perform the implementation of the best
solutions into a field-programmable gate array (FPGA), as shown in Section 5.

The GA for the optimization of Lorenz, Chen and Lü systems, was exe-
cuted during 50 generations, with 30 individuals in the population, a crossover
probability of 60%, and a mutation probability of 30%. Each individual was
encoded by using 12 bits and the search spaces of the design parameters were
set to: 0 < σ ≤ 70, 0 < ρ ≤ 65, and 0 < β ≤ 25 for Lorenz system; 0 < a ≤
60, 0 < b ≤ 12, and 0 < c ≤ 40 for Chen system; and 0 < a ≤ 70, 0 < b ≤ 20,
and 0 < c ≤ 40 for Lü system. The initial conditions were established as:
(x0, y0, z0) = (0.1, 0.1, 0.1), h = 0.005, and time simulation = 100,000 itera-
tions for Lorenz system; (x0, y0, z0) = (0.1, 0.1, 0.1), h = 0.004, and 100,000
iterations for Chen system; and (x0, y0, z0) = (0.1, 0.1, 0.1), h = 0.005, and
100,000 iterations for Lü system. The parameters of the best ten solutions for
each chaotic system are given in Table 4. A couple of these solutions are used
to synthesize the chaotic oscillators into an FPGA, as shown in Section 5.

5 FPGA implementation

The previous section detailed the adaptation of the GA [9], to optimize three
well-known chaotic systems, namely: Lorenz [12], Chen [3], and Lü [13]. Table 4
provides optimized parameters to proceed to the FPGA implementation of
those solutions. Recall that one can find a huge number of works showing
FPGA implementations of different chaotic systems, as shown in [1,6,7,28,29,
31]. The first step is the discretization of the ODEs by applying a numerical
method, as shown in [24]. The second step consists on the block description of
the equations and the definition of the computer arithmetic by using 32 bits,
which in the proposed work is established in the fixed-point format 1.11.20. The
third step is the Verilog description to perform the synthesis into an FPGA.

5.1 Discretization of the ODEs

Given the ODEs modeling the chaotic systems, as the ones given in Table 1
for Lorenz, Chen, and Lü, their approximation can be performed by applying
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Algorithm 1 Genetic algorithm to optimize chaotic systems by Fourier trans-
form and orbits counting.

1: Define: Number of generations, Population size, Size of bits for the indi-
viduals, Search spaces of the parameters

2: Define the parameters of the chaotic system: Initial conditions, Interval of
time simulation, Step size h of the numerical method

3: Define the probabilities of the crossover and mutation operations
4: Generate the initial population of chromosomes in binary representation
5: for Each generation do
6: Keep the current generation of chromosomes as population Pn

7: Choose the crossover points of the chromosomes
8: Evaluate the fitness of the individuals in the current generation using the

Fourier spectrum and orbits counting methods given in Section 3
9: Order the chromosomes according to the fitness from highest to lowest

10: Use the crossover method of Niching using Adaptive Mating (NAM)
11: for each set of individuals in Pn called fathers do
12: if a random number is higher than the crossing probability then
13: Cross the fathers in order to create new sons
14: else
15: Maintain the fathers
16: end if
17: end for
18: Apply the mutations to the chromosomes selected according to the given

mutation probability
19: Evaluate the fitness of the new individuals in population Pn+1 using the

Fourier spectrum and orbits counting methods given in Section 3
20: Compare the passed and the new individuals and keep the best solutions

for the next generation
21: Select individuals by replacement of the worst, as shown in Table 3
22: end for
23: Print the best parameters values for the system according to the fitness

a numerical method to allow FPGA implementation. In the proposed work,
all these equations are discretized by applying Forward Euler method, which
iterative equation is given in (5.1),

wn+1 = wn + hf(wn), (5.1)

where h is the step size that must be established to guarantee convergence and
to increase the operation frequency for the FPGA synthesis, as shown in [24].

Applying (5.1) to the ODEs given in Table 1, one gets the discretized equa-
tions given in (5.2) for Lorenz, (5.3) for Chen, and (5.4) for Lü systems.

xn+1 = xn + h(σ(yn − xn))

yn+1 = yn + h(xn(ρ− zn)− yn)

zn+1 = zn + h(xnyn − βzn)

(5.2)

Math. Model. Anal., 30(2):322–341, 2025.
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Table 4. Best ten solutions provided by the GA for Lorenz, Chen and Lü systems.

