ISSN: 1392-6292/ eISSN: 1648-3510

2025

'1 VILNIUS B MATHEMATICAL Volume 30
TECH Issue 4

) Vilpiue Setininas m MODELLING and ANALYSIS Pages 645-663

https://doi.org/10.3846/mma.2025.21979

Convergence analysis of a class of iterative
methods: a unified approach

Muniyasamy Murugan®, Chandhini Godavarma®, Santhosh George™ @ Indra
Bate® and Kedarnath Senapati

National Institute of Technology Karnataka, Surathkal, 575025 Mangalore, India

Article History: Abstract. In this paper, we study the convergence of a class of it-
B received August 26, 2024 erative methods for solving the system of nonlinear Banach space
valued equations. We provide a unified local and semi-local conver-
gence analysis for these methods. The convergence order of these
methods are obtained using the conditions on the derivatives of
the involved operator up to order 2 only. Further, we provide the
number of iterations required to obtain the given accuracy of the
solution. Various numerical examples including integral equations
and Caputo fractional differential equations are considered to show

B revised January 14, 2025
B accepted January 24, 2025

the performance of our methods.

Keywords: iterative methods; nonlinear equations; Caputo fractional operator; basin of attraction.

AMS Subject Classification: 65J15; 65J05; 65H10; 34A08.

b Corresponding author. E-mail: sgeorge@nitk.edu.in

1 Introduction

Typically, most problems in Science and Engineering will be nonlinear and
hard to solve analytically [1,4]. So, one needs a numerical solution. Starting
with Newton, many authors have given multiple higher order methods to solve
such equations under various assumptions (See [2,6,10]). Here, we follow the
following definition of order of convergence.

DEFINITION 1. A sequence {x,,} is said to converge to £* in the sense of R-order
at least p > 0 if

(i) lim [z, — &} =0,
(ii) there exists € > 0 and ng € N with [|zp41 — & < E||lzn — 5|7,V > no.

In general, there are three types of convergence analysis for an iterative method,
namely (i) local (ii) semi-local and (iii) global convergence [2]. Our interest in
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Table 1. Special cases of (1.2) and (1.3).

Label Parameter choice Method

(a) ap =b; =by=11in (1.2) Third-order method in [8]
a():bl:bg:cQ:l

(b) and c1 = c5 — 0 in (1.3) Fifth-order method in [13]
a0:b1:b2203:1 . .
(c) and ¢y = c5 = 0 in (1.3) Sixth-order method in [13]
1
a0=§,b1:0,b2:1 i .
(d) in (1.2) Third-order method in [9,12]
(e) ca =0 and ¢z # 0 in (1.3) Sixth-order method

(See Remark 2)

this paper is to provide the unified local and semi-local convergence analysis
for a class of iterative methods to find a solution £* of the nonlinear equation

T(x) = 0, (1.1)

where T': G C X — Y is a nonlinear operator, X and Y are Banach spaces,
and G is a nonempty open convex set. To be Precise, we consider the iterative
methods of order three and five, defined for x € G and n =0,1,... as

Yn = xp—aoT (z,) ' T(2y),
Tnyr = Tp =T ((b12n + bayn) /(b1 + b2)>_1 T(zp), (1.2)
and
Yo = n—aoT (xn) ' T(xn),
2 = @ =T (120 + boyn) /(b1 + b)) T(n),
Zwar = =T <Clm’2ffif’fcf 32n>1 T(zn), (1.3)

where ag, b1,b2,c1,co and c¢3 are constants such that ag # 0, by + by # 0,
c1 4 ca 4¢3 # 0, by + by = 2a0bs and ¢1 + ¢2 = agea. Note that (1.2) and (1.3)
cover some of the existing methods of order three, five and six, shown in Table 1.
Third order convergence for the methods, labelled as (a) and (d) in Table 1 are
obtained through Taylor series expansion [8,9,12]. Therefore, one needs the
derivative of T" up to order four. i.e, for the [-th order method, one needs the
condition that T(+1 exists to show the convergence order using Taylor series
expansion. So, our interest is to obtain the corresponding order of convergence
for the methods (1.2) and (1.3) without using Taylor series expansion.
The benefits of our work are listed below.

1. We study a class of methods that includes the existing methods with
suitable choice of the parameters as in Table 1. Thus, our analysis gives
the unified analysis for the methods in Table 1.
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2. For local convergence, we use the assumptions on the derivative of in-
volved operator up to order two only which is a better approach than the
existing theory [8,9,12].

3. A prior number of iterations required to obtain a given error tolerence
can be obtained using our analysis.

This paper is assembled as follows. Sections 2 and 3 contain the local con-
vergence analysis of the methods (1.2) and (1.3), respectively. The semi-local
convergence analysis of the methods (1.2) and (1.3) is given in Sections 4 and
5, respectively. Examples are discussed in Sections 6 and 7. Eventually, the
conclusion is given in Section 8.

