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Abstract. Fuzzy stochastic optimization has emerged as an effective

approach for dealing with probabilistic and imprecise uncertainties,

which makes it useful for problems when data is simultaneously im-

pacted by vagueness and randomness. When these uncertainties in-

volve in decision making problem where, it is required to determine

the relative merits between different alternatives, we have often

used the fuzzy stochastic fractional programming problem. This

paper developed a new approach to derive the acceptable range of

objective values for a Multi-objective fuzzy stochastic linear frac-

tional programming problem (MOFSLFPP). In this problem, the

fuzzy random variables coefficient is involved as the parameters of

the objective function as well as system constraints. The proposed

method constructs an expectation model based on the mean of the

fuzzy random variable. For the satisfaction level of decision-makers,

the level set properties of the fuzzy set are applied in the objective

function. The chance-constrained programming method is utilized

to transform the MOFSLFPP into its equivalent crisp form. For

validation of the proposed methodology, an existing numerical has

been solved, and the comparison of the proposed methodology has

been discussed with the existing one. Also to demonstrate the prac-

tical application of this methodology, an inventory management

problem has been discussed.
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1 Introduction

In many real-life decision-making situations, a specialized area of mathemati-
cal optimization known as fractional programming is associated with the op-
timization of objective functions that are defined as ratios of functions. Mar-
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tos and Whinston [18], a Hungarian mathematicians developed linear frac-
tional programming problem in 1960s to optimize the ratio-based objectives
such as profit/investment, cost/benefit, output/employ, assets/capital, etc.
The decision-making problems often depend on human judgment and intu-
ition which makes it challenging to describe parameter values in mathematical
models. Although the early fractional programming models were mostly de-
terministic and regularly encountered difficulties when applied to large-scale,
non-linear problems, making it difficult for them to handle uncertain situations.
Furthermore, because of the imprecise situations, the uncertainties need to be
appropriately managed to ensure that the established mathematical model re-
tains the uncertainty in determining the solution. Stochastic programming
(SP) and the fuzzy mathematical programming (FMP) are the two major ap-
proaches for encountering uncertainties in decision-making problems. SP is an
extended form of mathematical programming that discusses decision problems
whose coefficients (input data) may not be known with certainty but may be
represented as chances or probabilities. Randomness associated with resource
parameters in the constraints is the form of uncertainty that gets major atten-
tion in real-world optimization problems. When making decisions in the real
world problems, sometimes data can be measured by fuzzy, stochastic, and
both fuzzy and stochastic (fuzzy random variable) uncertainty. Fuzzy random
variable occurs in such problems where both types of uncertainties, imprecision
and unpredictability present.
As the Multi-objective linear fractional programming problem (MOLFPP) may
not attain the optimum solutions for each objective simultaneously, So, there
is always a scope for developing a methodology to find an alternate way for
obtaining a compromise solution that may be better or computational com-
plexity is lesser. In recent decades, there has been a significant increase in
research work in developing efficient algorithms and solution techniques for
fractional programming problems. Decision-makers may handle the ingrained
uncertainties and imprecision associated with real-world decision-making by
using MOFSLFPP.
To better explain the importance of using this environment of uncertainty, we
can discuss a situation of supply chain optimization in which a company must
decide which raw material quantities to order from several suppliers in the best
possible amounts. The company wants to keep costs as low as possible with-
out compromising quality of service. On the other hand, the problem involves
uncertainty regarding supplier reliability and demand estimations. The sup-
plier’s delivery time frames are imprecise because of variable manufacturing
rates (fuzzy uncertainty), and the demand is unpredictable because of market
fluctuations (random uncertainty). To handle this problem, one can employ a
multi-objective fractional programming method with fuzzy random variables
involved. The goal is to maximize the cost-to-service ratio, in which the cost
(numerator) represents the expected costs for transportation, raw materials,
and probable penalties for delivery delays, and the service level (denomina-
tor) indicates the dependability of meeting customer requirements. The fuzzy
random variables consider the supplier’s uncertain supply times and the mar-
ket’s fluctuating demand. We use the expectation model based on fuzzy data
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to determine each supplier’s estimated delivery timings. We use the chance-
constrained method to account for the randomness in demand by ensuring that
constraints on stock levels and delivery times are fulfilled with a given probabil-
ity. Additionally, to find the acceptance range of the objective of the company,
utilize the level set approach and allow the company to derive different levels
of confidence in an uncertain environment.
The objective of this research is to develop a novel approach that handles ro-
bust and practical, real-world applications based on MOLFPP that involve both
types of uncertain situations like fuzzy (imprecision) and random (stochastic)
uncertainty. We have considered a situation of MOFSLFPP in which both
the objective functions and subject-to-chance constraints are taken to be fuzzy
random variables. The objective of the problem is approximated by the ex-
pectation model of stochastic programming. This study employs the level set
properties of the fuzzy set, which transform the fuzzy parameters into their
crisp form. Using level set properties from fuzzy set theory allows for flex-
ible modeling of decision makers’ preferences, providing a range of solutions
based on their risk tolerance. The chance-constrained approach transforms
probabilistic constraints into their deterministic form, making the model more
practical and solvable with conventional optimization techniques.
The research demonstrates the practical relevance and advantages of this inno-
vative method by applying the developed models to specific application areas,
such as finance, resource allocation, inventory management problems, trans-
portation problems, or environmental planning. The proposed approach allows
decision-makers to adjust their satisfaction level and risk tolerance by provid-
ing more flexible ranges of objective value.
This paper includes the following sections: Section 1 provide the brief intro-
duction about the research work. Motivation of the research work is included
in Section 2. The literature review of this study is include in Section 3. Some
fundamental definitions that help to construct the method are provided in Sec-
tion 4. The description of the problem and a methodology for solving it are
discussed in Section 5, and a stepwise computing procedure is given in Section 6.
Section 7 of the manuscript includes a numerical example and a practical real
application of inventory management problem, and Section 8 highlights the
result obtained. Section 9 conclude the proposed work and in Section 10, some
future scope has been given.