Lorenz Chen

σ = 12.04, ρ = 29.44, β = 4.49
σ = 12.32, ρ = 29.09, β = 3.18
σ = 34.57, ρ = 54.89, β = 12.42
σ = 31.09, ρ = 52.85, β = 11.32
σ = 23.85, ρ = 51.94, β = 7.77
σ = 39.57, ρ = 54.03, β = 12.56
σ = 17.52, ρ = 43.17, β = 4.96
σ = 38.94, ρ = 54.95, β = 13.10
σ = 35.00, ρ = 41.99, β = 6.30
σ = 67.85, ρ = 64.38, β = 20.03

a = 36.8, b = 5.08, c = 27.15
a = 40.81, b = 6.48, c = 29.25
a = 56.6, b = 7.79, c = 37.44
a = 60.0, b = 10.32, c = 41.0
a = 55.43, b = 7.82, c = 39.26
a = 54.84, b = 6.07, c = 38.67
a = 44.34, b = 4.2, c = 32.3
a = 54.6, b = 7.07, c = 38.08
a = 55.48, b = 5.1, c = 37.58
a = 29.97, b = 2.96, c = 21.77

Lü

a = 37.46, b = 6.52, c = 23.17
a = 39.96, b = 8.7, c = 24.4
a = 58.89, b = 9.18, c = 33.59
a = 55.6, b = 9.47, c = 33.74
a = 51.20, b = 9.27, c = 29.68
a = 59.35, b = 15.31, c = 34.19
a = 50.67, b = 12.08, c = 29.79
a = 61.95, b = 14.10, c = 36.74
a = 66.85, b = 8.28, c = 38.01
a = 69.04, b = 8.24, c = 38.06

xn+1 = xn + h(a(yn − xn))

yn+1 = yn + h((c− a)xn − xnzn + cyn)

zn+1 = zn + h(xnyn − bzn)

(5.3)

xn+1 = xn + h(a(yn − xn))

yn+1 = yn + h(−xnzn + cyn)

zn+1 = zn + h(xnyn − bzn)

(5.4)

5.2 Block description of the discretized equations

The FPGA synthesis of discretized equations requires their block description
to identify arithmetic and logic operations. For example, considering Lorenz
equations given in (5.2), one can identify arithmetic operations like addition,
subtraction and multiplication. These operations can be performed by design-
ing digital blocks that can include two inputs whose bits length depend on
the computer arithmetic. In addition, these blocks can include pines for the
connection of the clock (CLK) pulse and reset (RST). In this manner, Figure 7
shows the block description of (5.2), where the output of each block indicates
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the operation that is performed. The blocks labeled Integrator FE block pro-
cesses the step size h and adds the state variable in the current iteration n.
The outputs are then the state variables at iteration n + 1, whose values are
stored in registers that include an enable (ENB) pin.

Figure 7. Block description of Lorenz system from (5.2).

The block description shown in Figure 7, requires the design of a finite state
machine (FSM) to control the iterations between n and n + 1, because each
block has a delay and therefore, each design needs a determined number of
clock cycles (CCs) to process the data from iteration n to n+1. Basically, the
FSM is designed to control the iterative process that is described in a high-level,
as shown in Figure 8. In this block description one can see that the CLK is
connected to both blocks, namely: Lorenz oscillator and Regs. However, as the
block Lorenz oscillator requires a determined number of CCs, the data stored
in Regs is only available when pin enable is activated. These registers are also
used to store the initial conditions.

Figure 8. Macro-block description of Lorenz system.

The block descriptions of Chen and Lü systems, are performed in a similar
manner, beginning from their discretized equations given in (5.3) and (5.4),
respectively. All these blocks are also designed considering a computer arith-
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metic with 32 bits that are distributed in fixed-point format, thus using 1.11.20
notation for Lorenz, Chen, and Lü systems. It is important to mention that
the number of bits that represent the integer part in each case, was estab-
lished according to the maximum number that arises among all operations in
the discretized equations, where the maximum values may arise between the
multiplication of two state variables. One can find more details in [24].

5.3 Verilog descriptions of the 3D chaotic systems

The block description that was developed from the discretized equations of the
ODEs modeling a chaotic system, is now described under Verilog to proceed to
the FPGA synthesis. This section shows two descriptions: Top module for the
macro-block description shown in Figure 8, and another one for the detailed
block description, as shown in Figure 7, for Lorenz system.

The Top module description of Lorenz system is given in Listing 1, which
defines the computer arithmetic with 32 bit, but it can be changed as this is
taken as parameter value n. One can see the definition of the clock, reset and
enable pines, and the definition of six buses of 32 bits described as wire signed.

