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1 Introduction

Some problems related to physical and technical issues can be effectively
described in terms of nonlocal problems with integral conditions in partial
differential equations. These nonlocal conditions arise mainly when the val-
ues on the boundary cannot be measured directly, while their average values
are known. This type of problem can be found in various physics problems
such as heat conduction [8,9,12,17, 18], plasma physics [28], thermoelastic-
ity [30], electrochemistry [11], chemical diffusion [14] and underground water
flow [15,25,31].

In recent years, fractional differential equations are playing a major role
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in various fields such as physics, biology, engineering, signal processing, con-
trol theory, finance, fractal dynamics and many other physical processes and
diverse applications [10,21,26]. Studying or finding approximate and exact
solutions to the partial fractional differential equations is regarded as a very
important task. Many powerful and efficient methods have been proposed to
obtain the numerical solution [3] and the exact solution of partial fractional
differential equations such as optimal homotopy analysis method [5], optimal
homotopy asymptotic method [29], variational iteration method [7], Adomian
decomposition method [6], and many others. As a result, fractional boundary
value problems have gained increasing attention in research, as a large number
of physical phenomena and many problems in modern physics and technology
can be described in terms of nonlocal problems for example problems in partial
differential equations with integral conditions.

Several methods have been used to investigate the existence and unique-
ness of solution for fractional partial differential equations, including the Lax-
Milgram theorem, fixed point theorem and numerical method such as finite
element methods or spectral methods [13,16,20]. For our problem (2.1)—(2.3),
we use the functional analysis method, the so-called energy inequality method,
because it’s the most powerful tool to prove the existence and uniqueness of
the solution for fractional differential equation with integral condition. In the
literature, there are many papers using the functional analysis method such
as [1,2,4,19,22,23,24].

The motivation of this paper lies in developing the used method for a frac-
tional order partial differential equation with periodic and nonlocal condition
of integral type. First, a priori estimate is established for the strong solution of
the problem. Subsequently, the existence and uniqueness of the strong solution
of the problems is established. This paper is organized as follows: In Section 2,
the problem is stated. Section 3 deals with the proof of the uniqueness of the
solution using an a priori estimate. For the existence of the solution, the den-
sity of the range of the operator generated by the considered problem is proved
in Section 4. Finally, Section 5 presents the conclusion.

2 Statement of the problem

In this section, The problem of fractional partial differential equation with
integral condition is stated as follows: Let us consider the rectangular domain
Q =10,1] x [0,T] such that 0 < T < 4o00. In the domain @, we consider the
following equation.

Lu = {0 u — 8%6 <a(m,t)§§) = f(z,t), V(z,t)€(0,1)x(0,T), (2.1)
with the initial condition
lu = u(z,0) = p(x), Vxe(0,1),
the periodic boundary condition

u(0,t) = u(1,t), Vte (0,T), (2.2)
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and the integral condition
1
/ u(z,t)de =0, Vte (0,T). (2.3)
0
In addition, we assume that the function a(z,t) satisfies the condition:

0 < ap S a(x,t) S ai, V(ZL’,t) € Qa (24)

and the function ¢(x) satisfies the compatibilities conditions:

1
2(0) = (1), / () = 0.

The symbol §0;* denotes the time fractional derivative operator in the Ca-
puto sense of order 0 < o < 1. It is defined by

1-a 90(7)

foro(e) = 10

where
1

m/o (t —7)"“v(r)dr,

for a certain function v [27], where I'(-) is the Gamma function. For o = 1 the
Caputo derivative becomes a conventional first derivative of the function v(¢).

The given problem (2.1)—(2.3) can be considered as finding a solution of
the operator equation Lu = (Lu,lu) = F = (f,¢), where the operator L has
as a domain of definition D(L) consisting of functions u € L?(Q) such that

%,%,% € L*(Q) and satisfying the conditions (2.2) and (2.3).