2 Motivation

Decision-making in modern situations of real life can often be affected by uncer-
tainties that traditional models are unable to accurately represent. It might be
difficult to find robust solutions when parameters in optimization problems are
random and imprecise due to imprecise or unknown variables. Optimization
methods that can handle such uncertainties are obviously needed as sectors con-
tinue to get more connected and dependent on real-time data. Traditional op-
timization models, especially those that handle probabilistic uncertainty, have
limitation in managing the imprecision introduced by human estimations, im-
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precise predictions, or expert opinions. This gap in traditional methods has
grown even wider in the modern era, when decision-making must account for
not only random fluctuations (such as market dynamics or supply chain disrup-
tions) but also fuzzy elements (such as estimated demand or predicted weather
conditions). The use of fuzzy random variables in optimization models has be-
come an essential approach because of this increasing complexity. Incorporating
both randomness and fuzziness, this approach provides a more comprehensive
strategy to modelling the uncertainties that decision-makers face in many fields,
including supply chain management, inventory management problems, energy,
healthcare, finance etc.

This study is particularly required in fields like supply chain management,
where worldwide connectivity brings with it unpredictable events (such as ex-
treme weather, economic instability, and unexpected disruptions in transporta-
tion networks) that impact both inaccurate forecasting and the unpredictability
of transportation. Similar to this, in the healthcare industry, decisions about
the distribution of medical supplies or the deployment of people are greatly
impacted by both uncertain, random events (like pandemics or sudden out-
breaks) and imprecise data (like fluctuating patient needs or uncertain disease
progression). Additionally, market randomness (economic swings, stock price
fluctuation) and subjective variables (investor satisfaction, economic expecta-
tions) both contribute to the constant volatility of financial markets.

This growing requirement to effectively simulate real-world uncertainties,
along with the increasing challenges in obtaining reliable solutions, motivated
us to focus on multi-objective fuzzy stochastic fractional programming prob-
lems. The primary goal of this study is to create an optimization structures
which allow decision-makers to navigate complex, uncertain environments while
optimizing multiple conflicting objectives expressed as fractional ratios. Es-
sentially, this study fills important gaps in modern decision-making, since or-
ganizations want more reliable models to manage two types of uncertainties:
imprecise and random. This approach improves the accuracy and robustness
of decision-making models in uncertain situations by including fuzzy random
variables into optimization. Chance constraints have been introduced to en-
sure that the solutions obtained may be used in real-world situations, covering
against potential risks and obtaining the best possible resource allocation. This
work is thus highly relevant in addressing the critical needs of modern indus-
tries, providing decision-makers with more accurate, reliable, and adaptable
tools to solve complex, uncertain optimization problems across a variety of
sectors.