2 Local convergence analysis of (1.2)

Denote B (Y, X) by the set, which contains all bounded linear operators from
Y to X. let U (£*, R) be the ball with radius R centred at £*, where £* be a
simple solution of (1.1).

The following four assumptions are considered to prove the local convergence.

(i) T (&))" € B(Y, X).
@) |77 () (1) - T (5*))” < L||z — £*|| for some L > 0 and Yz € Go,
here Go :=GNU (5*, _3'2\/ﬁ>.

=

(i) |77 () (1(x) — T" (¢7)) H < K ||z — &| for K > 0 and Yz € Go.

(iv) ||77 (&)~ T”(ac)H < M for some M > 0 and Vz € Go.

By Banach lemma [1] and the assumption (ii), we have

1

HT/(;U)*lT/ €| < m, Vx € Gg. (2.1)

Mean value theorem [1] gives
1
T (wg) =T (wy) = / T (w1 + s (w2 — wy)) ds (wg — wy), Ywi,we € G. (2.2)
0

Using (2.2), (2.1) and the assumption (ii), we get, for all x € Gy,
Hw — & - T’(x)_lT(x)H

1
- - T’(x)’l/o T/ (¢ +t(x— &) dt (x — &)
<r@ el [ rert mw -re) e
3L
- Llz-¢l

T ("t (=) dt o — €7 < plo=¢ 23

Math. Model. Anal., 30(4):645-663, 2025.
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Next, consider the functions 1, hy : [O, _?’%\/ﬁ) — R defined as
P(s) = [(16 + 9L5)K + 72ML]/[24(4 —6Ls — L282)}

and hq(s) = 1(s)s?—1. Note that m and (16+9Ls) K +72M L are

—3++v13
L

the non-decreasing continuous functions on [O, ), and hence, we have

1 (s) is non-decreasing continuous function on [O, _3%‘/@) Also, observe that
continuity of v implies h; is continuous, and h}(s) = 2 (s)s + s>'(s) > 0
since 1 is non-decreasing function (i.e, ¥'(s) > 0). Thus, the function hq

is also continuous and non-decreasing on [O, _3% V13) Moreover, we have

1

Value Theorem (IVT), there is a R} € (0, k1) such that hy(R}) = 0. Then, we
have 0 < (s)s? < 1, Vs € (0, Ry), where Ry = min{R}, = }.

h1(0) = =1 and lim hy(s) = 4oo, where k; = *3%‘/@ By Intermediate
s—k

Theorem 1. Suppose the assumptions (i)—(iwv) hold. Then, the iterates (x,)
in (1.2) with xo € U (£*, R1) \ {&*} is well defined and

|Znr1 = € < G(R) ln = €17, n=0,1,.... (2.4)

Moreover, {x, :n =0,1,...} C U (&, Ry) and (x,) — & with third order
convergence.

-1
Proof. We shall prove by induction. First, we show that T” (%) is

invertible on U (£*, Ry) \ {£*} as follows. Using the assumption (ii), we get

17 exn—1 [ [ D1T0+b2y0 . by(z0—&*)+ba(yo—E")
HT@) [T< b1 + bo )T(g)}HSL by + by

H . (@25)
Observe that

ba(yo — &%) =ba(zo — & — aoT’(x0) ™" T (o))
=by(1 — ag)(zo — £) + baag[zo — & — T'(z0) ' T(20)].  (2.6)

Using (2.6), (2.3) and the relation by + be = 2apbs in (2.5), we get
v bixo + b . L .
e (25} - )] | < £ ko)

b1 + by
(2+ Lfjxo — ")
(1= Lljzo — &)

L
+ llog = € = T'(wo) " To)ll] < 7 o — €.

Since zg € U(€*, Ry) \ {¢*}, we have

17k —1 blmO +b2y0 *
HT (€*) [T/ (M> — T )}H <1
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Then, by Banach lemma [1], T'(£*) 1T (m> is invertible and

b1+b2
‘ T <b1$0 + bzyo) ()| <

by + bo
By using (2.2) in the second step of (1.2), we obtain

A(1 = Lz — £7[))
T 4—6L|lwo — &*[| = L?[lwo — &*[I*°

(2.7)

bz + cyo
b1 + bs

bizo+bayo 1[ ’ (bmo—i-bzyo) /1 . * ] *
—_ ' —— | - | 1 +t (xo— dt -
by + by ) by + by ; (f (950 ¢ )) (x0—€ )