The operator L is an operator acting on F into F, where F is Banach space
of functions u € L?(Q), with a finite norm

I'~y(t) =

2 cao, |2 1—a Ou |2
—||z(1—2)2o I H 1- —‘
Jully = (=50 ul g+ sup, 1 ([l1-0) 5

2
ou Il )

F is Hilbert space of functions F = (f, ¢), with the finite norm

2 2 9o
[Fllz = [J=(1 - x)fHLz(Q) + Hx(l B x)%‘ L2(0,1)

2
+ ||90||L2(0,1) :

Then, we show that the operator L has a closure L and later on, in Section 3,
we establish an energy inequality of the following type (see Theorem 1):

lullp < CllLullg,  Vue D(L). (2.5)

DEFINITION 1. A solution of the operator equation Lu = F is called a strong
solution of problem (2.1)—(2.3).

Math. Model. Anal., 30(3):405-420, 2025.
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Since the points of the graph of the operator L are limits of sequences of points
of the graph of L, we can extend the a priori estimate (2.5) to be applied to
strong solutions by taking the limits, that is, we have the inequality

lull < C|[Zuf

D(L).
. Yu € D(L)

From this inequality, we deduce the uniqueness of a strong solution, if it
exists, and that the range of the operator L coincides with the closure of the
range of L.

Proposition 1. The operator L : E — F admits a closure L.

The following a priori estimate gives the uniqueness of the solution of the
formulated linear problem.
3 Uniqueness of the solution

In this section, the uniqueness of the solution will be proved using the energy
inequality method.

Theorem 1. There exists a positive constant C, such that for each function
u € D(L), we have

lullg < CllLullp,  Va,te Q. (3.1)

Proof. Let

a(n,t) caa dC

_ 2 A ¢ dn
Mu:cz(lx)285'?u+/1 d¢ / 22 - D= +AJp

a(bt) b ot
s 1( 2 +>\fcail7nt))c o
- /0 a(Cv t) /x A 01 a(dét) Oat UdC7

where A is a scalar parameter such that A > 2a;.

We denote by S,u = [ u((,t)d(, taking the scalar product in L*(Qy),
where @Q; = [0,1] x [0,¢] of (2.1) and the operator Mu, with 0 < ¢t < T, we
have

¢ na 0 ou B
/tO(?T ’LLM’LLd{EdT—/ e < (x,7) 81‘) Mudzdr = /t fMudxdr. (3.2)

Substituting Mwu by its expression in the first term in the left-hand side of
(3.2), integrating by parts with respect to x, we obtain

1 1
/ 22(1 — 2)250%us0% ude = / 22(1 — 2)2(50%u)?dx
0 0
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fo ()
:/1 Sﬁgﬁxu/ (QC_l)(C CZ +>‘f0 anT) caa dCdI
0 a(x77) 0 fO m
_/1 2(237—1)(1‘—.75 +)\f0 a(CT)Caa c G‘C\ u/l dC d
fo i a(¢,7)
- 22NN 2
/ oz / / L 8 )OaTUdCdx
a(¢,7)
le gacy
:7/( d / 00 /2(24 D(¢—¢? )+Af0 v ¢0%ud(dz
2 2 fo a(§ T)
_/1 2(2$_1)("E—$ +)‘f0 a(CT)caa c a(\ u/T dC dx
; fo a(c 7-) 0 a(<77—)

From the last equalities, we get

1c [ ! 2 2(c o ( 8(1 )
co%uMudr = | 2*(1 —2)?(50%u)?*dx + 0 S g
0 0 2 Jo

a(x,7)

1
_/ (2(%—1 (& —22) + A )gagugagsxudx
0 0 a(

1
88;}%96 dx (QC 1)(C C + /\fo a(m caaud 3.3
+/0 a(z,7) /0 Jy o rue )

Integrating by parts the last two terms in the right-hand side of (3.3), with
respect to z, we get