3 Literature review

Researchers developed various methods to solve the linear fractional program-
ming problem (LFPP). Charnes and Cooper [8] proposed a variable transfor-
mation method that transforms the fractional objective into its linear form
with some additional constraints. The principle of maximizing or minimizing
ratios in many real-world situations is effectively represented by this frame-
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work. Many real-world decision-making problems, such as hospital planning,
corporate and financial planning, healthcare and production planning, multi-
product inventory management problems and others where multiple rates must
be simultaneously optimized, can be solved using multi-objective fractional pro-
gramming [4]. Using various approaches and methodologies, including the first-
order Taylor series, numerous scholars have attempted to convert the MOLFPP
into a LFPP in the literatures. Chakraborty and Gupta [6] introduced a differ-
ent approach for solving MOLFPP that always produce an efficient solution and
lowers the complexity of the problem, in this approach, an equivalent multi-
objective linear programming problem (MOLPP) has been formulated using
the appropriate transformations and the required problem has been solved us-
ing a set theoretic approach.
The FMP is effective in handling the situation for the objective function and
constraints are imprecise along with decision problems with a fuzzy goal and
constraints [2]. Mehra et al. [19] proposed a method to solve the LFPP with
fuzzy coefficients, in this approach, they transform the fuzzy programming
problem into two non-fuzzy linear fractional programming problems based on
the grade of satisfaction of objective function and constraint set. To formu-
late MOLFPP into its corresponding linear form and create a method of so-
lution, Mishra [22] used the weighting sum method to create a set of non-
dominated bi-level LFPP. Singh et al. [29] developed an approach to solve
intuitionistic fuzzy LFPP with cost coefficient and resource parameters are
taken as triangular intuitionistic fuzzy numbers, by using the concept of com-
ponent wise optimization, the given problem is transformed into a determin-
istic MOLFPP, afterthat the fuzzy mathematical programming approach is
used to solve the transformed MOLFPP. Recently, Singh et al. [30] discussed
an integrated production-transportation problem based on scalarizing fuzzy
MOLFPP, apply the Charnes-Cooper transformation method, the problem is
reduced into deterministic MOLPP and then the required problem is scalarized
by using Gamma-connective and minimum bounded sum operator techniques
and get the required solution. Solomon et al. [31] proposed an intuitionistic
fuzzy optimization method for solving MOLFPP, using the concept of para-
metric function, the LFPP is converted into a suitable non-fractional program-
ming problem. To find the best possible solution at which a certain level of
satisfying optimality is attain by all the objective functions, termination con-
ditions are imposed on all the objective function by the decision maker. Nayak
and Ojha [24] developed a method for solving MOLFPP with fuzzy coefficients
present in both objectives and constraints. They determine an acceptable range
of objective values for different values of α and β chosen by the decision-makers.
Dealing with stochastic fuzzy programming problems is more efficient than
dealing with deterministic ones. (Charnes and Cooper, 1959) [7] developed a
chance-constraint technique that allowed probabilistic constraints to be sat-
isfied with some probability. Sharma et al. [28] developed an approach for
solving a multi-objective bi-level chance-constrained hierarchical optimization
problem, the triangular intuitionistic fuzzy number involved in objective func-
tion whereas the normally distributed random variables is present in the coef-
ficient of constraints, the concept of component wise optimization, alpha-cut
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method, chance-constrained programming and interval programming is used to
transform and get the crisp multi-objective bi-level linear programming prob-
lem, then the required problem is solved by applying the TOPSIS method.
Biswas et al. [3] developed an approach to solve fuzzy multi-objective chance
constrained programming model for land allocation problems with the help of
fuzzy goal programming problem. For the proper utilization of different farm-
ing resources and total cultivating land, optimal production of seasonal crops
and their related expenditures are considered. Some resource coefficients are
associated with the normally distributed fuzzy random variables.
Various model require an appropriate structure to simultaneously address the
two types of uncertainty (fuzziness and randomness), which restrict their prac-
tical applications. In situations that require decisions like finance and supply
chain management, where these uncertainties frequently occur simultaneously,
it is becoming increasingly important to integrate fuzzy and random uncer-
tainty, as illustrated by more recent work by Li and Zhang (2021) [34]. Nasseri
et al. [23] introduced an approach for solving fuzzy stochastic LFPP where
fuzzy random variables involve in the chance constraints and the parameters
in the objective function is characterized by triangular fuzzy numbers. Using
Zadeh extension principle and chance constrained programming method, the
standard problem is transformed into crisp form and solve the required problem
by the Fuzzy Mathematical programming approach. Recently Kumar et al. [15]
developed an approach for solving multi-objective mixed fuzzy-stochastic op-
timization problems, in this approach, fuzzy random uncertainty is involve in
the chance constraints of the production programming problem, the realisation
of the random variable is taken as fuzzy number with gaussian membership
function, the chance-constrained programming method and apply the fuzzy
programming technique, solve and get the required solutions. Acharya et al. [1]
also developed a method for handling MOLFPP involving two parameters of
Cauchy distribution.
MOFSLFPP addresses problems with making decisions under uncertainty and
imprecision that combines the concepts of fuzzy theory, stochastic optimiza-
tion, and multi-objective linear fractional programming problems (MOLFPP).
Osman et al. [25] considered a “fuzzy goal programming approach” for solv-
ing MOFPP involving fuzzy stochastic uncertainty. The approach is based on
α- cut method and chance-constrained technique to transform SP into its de-
terministic form. Mehra & Chandra [19] also developed a method based on
the fuzzy coefficient to find the (α − β) acceptable optimal values for LFPP
in fuzzy environment. Kumar and Dutta [16] propose an approach for solv-
ing multi-objective linear fractional inventory model of multi-product in fuzzy
environment. Fuzzy goal programming approach is used to solve this model.
Khalifa et al. [14] considered an application of fuzzy random-based inventory
management problem based on multi-objective fractional programming. To
handle the fuzzy random parameters involve in objective functions and con-
straints of the application, they used α-cut approach and classify the required
problem into the subproblems with their different criteria.
In many prior studies, the solution space was restricted giving decision-makers
a single or limited number of feasible choices without taking into account their
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level of satisfaction or preferences. Frequently, these models were unable to
provide a way to modify the conclusion according to the decision maker’s risk
tolerance or degree of satisfaction. This research significantly improves practi-
cal applicability by handling both fuzzy and random uncertainty and combining
the predicted value of fuzzy parameters. It gives decision-makers a more thor-
ough and dependable instrument for making decisions that they may employ
in unpredictable situations where outcome optimization requires both fuzziness
and unpredictability, such as financial markets or manufacturing systems. The
proposed approach provides an acceptable range of objectives that is wider
and adaptable to different decision-maker satisfaction levels, giving it a dis-
tinct advantage over traditional methods that give limited flexibility to handle
uncertainty.