_r (
_v (me)yl/ol_;p/ (1’1930“’290) —T' (¢t (xo—g*))}dt (zo—€")
_ (

—¢£

—¢ =a-g - ( ) (T(wo) — T(€)

b1+b2 b1+b2

-1 1,1
b b
b1x0+b2y0> / / T”(§*+t(xoﬁ*)+(( 1Zo + 02Yo
o Jo

b1 + b b1 + b2

Tt €)) ) [P €t €)] e (0 - ). 29

By simplifying and using the fact that 7"(£*)T'(£*) ! is identity, we get

« _ v (0120 + bayo - //
me = (M) merer | (e s -o
bi(zo — &*) 4 ba(yo — &) — t(by + b2)(x0 — &)
+¢| T h /)
bi(zo — &%) + ba(yo — £¥) — t(by + b2) (20 — &) x
« [ " ]dtdg (@ — ). (2.9)

By denoting

b1 + by
and using (2.6) in (2.9), we get

* _ il b1$0+52y0 ! /(% 1R\ —1 ! !
o= (M) e [ g

« [ttt =B g, — )

b1 + bsy
bixo + bayo !
+ T ( b b ) / / T'(&) ™ T (Ty,c) dtd¢
b2a0 * / —1 _¢x
b [0 = € = T (w0) T (ao)| (w0 — €) (2.11)

Addition and subtraction of the term T"(£*) in the first term of (2.11) gives

fg*:T' <b1$0+b2yo) T' / /T/ {T” Tt ) T”(f*)]

b1 + ba

Math. Model. Anal., 30(4):645-663, 2025.
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by + by(1 — ag) — t(by m)} o2 (blwo +bzyo>1
dtd — + 71T —————
x |: b1 + b2 g(fto f ) bl + b2

T ()T | PR “j?b) S s

+ T (blf)o_‘::ll?yO) T/ / / T/ 1T// C) dtd¢
1 2

bga " , _ .
m +%2 (20— € — " (w0) T a0)] (0 — €9). (2.12)

Since by + by = 2agb2, we get [2b1+2b22((1};1022*)(b1+b2)} — 0. So, the Equa-
tion (2.12) becomes

nee = (M) U [ e g e
X {1 22 }dtdg zo— & / / (&) (Ty ) dtdc
< [r0 =&~ T'(a0)” 1T<xo>} (z0— € )] (2.13)

From (2.10), (2.6) and by + by = 2agbs, it is observed that

bi(x0—E&)+ba(yo — &) — t(by + ba) (o — f*))H
b1 + be

< tllzo — €711+ 5 [11 = 211 llro — €°]1 + lla — € — T (z0) *Tao)]

il €11
A= Lo e o

1T —€" 1=t (wo—€") +¢(

< [t+g|1—2t+ (2.14)

Next, we estimate ||z1 — £*|| using (2.13) as

s — €7l = |7 (blj;’fj;j?y“) )| / [ eyt () - )
X [1 5 }dtdg xo—¢& / / Tr(E) ™ T (T, ) dtd
< [ro— g -1 <wo>-1T<xo>} (a0 =€) H

bixo +bzy0> ! {/ /
T/ / T/ T// T T// %
(s || (Ti) - T
Md d 24 /(€)' (Tc) | dtd
x td¢||zo — £*|)* + || (Tv.c) l|dtdg

S ‘

< flao — € fT'mo)*lT(xo)ono e @. (2.15)
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Using (2.7), (2.14), and the assumptions (iii) and (iv), we obtain

41— Lo — €] ¢
b =€ < T, = f*||—L2|xo—f*|2U/ (“'1‘%'

3LC]wo — €7 )|1 26 s 3ML|900—§|3]
1= Llzo =€) o =&+ fa—Zlwo — &y
. (6498~ ¢ )K + T2ML o —
24[4 = 6Lz — &*|| = L]z — &[]
< 6(lzo - € )llao — €'

Since 0 < #(s)s? < 1 for all s € (0,Ry), we get z1 € U(£*, Ry). Next, the
replacements g by z,, yo by ¥y, and x; by z,41 in this proof give z, €
U(&*,Ry) for all n = 0,1,.... Thus, the inequality (2.4) holds and (x,,) — &*
with convergence order three. O

+

Remark 1. The result regarding uniqueness is given in [14, Proposition 2.3].