1c le" ! 2 2/c oo ( aa )
/ 602 uMudz :/ 22(1 — 2)2(50%u)?dx + = / 0 2 gy
0 0 2 Jo

a(z,7)
o3 [ (e 24 20 Gorsura
2 ), T— a(x,T) 602 u) de
1 ¢ gacx 112(¢ — C2 _ %
- / 007 et / ( ) (©7) e oS cudc. (3.4)
o a(z,7) 0 I a(C‘r)

Similarly, substituting Mwu by its expression in the second term of the left-
hand side of Equation (3.2), integrating by parts with respect to = and using

Math. Model. Anal., 30(3):405-420, 2025.
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the condition (2.3), we obtain

! 0 ou !
— 2 — 2 2 — ) ¢O% = —
/Om (1—x) 5 (a(mm)ax) 60%udx /0 2a(x,7)(1—-2x)

ou ! O, .0
x (z — 2)8 5 udm+/0x2(1—x)2 a(x, )6 H fa—udx

1 1 T
‘/ g(a@m)@) / (dC / PO stam o

0 O ¢,7) Jo a(c e
12(2¢ -1 )+ A
:711,(1,7')/ ( C )(C C fO a(177') caa dac
0 fO a(CT
122z — 1)(z —2?) + A [y a(r .
+/O fl I ¢ )uoﬁ'Tudz
0 a(¢,7)
12(22—1)(z—2?)+\ 1
+/ ( )( fO a(( T) (I]C T)guo / dC d
0 fO a(C‘r (Ca )

1 T 1
9 ou d¢ 2(26-1)(¢=¢? )+Af0 o]
_/0 O (a('r 7) Bz) /0 a(¢,T) ()\_ Iy 75 )

12(2¢ -1 2) 1\
x Sﬁfudcda::u(o,f)/ ( C =) Ay
0 fO a CT)

1 22z — 1)(z — 22) + A
+/ (/\ ( A o “<“)>ugagudz
0 fO aCT)

v 2(20-1)(z—a” +Af0 %) du "¢
_ A 5 YPecaa d
A IR Jate.nigzi0re [ et ae

a(C T)

a"IT)caa dg

From the last equalities and using the condition (2.2), we get

. ou
—/0 . ( (, T)ax) Mudzx
1 1
:/xZ(l—x)Qa( )guo Tg daz—&—A/ ugOZudz. (3.5)
0

From (3.4) and (3.5), equality (3.2) becomes

by c a(\m 2
/ 22(1 — )2 (50%u)*dedr + 7/ dedT
t Qt

2 a(z,T)

+ % / <12(1: —z?) -2+ )\)> (602, u)?dedr

a(z, T
£02S,u 112(¢ - ¢P) 2+ 25
—/ 0T =2 da:/ T e0CSeudCdr
t a(I7T) 0 fO a(c 7_)
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+/x2(1—x)2a( )guo T?dl‘dT—F)\ ngafudxdT: QfMudxdT. (3.6)

By using Holder’s inequality in the fourth term in the left-hand side of (3.6),
we get

¢ Aacy 112(C = ¢2) — 2+ -2
/ OaT\szudw/ ( ) e D) cog udcdr (3.7)
t Q(I,T) 0 fO W

/\// dx\// 12( (?)-2+ e )>(a Seu)2d(dr.

Using the fact that

2u(t)507u(t) > §0F (u(t)®, 0<a<l, (3-8)

and (2.4), the last two terms in the left-hand side of (3.6) are controlled by

/xQ(lfz)Q (. 7) 200 9% fir> 90 [ 21 — py2e0 (04 " dudr (3.9)
. 9z Ox 2 Jo. 07\ 0 C
)\/ ugO0Sudrdr > %/ 60 (u)2dxdr. (3.10)

Using the Dirichlet formula and integrating by parts the right-hand side of
(3.9) and (3.10), with respect to 7, we get

ag ou

2
=0 201 _ 2coga [ X
5 th (1—x)%602 (83:) dadr

:2]1(?0_00/013:2(1—3:)2/ 865 (gg) /S(T—s)_adrdsda:

T 20— a;LJO"(l —a) /01 (1 -2)” /Ot(t - 8)1*“% (?;)2 dsda

ap 1_q Ou ||2 ag l—or 0p||?
— R S — 1- 11
2 z(1-2) 837’ 12(0,1) 2I'(2 — «) w1 -2)5, Oz llL2(0,1) (3.11)
and
5/66&()2dd— // o grdsd
5 ,,OTu xdr = l—a 85 Tdsdx

_ _ 1a )
T o1 —a)l 1—a//t s 45l

)‘ j et 11—«
I ||UHL2(0 1) mt H@HL?(O y- (312)
Therefore, by combining (3.7), (3.11) and (3.12) with (3.6), we get the following

Math. Model. Anal., 30(3):405-420, 2025.
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expression:

Oou |2

x(l—x)%’ A

1 2
PR KLEICRY

/ 22 (1—2)2(50%u)*dxdr + %11*“

L2(0,1)

2
1 ¢ 1 (§09Su
+2/0< (Oa(x 'r)) dx — \/f() x 1'2 2+a(m -r)) (Ca'(l}%zu)de dr

QfMUd‘TdTJrzF(z a)tl aH‘PHI}(o 1)+2F(2 a)tl aHx (1—z aa:HL201)'

(3.13)

Substituting Mwu by its expression in the first term in the right-hand side of
(3.13), we obtain

fMudxdT = / 2(1 — 2)? f50%udxdr

t

/ f/ / e CQ Hfo a(’”)caa dCdxdr
Qt

fO a(( 7')
T od¢ oo 2(2¢-1)(¢—¢?) +)\f0 a(nT N
+/{ 0 a(C,7) /z <)\ fo m ) OfudCdrdr. (3.14)

Using (2.4) and e-Cauchy inequality, each term in the right-hand side of
(3.14), can be, respectively, controlled by

1
/mQ(l—x)QfgafudxdTSZ/ 2(1—2)%(50%u) dCEdT+/ 2?(1—2)? f2dxdr,
Qt t t

_— 2020 - 1)(C— )+ A fy o2
Ll aeal e

Jo 7
2.2
< 1/ 22(1 — 2)2(50%u)2dwdr + 64“1 + 16“4‘“ / 22(1 — 2)2 f2dxdr,
8 Ja. ag ] ¢
and
: L2201
e e [ 2
Q Jo Ao S Jo wte
1 64 16)22a?
< 8/Qx2(l—x)2(88$ u)?dxdr —|—( aal—i— a4a1)/$2(1—x)2f2dxd7.
t 0 0 t
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By combining the previous inequalities with (3.13), we arrive at

1 2 2/c 2 0 r1- u
- 1 — 2)2(50%u) dadr + 2 1o —‘
[ a0 2 Gon v + “

2
A 2 1/t L (eooSu)? | \1/2
Zi-e - ()\/ 0T >2E) g )
+30 Wlon +3 ( 0 alwr)

_ (/01 (120~ 0% 24 )(Saf%zu)%)m)?m

x(1—x) ’

L2(0,1)

a(x,T)
= (2 (64a?/a%+16A2a%/aé) +1) / 2 (1 —x)? fdwdr
o -« a@ 2 A 1—a 2
—T 1—x2)=—"— A )
* 2I'2 — «) z( z) oz llL2(0,1) + 2I'(2 — ) HSOHLz(o,l)

If we drop the fourth term in the last inequality and by taking the least
upper bound of the left side with respect to ¢ from 0 to T, we get the desired
estimate (3.1) with

128a3  32\%a? agTt=* A )Tla)/min (1 ag /\).

C?*= 1 U
max( 2 e "h3resa) 2T (e-a 2232

O

Consequently, the a priori estimate (3.1) can be extended to strong solutions,
then we have the inequality

lull g < C HZuHF vu € D(L).