Listing 1: Verilog description as Top module for Lorenz system

module Top Module Lorenz ( c lk , r s t ,X,Y, Z , en ) ;
parameter n = 32 ;
input c lk , r s t , en ;
output [ n=1:0 ] X,Y,Z ;
wire s igned [ n=1:0 ] o1 , o2 , o3 , o4 , o5 , o6 ;
p r o c e s s l o U1 ( c lk , r s t , X, Y, Z , o1 , o2 , o3 ) ;
i n t e g r a t i o n U2 ( clk , r s t , o1 , o2 , o3 , X,Y, Z , o4 , o5 , o6 ) ;
REGISTERS U3 ( clk , r s t , en , o4 , o5 , o6 , X, Y, Z ) ;

endmodule

The Top module of Chen system is given in Listing 2, which includes the ini-
tial conditions (x0, y0, z0) = (4.246, 4.728, 13.470) as parameter values. How-
ever, in the Verilog code one can see that these values are given in fixed-point
format using 1 bit to represent the sign, 11 bits to represent the integer part,
and 20 bits to represent the decimal part of the given float number.

Listing 2: Verilog description as Top module for Chen system

module Top Module Chen (RST,CLK,ENB,XN1,YN1,ZN1 ) ;
parameter n=32;
parameter XN0 = 32 ’h43EF9E ;
parameter YN0 = 32 ’h4BA5E3 ;
parameter ZN0 = 32 ’hD7851F ;
input RST,CLK,ENB;
output [ n=1:0 ] XN1,YN1,ZN1 ;
wire [ n=1:0 ] RX,RY,RZ;
wire OPRF,OPR;
a s s i gn OPRF = OPR & ENB;

p r o c e s s l o V1 (RST,CLK,XN1,YN1,ZN1 ,RX,RY,RZ) ;
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REGS OUT 3 #(XN0,YN0,ZN0)V2(RST,CLK,OPRF,RX,RY,RZ,
XN1,YN1,ZN1 ) ;

COUNTER V3 (RST,CLK,OPR) ;
endmodule

The Top module description of Lü system is similar to the one for Lorenz
system. As one can see, these Top modules instantiate a module called pro-
cesslo. This module is refined in a low level of abstraction, as shown in Listing 3
for Lorenz system, which defines the coefficients of the mathematical model
given in Table 1. In this manner, one can change the values of the coefficients
by any of the optimized ones given in Table 4, but recall that those values must
be represented in fixed-point notation.

Listing 3: Module processlo for Lorenz system

module p r o c e s s l o (CLK,RST, Xi , Yi , Zi , xo , yo , zo ) ;
parameter n = 32 ;
input CLK,RST;
input s igned [ n=1:0 ] Xi , Yi , Zi ;
output [ n=1:0 ] xo , yo , zo ;
wire s igned [ n=1:0 ] o1 , o2 , o3 , o4 , o5 ;
// s=sigma , r=rho , b=beta
wire [ n=1:0 ] s ;
wire [ n=1:0 ] r ;
wire [ n=1:0 ] b ;
a s s i gn s = 32 ’h00C51EB8 ;
a s s i gn r = 32 ’h01D170A4 ;
a s s i gn b = 32 ’ h0032E148 ;
/ / . . .
endmodule

6 Experimental results and image encryption

This section shows the FPGA synthesis of the best solutions given in Table 4,
for each chaotic system to observe experimental attractors. Two optimized
systems are synchronized to develop a secure image transmission system.

6.1 Observation of experimental attractors

The observation of experimental attractors from the FPGA synthesis, is per-
formed by reprogramming the coefficient values of the chaotic systems by using
the optimal solutions given in Table 4. Therefore, Figure 9 shows the FPGA
experimental results using the best optimal values in the first row in Table 4
for Lorenz system. The synthesis was performed by using the FPGA Cyclone
II EP4CGX150DF31C7. A Digital-to-Analog (DAC) converter of 16 bits is
connected to the FPGA to observe the attractors on a Teledyne Lecroy oscil-
loscope.

Math. Model. Anal., 30(2):322–341, 2025.
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(a) Attractor in the plane X-Y. (b) Attractor in the plane X-Z.

(c) Attractor in the plane Y-Z.

Figure 9. FPGA results for Lorenz system using: σ=12.04, ρ=29.44, β=4.49.

Figure 10, shows the FPGA experimental results using the best optimal
values in the first row in Table 4 for Chen system.

(a) Attractor in the plane X-Y. (b) Attractor in the plane X-Z.

(c) Attractor in the plane Y-Z.

Figure 10. FPGA results for Chen system using: a=36.8, b=5.08, c=27.15.

Figure 11, shows the FPGA experimental results using the best optimal
values in the first row in Table 4 for Lü system.