3 Local convergence analysis of (1.3)

Consider the non-decreasing continuous functions 1, q; : [0,d;) — R defined
as

M¢( ) l: 3L |a062‘ ‘CS — aOCQ‘
D1(s) =
" vl L[3Heseed 4 (s)s ool 52 [20 = L5) 2 W(s)s

and ¢q1(s) = 9¥1(s)s* — 1, where d; be the smallest positive real solution of

lagez + ¢3) — L (g(LlliOch)l + |03WJ(8)S) 52 = 0. Then, we have ¢;(0) = —1 and

lim ¢ (s) = +oo. By IVT, there exists smallest 7; € (0, d;) such that q;(r1) =

s—>d;

0. Let Ry = min{Ry,r}. Then, we have 0 < v1(s)s* <1, V s € [0, Ry).

Theorem 2. Suppose the assumptions (i)-(iv) hold. Then, the iterates (x,)
in (1.3) with xo € U (§*, Ra) \ {&*} is well defined and

[Znt1 — € < Y1(Re) 2o — €°°, n=0,1,.... (3.1)

Moreover, {x, : n =0,1,...} CU(&* Ry) and (x,,) — &* with convergence
order five.

Proof. By considering Ry = Rs and z, = 2,41 in Theorem 1, we get

lzn =€l < W(lzn =& Dllzn — €17 n=0,1,.... (3.2)
—1
Firstly we shall prove that T” (%W) exists on U (§*, R2) \ {¢*}.
Set C,, = W Then, using the inequality (2.3), ¢1 + ¢2 = agca,

(Y — €)= ca(1 — ag)(wn — £) + caag[wn — & — T () ' T(zy)]  (3.3)

Math. Model. Anal., 30(4):645-663, 2025.
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and the assumption (ii), we get

/ —1 _ -1 C1Zp + CoYn + c32n N *
|71 mrea) - 1 = ‘ (€) [T/ ( . ) (e )] H
<L ||(1062(In — & =T (x,) YT (20)) + (20 — §*)C3||

lagca + c3
L [ 3L|agca|
= Jages + 3| L2(1 = Ljzn — &)

X an = "l e ] llzn — €%

+(llzn — €71

c1tcatcs

Since Ry = min{R;y,71}, we have HT'(f*)_lT/ (w) - IH < 1.

ci1tcatcs

Then, by Banach lemma [1], T'(£*) 1T (w) is invertible and

1

< T TA~
= 117,

-1
HT/ (clxn + C2Yn + CSZn) T/(g*) (34)

Cl+62+63

"2 3L
where T,,, = Jaa€ I [ Stawesl i, — € Dl — sl - Note that

—1
C1Tn + ColYn + C32n *
T(zp)—T
c1+ca2+c3 > T(zn) €

_ T/ C1Tn + C2Yn + C3Zn - /1 [T/ C1Tn + C2Yn + C3Zn
c1+co+c3 0 c1+catcs
—T'(&" +t(zn — 5*))} dt (2, — &) =T' (Clx” + G2 + C3Z">

61+CQ+03
ST [T e € el =€)

+( c3 — t(Cl +c2 +c3 )( 6 )}dtdg(zn f ), (35)

zn+1§*zn5*T’<

where

[e1(@n—€")Fea(yn—€") +(es—t(erteates)) (za—€")]

Wi =€ +t(2,—€") + ¢ P

Using (3.3) and the relation ¢; + ¢3 = ages in (3.5), we get

6* _ T/ <Clmn + C2Yn + C3Zn>1 T/ 6* 1

Tp+1 — P —
c1+co2+cs apCz + C3

U / T'(&) " (W g)ezaoen — & — T'(wn) ™' T (wn)]dtdC

/ / T M (W) (es — tlagea + ¢3)) (20 — £)dtdC | (20 — €F). (3.6)
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Next, the estimation for ||z, — &*|| can be obtained from the Equation (3.6)
with the help of (3.4), (2.3), (3.2) and the assumption (iv) as

1

|a002 + Cg'

T/ <Clxn + C2Yn + CSZn)l T/( *

Tnt1 — & <
N e

1 1
x [|aoc2| [ [ ey ran g

|03 - 0002|

X Nl =€ = T' (@) "' T(xa)| + >

1 1
!k \— 1t P * P *
x / / 1T/ T (W, ) dedC 2 s@nn &l
< M 3L |a082‘ |C3 — &OCQ|
ST 17, |20 Lllen — &) 2
1
Blzn — ENllen — €1 < 1 (llzn — € Dllen — NP, (3.7)

>< e —
lagca + sl

Since 0 < 1 (s)s* < 1 Vs € (0, Ry), we get x,, € U(£*, Ry) for all n =0, 1,.. ..
Thus, the inequality (3.1) holds and (z,,) — £* with convergence order five.
O

Remark 2. If ¢a = 0, the convergence order of the method (1.3) is six, which
can be noticed from (3.7).