The last inequality implies the following corollaries:

Corollary 1. A strong solution of (2.1)—(2.3) if it exists, it is unique and depends
continuously on F.

Corollary 2. The rang R(L) of L is closed in F and R(L) = R(L).

Corollary (2) shows that, to prove that problem (2.1)—(2.3) has a strong solution
for arbitrary F, it suffices to prove that the set R(L) is dense in F.

4 Existence of the solution

To prove the existence of the solution of problem (2.1)—(2.3), it is sufficient to
show that R(L) is dense in F, that is R(L) =T.
The proof is based on the following lemma.

Lemma 1. Suppose that a(x,t) and its derivatives are bounded.
Let Do(L) = {u € D(L),u(z,0) = 0}. If, for u € Do(L) and for some
function w € L?(£2), we have

2 1— 2
/ A=) o wddt = 0, (4.1)
Q Q(JC, t)

then w = 0.

Math. Model. Anal., 30(3):405-420, 2025.
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Proof. From (4.1) we obtain

201 _ 32 2(1 _ )2
/Mgaf‘uﬁd:cdt:/ (l—2)” 9 (a(g;,t)au> wdzdt.  (4.2)
o Oz

a(x,t) o a(z,t) o

For a given w(x,t) € L?(Q), we introduce the function

x 2
v(x,t):(a:f:vz)er/O a((,t)% <i(c7i)>w(c,t)dg,

then,

N e x—a? 7 El ¢—¢2 .
/0 a <G(C,t)>vd<_ a(:ﬂ,t)/o a(6-1) e (a((,t)) (G, 8)dc,

this implies
Yo (¢-e
| (MCJ))MC_O’

Equality (4.2), can be written as follows:

/gafudedt:/A(t)uﬁdxdt, (4.3)
Q Q

where

We introduce the smoothing operators:
J7N = (I +e50p) " and (J7N)* = (I+€0g)

with respect to ¢, then these operators provide the solution of the problems:

ue(t) + €508 uc(t) = u(t), ue(0) =0,
% T (s—t)~ ™ Ovl (s o % o
vi(t) +e f, Gl 2sthds = u(t), v (T) =0.

We also have the following properties:
for any g € L*(0,T) the function J g, (J71)*g € W3 (0,T). If g € D(L), then
J71g € D(L) and we have

limHngg*gHLz(o;ﬁ) =0, for € — 0,
lim H(Jﬁ_l)*g — gHLQ(QT) =0, for e—=0.

Substituting the function u into (4.3) by the smoothing function u. and
using the relation
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At)ue = J71A(t)u,

we obtain

/uNga‘T"v:dxdt:/ A(t)uvkdxdt. (4.5)
Q Q

The left-hand side of (4.5) is a continuous linear functional of u, hence
the function v* has the derivatives (z — ZCQ)% € L*(Q), 2 ((CB - x%%) €
L?(Q), and the following conditions are satisfied:

{mv *lomo = (1 — x)v! |w:1 =0,

xam ‘z 0= (1—%) v;|x:1.

Substituting the function §07u in (4.3), such that

r—a? 2 —e L
TR /<C C(C(Ci))+c(c§s)>”f(<’t)d<
2
/<C(Ci) 4 C)ag(c(g,i)))”:dcv (4.6)

and using the properties of the smoothing operators, we have

Tio 4\~ *
/Safumdmdt:/A(t)udedt+e A(t)u/ (s =)™ D (S)dsdxdt. (4.7)
Q Q Q t F(]. - a) 88

Integrating by parts each term in the right-hand side of (4.7), using (4.6)
with respect to x and ¢, we obtain

/A uv*dmdt—i—e/ At / iave (s)dsdxdt
I'l—«a) O0s

ou, ., O0u Lou\’
:_/Q( )aotadxdt—i-e/Q( )(68>dxdt.