4 Preliminaries

4.1 Linear fractional programming problem (LFPP)

The general form of linear fractional programming problem which initially pre-
sented by Dinkelbach [10] in (1967) as follows

Maximize/Minimize f(x) =
ax+ α

cx+ β
, s.t. Ax ≤ b, x ≥ 0,

where a, c and x ∈ Rn, A is a coefficient matrix and b is a resource vector, α, β
are scalars. It is assumed that cx+ β > 0, ∀ x.

4.2 Division operation of the two fuzzy numbers

Let us assume that F (R+) and F (R++) represent the set of non-negative fuzzy
numbers and the set of nonzero positive fuzzy numbers respectively. If r̃, s̃ ∈
F (R+) be two non-negative fuzzy numbers, then by applying the “Interval

arithmetic operations for fuzzy numbers” [19], r̃α · s̃α= [r̃lαs̃
l
α, r̃

u
αs̃

u
α] and if r̃ ∈

F (R+) and s̃ ∈ F (R++), then r̃α
s̃α

= (
r̃lα
s̃uα

,
r̃uα
s̃lα

),∀α ∈ [0, 1], where, r̃lα, s̃
l
α, r̃

u
α, s̃

u
α

be the lower and upper α-cut of r̃ and s̃.
Let r̃ = (r, r0, r̄) and s̃ = (s, s0, s̄) be two triangular fuzzy numbers and α-cut
of these fuzzy numbers be,

r̃α={r + α(r0 − r), r̄ − α(r̄ − r0)} and s̃α={s+ α(s0 − s), s̄− α(s̄− s0)}

Then, α level set of the division of these triangular fuzzy numbers becomes

r̃α
s̃α

=

{
r + α(r0 − r)

s̄− α(s̄− s0)
,
r̄ − α(r̄ − r0)

s+ α(s0 − s)

}
.