(llen =D llzn = €7

4 Semi-local convergence analysis of (1.2)

Firstly, we define the scalar sequences (majorizing sequences) {«a,} and {8}
using the idea given in [2,15] as a9 = 0, 5y > 0,

4n = Q1 (([brlam + [b2]Bn) /b1 + bal)

anr = ot o |2 E D) oy ] 5, - ),

|ao]
= [ Qa(Blansa—an))ds+ |1 - | (14 @a(0)] (@nsa=a)

+ 1/laol(1 + Qu(en)) (ant1—Fn),

Tn+1
laol(1 — Q1(ant1))’

where the functions @1, Q2 : [0,00) — R are non-decreasing and continuous
such that Q1(0) = 0 and Q2(0) = 0.

Lemma 1. Assume that there is A > 0 such that Q1 (o) < 1, ¢ < 1 and a,, <
A for all whole numbers n. Then, the scalar sequences {a,} and {B,} defined
in (4.1) are converge to some Rz € [5o, A] and 0 < ay, < By, < apy1 < Rs.

Bn+1 = omi1 + (4.1)

Proof. Analogous to the proof of Lemma 4.1 in [15]. O

We shall show that the above scalar sequences are majorizing for (1.2) with
the following assumptions.

Math. Model. Anal., 30(4):645-663, 2025.


https://doi.org/10.3846/mma.2025.21979

m M. Muniyasamy, G. Chandhini, S. George, I. Bate and K. Senapati

(I) There exists 2o € G, ¥ > 0 such that T'(z)~! € L(Y, X) and
HT,({E())_lT(l'O)H <% Set Dg=Gn U(xo,R3)

(1) |77 (o)™ (T'(2) = 7" (@0)) | < Qu(llz = w0}, Vo € Do,
(1) |77 (o) (T'(@) = T ()| < Qalllz —ll), Va,y € Do,
(IV) The conditions of Lemma 1 hold for A = Rj.

(V) U(x()7R3) cg.

By Banach lemma [1] on the assumption (II), we get

The assumption (IT) also gives

Vx € Dy.

(=Lt !
@ @) < gy

17" (o) =T (@)= T" (o) = [T"(2)=T" (x0)] +1|| < 1+Qu(lz—wol).  (4.2)
Theorem 3. Suppose the conditions (I)-(V) hold. Then, the sequence {x,} in

(1.2) with xo € U(zo, R3) satisfies

Hyn - xn” S ﬂn — Qp, and (43)
||xn+1 - yn” S Qp41 — Bn (44)

Further, the sequence {x,} — &* € U(xo, R3).

Proof. By induction, we shall prove (4.3) and (4.4). Set Sy = |ag|¥. Observe
that yo is well defined by (1.2). Also,

o = woll = laol |7 (20) 71T (wo)|| < lao| & = o — a0 < Rs.

Thus, yo € U(zg, R3) and (4.3) is true for n = 0. Set B,, = 1" (m)

b1+b2
Now, we shall show that By exists on U (29, R3) \ {zo} as follows.
Using the assumption (IT), we get

_ bixo+b b —r
N C R R

By Banach lemma [1], T'(zo) " *T" (%) is invertible and

bizo + b -1
[ (302) e

1
<

<o (4.6)
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Thus, we have T” <%) is invertible on U (xg, R3) \ {zo}. Next, from the
second step of (1.2), we get

e = —T' <51!E0 + bayo

i) T ) )

_ (T’ (W) o T’(mo)_l)T(xo) T (a0 — )T (20)~ T (x0)

brzo + bayo \ bizo + bayo
= |7 == T == =) T/ -1
[ < byt by ) by + by (zo) | +(ao—1)
X T/(Io)ilT(l'o)

1 b1z0+b2yo>_1 ( (bl$0+bQ?Jo) )
— Tl 1Y P TedY T/ 1Y P TedY _ Tl
a [ ( by + b by + by (@)

+ (a0 — 1)] (yo — o). (4.7)
By (4.6) and (4.5), we get
i g o () e

bizo+b
o R G e R ) | e P

< |1[ @ (Bo — a0) = o1 — fo.

Note that [lzy — $0|| < o1 = woll + llvo — ol < 1 = Bo+ Bo — a0 < Rs.
Therefore, x; € U(xo, R3) and (4.4) is true for n = 0.

As an induction hypothesis, assume that (4.3) and (4.4) are true, and
-1
Tr (%) exists for all n = 0,1,2,...,k — 1. This gives ||z, — Tp—1] <
ap — ap—1 and ||z, — 20| < @y —ag foralln=1,2,..., k— 1.
Now, using (1.2) and (2.2), we have
1
T(zy) =T (xg) — T(xp-1) + T(T8—1) + ;T'(mq)(% — Tg—1)
0

1

— —T (zg—1) (T — Tp—1)
ao

1
1
:/ T (a:k_l 4 §(ap — xk_1)>d5 (0h — 2p1) — —T" (@01 (w5 — T51)
0 ap

1
+ —T"(xk-1) (@K — Yk—-1)
agp

:[/01 [T’ (x,H +o(ay — x,H)) - T'(mkl)} ds + (1 - alo> T’(xkl)]