Using (3.8) and (2.4), Equation (4.7) becomes

6“\L2(071)+6/Q alz, )(af’g ) dudt. (4.8)

Ox
We replace §0fu by its representation (4.6) in the left-hand side of (4.8),
we obtain

/ cofuNvdrdt < —agl* ™
Q

2
caa, N, Lr—x N
/Qoat uNvdzdt = / a(as,t) I (¢, t)d¢ Nvdzdt

/ / <a< C Cj) C(Ectj>vi(§7t)déi\h1dxdt (4.9)

// (C ‘- Oa<<c(ci))>vidcj\h1dxdt.

Math. Model. Anal., 30(3):405-420, 2025.
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Substituting Nv by its expression in each term in the right-hand side of
(4.9), integrating with respect to x, we obtain

LMUijMdmdlfz/@(i&j)zwzdxdt
_ / x(‘ xjv / C(C z ij)vdgdmdt—k /Q Z (;,xthv(@‘—v)dxdt, (4.10)
x 2 2

/ | ( acaen) e i))”:dw’dxdt

:_5/(/ C(CC: dt_’/ (/ /ac ”d<)2
+/5“(/I§<(C<ci;>”d<> et /I< e §(<<<<>)”d<dxdt
L G [ i
// (8<<C 42) C(C’ij)(v:‘v)dd\wdzdt, (4.11)

// (C ¢ )88<<( Cj))yida\h}dmdt
2/(/ )i [ 3 (e ) )
(R 55 0
=\ cdudis - CdeCdxdt
( ) / i)/
C C2 ) (¢ (vF —v)d¢ Nvdzdt. (4.12)
9¢\a(¢, 1)

By combmmg (4.10)7(4.12), we get

de dxdt

2

/Q cofuNvdzdt = /Q (Nv)? dedt — /0 ! ( /0 1Nvdx> dt
r —x? ¥ -2 —(2
“, oo L Calien) tacn)

/; (fucij 4 Oac(ici)ﬂ(“:”)dém‘”dt'
Since

/Q(Nv)2—/OT</Ole>2:; /OT/01/01|(NU) (z,t)— (Nv) (y,1)|* dedydt,
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using (4.8), for sufficiently small €, we conclude that
Nov(z,t) = No(y,t) Vz,y€l0,1], tel0,T].

then Nv = 0, so from (4.4), the assertion of the Lemma 1 is established. O
Theorem 2. The range R(L) of the operator L is dense in F.

Proof. Since F is a Hilbert space, we have R(L) = F if and only if the relation

1 1
/xz(l—x)zfgdxdwr/ 22(1 — )Qdmd‘md +/ tupr =0,  (4.13)
Q 0 dl‘ d.’If 0

for an arbitrary w € D(L) and (g,¢1) € F, implies that g = 0 and ¢; = 0.
Putting v € Do(L) in (4.13), we conclude from Lemma 1 that g = e =0
then g = 0. a.e. Taking u € D(L) in (4.13) yields

1
dlu doy
2(1 — x)? dx /e =
/0“ P T ey [Tz =0,

Since the range of the trace operator is everywhere dense in Hilbert space

with the norm
1 2 1
/ (1 — x)? dx +/ |ou|? =
0 0

Hence, ¢1 = 0. This completes the proof. O

dlu
dx

5 Conclusions

In this work, we studied the existence and uniqueness of a strong solution
for a parabolic equation with a Caputo time fractional differential operator
supplemented by periodic nonlocal boundary condition and integral condition.
The used method is one of the most efficient functional analysis methods for
solving fractional differential equations with boundary integral conditions, the
so-called energy-integral method or a priori estimates method. We constructed
suitable multiplicators for each problem, which provide the a priori estimate.
From there, it was possible to establish the solution’s uniqueness and contin-
uous dependence on the initial data. Subsequently, we established the main
result concerning the existence of the solution for the considered problem. Our
approach primarily relies on operator theory.
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