4.3 Fuzzy random variable (FRV)

Kwakernaak [17] has introduced the term fuzzy random variable (FRV) as a
random variable whose parameters are not real but a fuzzy number. Let (Ω,
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F, P) be a probability space and F(R) denote the set of all fuzzy numbers
in R. Then the fuzzy random variable is a mapping from probability space to
the set of all fuzzy numbers. This concept has been developed by numerous
researchers, including Puri et al. [26] and others, based on various measurability
criteria. A continuous probability distribution’s density function may contain
unknown parameters. Buckely [5] created a fuzzy probability density function
for a continuous random variable by expressing these uncertainties as fuzzy
numbers.

4.4 Stochastic programming problem

Stochastic programming (SP) is an efficient optimization approach developed to
handle situations in which unpredictable conditions are explicitly represented
by probabilistic information. Dantzig [9] introduced stochastic programming in
1955 with their seminal publication “Linear Programming under Uncertainty”.
The primary advancement of SP is how it uses probability theory and opti-
mization approaches to deal with uncertainty. Decision-makers can assess and
analyze the risk associated with various decisions using probabilistic distribu-
tions. SP is a widely used method for solving optimization problems under
uncertainty. These problems occur when a decision-maker considers a prob-
lem that is not completely known, such as unpredictable demand, or weather
conditions. This uncertain information is represented by a random distribu-
tion based on past data or expert opinion. Doshi and Trivedi [11] provide an
approach for solving a stochastic programming problem with some parameters
that follow uniform distribution, present in the objective function while other
coefficients follow continuous probability distributions with known mean and
variance involved in constraint. Numerous real-world applications involving
decision-making under uncertainty make use of stochastic programming. It op-
timizes portfolio allocation in finance by taking risk and unpredictable market
conditions into consideration.

4.5 Chance constrained programming method

Chance-constrained programming, initially proposed by Charnes and Cooper
[7] in 1959, is an important approach in stochastic optimization that deals with
uncertainty by ensuring constraints can be satisfied with a predetermined prob-
ability. Constraints with random parameters can be expressed probabilistically
in this framework, providing decision-makers to take into consideration uncer-
tainty while preserving the desired level of reliability. The general form of a
chance constraint assures that the probability of the constraint being violated
is less than a specified threshold, hence balancing risk and feasibility in the
solution. Chance-constrained programming (CCP) is extensively used in sup-
ply chain management to ensure that production capabilities or inventory levels
correspond to uncertain demand with a high probability while allowing random
violations or stockouts within a given risk tolerance [33]. To manage financial
risk in portfolio optimization, Chance constraint programming is used. Recent
studies, investigate how CCP can regulate the probability that the return on
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a portfolio will decrease below a specific threshold. CCP makes it possible to
construct a robust portfolio that is compatible with an investor’s risk tolerance
by incorporating stochastic components such asset price fluctuations [32]. The
chance-constrained can be written in mathematical form as

Minimize Z =

n∑
j=1

Cjxj ,

such that

P (

n∑
j=1

aijxj ≤ bi) ≥ pi, xj ≥ 0, i = 1, 2, . . . ,m, 0 ≤ pi ≤ 1,

where P denotes the probability up to which constraint will be satisfied with
the level of satisfaction pi.

4.6 Expected values of fuzzy numbers

We can compute the expected interval for each fuzzy number by the method
given by Heilpern [12] and Mishra et al. [21] as

EI(f̃i) =

[ ∫ 1

0

f l
iα dα,

∫ 1

0

fu
iα dα

]
.

Here, f l
iα and fu

iα are upper and lower bounds of the α-cut for fuzzy number

and expected value of the fuzzy number f̃i is defined as,

EV (f̃i) =
[
∫ 1

0
f l
iαdα+

∫ 1

0
fu
iαdα]

2
.

5 Problem formulations and methodology

A fuzzy stochastic multi-objective linear fractional programming (FSMOLFP)
model having r number of objectives involving fuzzy random variable coeffi-
cients in objective as well as chance constraints, as characterized by Nasseri et
al. in (2018) [23] as follows:

Max Zk =


∑n

j=1
˜̄fkjxj + ˜̄rk∑n

j=1
˜̄gkjxj + ˜̄sk

 =
˜̄fk(x)
˜̄gk(x)

, (5.1)

s.t.