X (T — xp—1) + aiOT/(xkA)(wk — Yk—1)- (4.8)

Math. Model. Anal., 30(4):645-663, 2025.
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From the above Equation (4.8), we get the estimate for ||T”(xq) 1T (x)|| using
(4.2) and the assumptions (II)—(III) as

e el [

T (o)~ [T’ (mk_l—l—é(xk—xk_l))—T’(mk_l)] Hd6

1
-2 ||T/(:v0)—1T/(a;k1)} 2k — 2|

1 _
+ WHT/(QUO) T (@p—1) | 2k — Yo |

! 1
< {/ Q2(0|ry — zp—1]) dd + ‘1* af‘ (1+Q1(||5'3$0||))}
0 0

1
X |zx — 2ol + — (14 Q1(llzr—1 — zoll)) lzx — yr—1ll < 7

|ao|

Therefore, we get

n

|ao|

1
lao|
Th Tk

< <
= Jao|(1 = Qu(||xx — zoll)) ~ laol(1 — Q1w
lye — 2ol < llyx — zk + 2k — @ol| < B < Rs.

lye = @il < 1T (@) " T ()| < T 17" () =T (o) | 1T (20) = T () |

) =B — oy

So, yi € U(xo, R3), and the inequality (4.3) is true for all k.

-1
Now, we shall show that T/ (%) exists on U (zg, R3) \ {z0} as

follows. Using the assumption (II), we get

_ b1k +boyi |b1] |z —o | +[b2| [lyx—ol|
T’ Wy | 2228 2298 ) < <q.<1.
H (o) [ < b1 + b2 (o)) || =@ |b1 + bs St

By Banach lemma [1], T"(z0) =17 (%) is invertible and

1
1—qx

1
HT/(bwk-i-bzyk) T (20| <

b1 + bsy

Thus, we have T/ (%) is invertible on U (zg, R3) \ {x0}-
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Next, from the second step of (1.2), we get

bizy + bayi

S >_ T(xy) + aoT (zx) 1T (1)

Tppr —yp = —1" (

_ _<Tf (W)‘irw1)T<mk>+<ao—1>T'<xk>1T<xk>

bizg+boye \ bz + bayx
— | (2RO ) [y (21 T O20K ) 1
{ ( b+ b > "\ b (zx) | +ao=1)

_ -1 bizy +b2yk>1
x T’ tr = |7 ===
(gjk) (Ik) aop |: < bl + b2

(1 (PR~ () + a0 = 1) (= ) (49)

By applying (4.5) and (4.6) in (4.9), we get

1 bizy + by \
lThsr — yell < Tag| [HT’ (b1+bz T (o) |l

X

b1 + b2

|:Qk + Q1 (o)
(1—qr)

Notice that || zk+1 — @o| < || k41 — Yk + Yk — @o|| < ag+1 < Rs. Thus, xp11 €
U(zo, R3) and (4.4) is true for all k = NU {0}. From Lemma 1, the scalar
sequences {ar} and {fx} are Cauchy and so {z,} and {y,} are Cauchy by
(4.3) and (4.4). Thus, (x,) — &* € U(xo, R3). O

T (20) " (T’ (bl‘”’“H’w’“> —T"(x0) + T (20) — T’(:ck)) H + |ag — 1|]

1
X lys = @xll < 7—

+ lao — 1@ (Be — ar) = agq1 — Br. (4.10)
|ao

5 Semi-local convergence analysis of (1.3)

Here, we define the majorizing sequence for (1.3) as ag = 0, 8y > 0,

L [Qn + Ql(an)
laol [ (1 —qn)

Pn = (1 + /01 Q1 (Bn +6(vn — 6n))d6> (Yn — Bn)

’Yn:ﬂn'i' +|a0_1|:| (Bn_an)a

i ( [ @6~ s + ]1 - 1' a +Q1(an))> (B — o),
0 Qo

Pn

B lei| antlea| Batleslvn )’
1 Ql( [c1+ea+cs|

Tn+1

laol(1 — Q1(0m+1))

Opt1 = Vn +

BnJrl = Qp+1 +

Math. Model. Anal., 30(4):645-663, 2025.


https://doi.org/10.3846/mma.2025.21979

m M. Muniyasamy, G. Chandhini, S. George, I. Bate and K. Senapati

One can notice that the results of Lemma 1 is true with Q1(a,) < 1, ¢, < 1,

le1| an+lea| Bntles| vn
o < Aand @ (leleptlelftlaln) o,

Theorem 4. Suppose the conditions (I)-(V) hold. Then, the sequence {x,} in
(1.8) with xo € U(xzo, R3) satisfies
||yn_xn|| Sﬁn — Oy, ||Zn_yn|| S’Yn _ﬂnu ||xn+1 _Zn” San+1 — Tn-

Further, the sequence (x,) — &* € U(xg, R3).