The hardware resources that were required for the FPGA implementation
of two optimal cases for each chaotic system, are given in Table 5. It can be
appreciated that Lorenz and Chen systems require similar hardware resources
and work with similar frequencies, around 100 MHz and 76 MHz, respectively.
The highest operating frequency is reached by Lü system with 321.54 MHz.
this chaotic system also requires lower number of logic elements and registers.

6.2 Image encryption by synchronizing two chaotic systems

This section shows the development of a secure communication system. On
this regard, the seminal work introduced by Pecora-Carroll [18], showed the
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(a) Attractor in the plane X-Y. (b) Attractor in the plane X-Z.

(c) Attractor in the plane Y-Z.

Figure 11. FPGA results for Lü system using: a=37.46, b=6.52, c=23.17.

Table 5. Hardware resources consumption for the experimental attractors using FPGA
Cyclone II EP4CGX150DF31C7.

System σ—a ρ—b β—c Logic Registers Embedded Frequency
value value value elements Multiplier (MHz)

9 bit

Lorenz 12.04 29.44 4.49 805 415 44 101.84

Lorenz 12.32 29.09 3.18 810 415 44 100.54

Lü 37.46 6.52 23.17 49 22 0 321.54

Lü 39.96 8.7 24.4 49 22 0 321.54

Chen 36.8 5.08 27.15 819 344 52 76.99

Chen 40.81 6.48 29.25 819 344 52 73.6

synchronization of two identical dynamical systems. In this manner, the pro-
posed work uses two optimized Lorenz to be synchronized from the equations
given in Table 1. The application of the Pecora-Carroll method leads to define
one system to be the master or transmission system and a second system is
adapted to become the slave or receiver system, as described in (6.1).

Xmn+1 = Xmn + h(σ(Y mn −Xmn)),

Y mn+1 = Y mn + h(Xmn(ρ− Zmn)− Y mn),

Zmn+1 = Zmn + h(XmnY mn − βZmn),

Y sn+1 = Y sn + h(Xmn(ρ− Zsn)− Y sn),

Zsn+1 = Zsn + h(XmnY sn − βZsn).

(6.1)

The slave system is then modeled by only two equations of the chaotic
system, while the third equation is taken as it is from the master system. In

Math. Model. Anal., 30(2):322–341, 2025.
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this manner, the state variables of the slave system Y s and Zs, synchronize with
the state variables of the master system Xm, Y m and Zm. The synchronized
signals can be used to transmit an image that can be encrypted by performing
XOR operations as shown in Figure 12. One can see that an original image
of n bits represented as A[n], is processed through an XOR operation with
the n bits generated by the state variable Y m from the master chaotic system,
which data is stored in the string B[n]. Thus the channel transmits encrypted
data, which is recovered in the slave or receiver system by performing the XOR
operation now between B[n] and the n bits generated by the state variable Y s
from the slave chaotic system, which data is stored in C[n].

Figure 12. Block description of an image encryption/decryption by synchronizing two
chaotic systems applying the Pecora-Carrol method.

It is important to mention that the synchronization process requires a tran-
sition time to accomplish zero synchronization error, so that the bits generated
in the same state variables in the master and slave systems, have the same logic
values. In the proposed work, the first 500 iterations of the chaotic systems
were discarded, and afterwards, each iteration generates 8 bits in the state vari-
able. These 8 bits are then processed on the XOR operation with each pixel
of the image that in this case it is a grey scale image having 256× 256 pixels.
The experimental encryption/decryption results are shown in Figure 13.

(a) Original image. (b) Encrypted data. (c) Recovered image.

Figure 13. Experimental result for the encryption and decryption of a grey scale image,
using the chaos-based secure communication system shown in Figure 12.
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7 Conclusions

A genetic algorithm (GA) has been adapted to optimize three chaotic systems,
namely: Lorenz, Chen and Lü systems. The fitness function was devoted to
analyze the Fourier spectrum of the time series, and to count the orbits in a
portrait between two state variables. Both procedures were detailed to guaran-
tee the successfulness of finding chaotic attractors having sparse orbits through
plotting a line around the equilibrium points of the attraction region. The
best optimal coefficient values provided by the GA, were taken for each chaotic
system to develop their FPGA implementation. The computer arithmetic was
established to use fixed-point notation with 1.11.20 format. The experimental
attractors were obtained by using the FPGA Cyclone II EP4CGX150DF31C7,
and the hardware resources consumptions were given in Table 5. Finally, the
optimized Lorenz system was synchronized in a master-slave topology to de-
velop a secure image transmission system, for which a grey scale image was
processed. The image encryption/decryption application confirms the suitabil-
ity on performing the optimization of chaotic systems by evaluating the Fourier
spectrum and orbits counting of the attractors.
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