P (

n∑
j=1

˜̄aijxj ≼
˜̄bi) ≽ γi, xj ≥ 0, i = 1, 2, . . . ,m, k = 1, 2, . . . , r, 0 ≤ γi ≤ 1.

In the above problem, ˜̄fkj , ˜̄gkj , ˜̄rk, ˜̄sk, ˜̄aij , ˜̄bi are normally distributed N(0,1)
FRVs, whose parameters (mean and variance) are triangular fuzzy number and
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γi be the satisfying probability level of the chance constraints.

The proposed methodology for solving the problem (5.1) has been discussed
in the following section.

6 The fuzzy stochastic multi-objective linear fractional
programming algorithm

Step 1 : Fuzzy expectation model of objective function.
Here, we have used the expectation model of the stochastic programming prob-

lem. Let Ẽ
(
fkj

)
, Ẽ

(
gkj

)
, Ẽ(rk) and Ẽ(sk) be the mean values of FRVs˜̄fkj , ˜̄gkj , ˜̄rk and ˜̄sk which is to be taken as a triangular fuzzy number.

Max E (Zk) =


∑n

j=1 Ẽ
(
fkj

)
xj + Ẽ(rk)∑n

j=1 Ẽ
(
gkj

)
xj + Ẽ(sk)

 =
˜E(fk(x))

˜E(gk(x))
. (6.1)

“A triangular fuzzy number Ã can be represented by a triplet of three real
numbers as, Ã = (al, a, au). The membership function of the triangular fuzzy
number is of the form”,

µÃ (x) =


x−al

a−al , x ∈ [al, a],
au−x
au−a , x ∈ [a, au],

0, x < al and x > au,

where al and au represent the left and right tolerance value of the fuzzy number
Ã respectively. Considering the above representation of a triangular fuzzy
number associated with the mean and variance of the fuzzy random variable.

Ẽ
(
fkj

)
=

{
f l
kj , fkj , f

u
kj

}
, Ẽ

(
gkj

)
=

{
glkj , gkj , g

u
kj

}
, Ẽ(rk) =

{
rlk, rk, r

u
k

}
,

Ẽ(sk) =
{
slk, sk, s

u
k

}
.

Step 2 : The equivalent deterministic form of objective function.
Now, we obtain the required crisp objective functions by using the β level set
properties of the fuzzy set for a particular value of β. Since we assume that nu-

merator f̃(x) ∈ F (R+) and denominator g̃(x) ∈ F (R++) and using the division
operation of the fuzzy number as discussed in Section (4.2), in maximization
type problem, the objective numerator and the denominator parameters would
be replaced by upper bound and the lower bound of the expectable range of
β-cut respectively as follows: [25]

Max (zk)β =
(fkj(x))

u
β

(gkj(x))
l
β

=
(fk1)

u
βx1+(fk2)

u
βx2+ . . .+(fkn)

u
βxn+(rk)

u
β

(gk1)
l
βx1+((gk2)

l
βx2+ . . .+(gkn)

l
βxn+(sk)

l
β

. (6.2)
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Step 3 : A Method for converting MOLFPP objective to MOLPP
objective. [20, 27]

As we have assumed in Step 2, the denominator g̃(x) ∈ F (R++), i.e.,

g̃(x) > 0,∀x. So, the objective of linear fractional programming of the form,

Max (zk) =
fk(x)
gk(x)

can be equivalently considered as the linear objective

Max (zk) = Max[fk(x)− gk(x)]. (6.3)

The required fractional objective function (6.2) is equivalent to,

Max (zk)β =
{
(fk1)

u
βx1 + (fk2)

u
βx2 + (fk3)

u
βx3 + . . .+ (fkn)

u
βxn + ( rk)

u
β

}
−
{
(gk1)

l
βx1 + ((gk2)

l
β x2 + (gk3)

l
βx3 + . . .+ (gkn)

l
βxn + ( sk)

l
β

}
. (6.4)

Step 4 : Conversion of the chance-constraint

We assume that ˜̄aij and ˜̄bi are normally distributed fuzzy random variables in

problem (5.1). m̃bi and σ̃2
bi
be the mean and variance of ˜̄bi, m̃aij

be the mean of˜̄aij and Vãi
be the variance-covariance matrix. Moreover, assume that ˜̄aij and˜̄bi are independent to each other. Thus, the set of fuzzy stochastic constraints

of (5.1) can be determined and transformed to their fuzzy equivalents as follows
(Hulsurkar et al. [13]):

n∑
j=1

m̃aijxj − φ−1 (1− γi)

√
σ̃2
bi
+ xTVaix ≤ m̃bi , i = 1, 2, . . . ,m.