Proof. Note that the replacement of zgy; by 2 in (4.10) gives

1{ Gk
|aol [ (1 —gx)

—1
Now, we shall show that 7" (w) exists on U (xo, R3) \ {z0}

c1+catcs

As before, set Cy, = W Then, we have

T (0) ! [T, (clxk + coyn + 03zk> 3 T/(mo)} H

c1+co+c3
<0, le1| ok + |e2| Br + |es| vk <l
|01 +02 +Cg|

lo—well < +ao—1|} (Br — o) = 7 — Br.

HT’(a:O)*lT/ (Ch) — IH - ‘

Then, by Banach lemma [1], T"(xq) =17 (w) is invertible and

c1+tcatcs
-1
1
o i + CoYr + €32k T'(x0)|| < RNGRY
c1+co+c3 1-Q le1]| an+lea| Br+|es| vi
|c1+ca+ca]

Now, using (1.3) and (2.2), we get
T(zk) = T(zk) = T(yr) + T(yr) = T(xy) + T(xx)

1 1
:/ T (yk + (5(Zk — yk))dé 2k — Yk +/ T/ T + (5 yk - .%‘k))d(s
0 0

X (g — 24) — aiOT’m)(yk — z)

_ /01 {T’ (yk +6(zk — yk)) —T'(x0) + T’(xo)} d5(z — yp)

4 Uol [T/<zk + 8(yy, — :ck)) - T'(xk)] ds + <1 - ;()) T/(ack)] (y — k),

which yields (by (II), (III) and (4.2))

1
IT"(20) " T | < (1 + | @ (e ol + Bl - ykn)da) lon — il
0

1
; ( / Q2<6|yk—xk|>da+]1—;\ (1+Q1<||xk—xo|>)> ls—eil<pr. (.2
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Next, the inequalities (5.1) and (5.2) give

IN

[T [T (20) T (21

c1+c2+c3
Pk
1—-Q1 (lcll ap+lca| Brtlcs| v

-1
HT/ <01$k + coyg + Cng) T' (o)

= Ok+1 — Vk-
le1+ez+csl )

Hence, we have ||z, — 2ol < ||zk — Yk + Yk — Zol| < 7 < Rs and ||zk41 — 2ol <
lg+1 — 2k + 2k — zo|| < ag+1 < Rs. The rest follows as done in Theorem 3.
O

The result regarding uniqueness is given in [3, Proposition 2].

6 Examples

We considered the examples from integral equations, system of equations and
fractional differential equations in this section.

Ezample 1. Consider T : U(0,1) C C[0,1] — C[0,1] as

1t
T(:)(5) = 2(5) — 5 / ) ()] dt. (6.1)

0
Note that z*(s) = 0 solves the Equation (6.1). The constants values are M =
%, L = % and K = % Further, the convergence balls’ radius considered in

Sections 2 and 3 are shown in Table 2.

Table 2. Comparison table of convergence balls’ radius for Example 1.

Parameter
(ap,b1,b2,c1,c2,c3) Fa Rz
(1,1,1,0,1,0) 0.7338532901 0.6587983484
(1,1,1,0,0,1) 0.7338532901 0.7338532901
(0.5,0,1,0,0,1) 0.7338532901 0.7338532901
(2,9,3,4,4,0) 0.9517204676 0.8685170918
(2,-9,-3,—4,—-4,0) 0.9517204676 0.8685170918

The Equation (6.1) is discretized with the help of Gauss-Legendre quadrature
rule given in [11] and then the discretized system is solved using (1.2) and (1.3)
by considering the initial point o = —2-(1,1,1,1,1,1,1,1). The obtained
results are shown in Tables 3 and 4.
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Table 3. Solution of (6.1) at each iteration using (1.2) when ag = %, b1 =0 and by = 1.

Grids z1(s) z2(s) z3(s) z4(s)
s1 -0.451919660302 0.000536980682946 1.10 x 1071 0
S2 -0.416419319350 0.000494798412503 1.01 x 1015 0
s3 -0.363625938602 0.000432068179368 8.82 x 10716 0
54 -0.306456804616 0.000364138581902 7.43 x 10~16 0
S5 -0.255096568085 0.000303111241622 6.18 x 10~16 0
S6 -0.214990381116 0.000255456205648 5.21 x 10716 0
s7 -0.187734035120 0.000223069627739 4.55 x 10716 0
sg -0.172986674383 0.000205546495783 4.19 x 10716 0

Table 4. Solution of (6.1) using (1.3).

Grids z1(s) z2(s)
s1 -0.00326613099205 0
S2 -0.00300956157496 0
53 -0.00262801124162 0
S4 -0.00221483629770 0
S5 -0.00184364363885 0
S6 -0.00155378667590 0
s7 -0.00135679857336 0
S8 -0.00125021588579 0

From Tables 3 and 4, it is noticed that only 4 and 2 iterations are required,
respectively for the methods (1.2) and (1.3) to convergence with the considered
grid points as in [11].

Ezample 2. Consider T': U(0,1) C CI0,1] — C[0,1] as
1 bos

— | ———2(t)dt.
500 Jy t4s°

T(z)(s) = z(s)—1-

Note that T"(z)u1(s) = u1(s) — o5 fol t_%szz(t)ul(t)dt. By taking zo(s) = 1, we
get

log 1
/ 106 \4) /
HT’ 0 H .

100 — log, (2)

By applying the conditions (I)—(III), we get

Qu(s) = 2208 () oy 600+10g, (2)
! 100 — log, (2) 3(100 — log, (2))
and Qa(s) = #{;ﬁgz)s. The majorizing sequences of (1.3) and (1.2) are

converged to 2.1938 and 2.1125, respectively for ag = by = bs = ¢; = 1 and
cg = c3 = 0. In Table 5, the first few terms of majorizing sequences are given.
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Table 5. Majorizing sequences for Example 2 when ag = b1 = b2 =c¢; =1 and ca = ¢3 = 0.

Method (1.2) Method (1.3)
n
Qn Bn Qn Bn
0 0 2.01628632 0 2.01628632
1 2.04506733 2.10474386 2.07506926 2.16655700
2 2.10827846 2.11205293 2.17794204 2.19010040
3 2.11228195 2.11252499 2.19167574 2.19335157
4 2.11253975 2.11255542 2.19356986 2.19380196
5 2.11255637 2.11255738 2.19383221 2.19386438
Ezxample 3. Suppose
Diy(t) = f(ty), y(0)=0, (6.2)
_ 40320 48— I(+%5)a-x% 9 3% _ 44)\3 3
where f(t,y) = =L ”—311(57%)15 90 (w+1)+(3t2 —t*) —[y(t)]2,

I'(z):= fooo e~ 't*=1dt, x > 0 and DY, is Caputo fractional differential operator
of order 0 < v < 1 (see [7]). Note that y(t) = t® + 3t — 3t17% is an exact
solution of (6.2).

Using the trapezoidal-based correcter formula given in [7] for FDE (Fractional
differential equation), we obtained the discretized system of (6.2) as

k
1
Ye+1 = () Zaj,kﬂf (tj7yj) + ap+1p1f (ter1, Yes1) | o (6.3)
j=0
where h = 6—14, ty =kh, k=0,1,2,...,64 and a; 41 is as defined in [7]. Since

y(to) = yo is known, the Equation (6.3) is a 64 x 64 system. By solving the
obtained system with (1.2) and (1.3) using ap =by =bes =c3=1,c1 =¢c2 =0
and the initial point 2 (1,1,...,1), we get the solution approximation of (6.2),
shown in Figure 1. Note that the same solution can be obtained for any choices
listed in Table 1.

Figure 1. Solution of Example 3.

7 Basin of attraction
There are different types of definitions for the basin of attraction available in

the literature to study the dynamics (See [5,14]). We illustrated this concept
with the following examples.
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Ezxample 4. Consider the polynomial in complex variable as

16 1 4
— (s —1)2:2 )24 2,2

whose zeros are —%i, %i, 1- %z and 1+ %z

Let D = {z]| —2 < Im(z), Re(z) < 2} which has all roots of f(z). By dividing
the region D with equally spaced 601 x 601 grid points, we apply (1.2) and
(1.3) with (ag = by =1 = by = ¢3 and ¢3 = ¢; = 0) to get the BA as shown
in Figure 2. BA Figure for other parameter choices in Table 2 looks almost
same as Figure 2. Note that the colors yellow, green, red and blue in Figure 2

Figure 2. BA using (1.2) and (1.3) with any parameter choices in Table 2.

represent the points that converges to 1 + %i, 1—21i, 4jand —2¢

50, = =1, respectively
with 50 iterations and at least 10~® accuracy. Few black marks in the figures

means that only a few points of those grid points are not converged.

8 Conclusions

Our convergence analysis of the methods (1.2) and (1.3) unifies the convergence
analysis of some existing third and fifth order methods. Moreover, one can
obtain the new iterative methods by choosing the parameters appropriately.
Various numerical examples are given to validate our theoretical results. It is
envisaged to use similar kind of analysis in other class of iterative methods to
obtain the convergence order.
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