Since we have taken the mean and variance of the fuzzy random variables as
triangular fuzzy numbers, the constraint can be written as

n∑
j=1

(ml
aij

,m
aij

,mu
aij

)xj − φ−1 (1− γi)
√
(σ2l

bi
, σ2

bi
, σ2u

bi
) + xTVai

x

≤ (ml
bi ,mbi

,mu
bi). (6.5)

Step 5 : For a fixed value of β, Problem (6.4) can be solved with the nonlinear
constraint (6.5) for considering different α-cut. Further, expected values of
each objective function as the method discussed in (4.6) can be obtained to
construct the pay-off matrix for these expected values. From these values, the
expected lower and expected upper bound for each objective function can be
obtained.
Step 6 : Construct “Linear membership function” for expected values of each
objective function defined as follows for exp z(1) by using the bounds obtained
in Step 5.

µexp z(1) (x)=


0, exp z(1) ≤ min exp z(1),

exp z(1)−min exp z(1)

max exp z(1)−min exp z(1) , min exp z(1)≤ exp z(1)≤max exp z(1),

1, exp z(1) ≥ max exp z(1).
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Step 7 : Calculate the “Pareto optimal solution” of the required multi-objec-
tive non-linear programming problem (MONLPP), using the fuzzy progra-
mming method.
Step 8 : Repeat Step 2 to Step 7 for distinct values of β.

Remark 1. Let Ω be the set of feasible solution of (5.1). A feasible solution
x∗ ∈ Ω is said to be an efficient solution of (5.1) if there is no x̄ ∈ Ω such that
Zk(x̄) ≥ Zk(x

∗), k = 1, 2, . . . ,K and Zk(x̄) > Zk(x
∗) for at least one k.

Theorem 1. The efficient solution of (6.3) subject to the constraint set of
(6.5) is also an efficient solution of the problem (5.1).

Proof. Suppose x∗ ∈ Ω is an efficient solution of (6.3), so there is no x̄ ∈ Ω
such that

zk(x̄) ≥ zk(x
∗), k = 1, 2, . . . ,K and zk(x̄) > zk(x

∗) for at least one k.

=⇒ fk(x̄)− gk(x̄) ≥ (fk(x
∗)− gk(x

∗)), k = 1, 2, . . . ,K and

(fk(x̄)− gk(x̄) > (fk(x
∗)− gk(x

∗)) for at least one k.

Since, gk(x̄) > 0, k = 1, 2, . . . ,K as given in Step 3. From the above inequalities
we get,
fk(x̄)
gk(x̄)

− 1 ≥ fk(x
∗)

gk(x̄)
− gk(x

∗)
gk(x̄)

, k = 1, 2, . . . ,K and fk(x̄)
gk(x̄)

− 1 > fk(x
∗)

gk(x̄)
− gk(x

∗)
gk(x̄)

, for

at least one k.
We can rewrite the above inequality as

fk(x̄)

gk(x̄)
− 1 ≥ fk(x

∗)

gk(x∗)
· gk(x

∗)

gk(x̄)
− gk(x

∗)

gk(x̄)
, k = 1, 2, . . . ,K,

fk(x̄)

gk(x̄)
− 1 ≥ (

fk(x
∗)

gk(x∗)
− 1)

gk(x
∗)

gk(x̄)
, k = 1, 2, . . . ,K.

Similarly, fk(x̄)
gk(x̄)

− 1 > ( fk(x
∗)

gk(x∗) − 1) gk(x
∗)

gk(x̄)
, for at least one k.

We know that when we maximize the fraction f(x)
g(x) , this implies, we have

to maximize f(x) and minimize g(x). So, in the above inequalities we have
minimize gk(x) and (x∗) is the minimum point.

Therefore, gk(x
∗) ≤ gk(x),∀x ∈ Ω. So, ∄x̄ ∈ Ω such that gk(x

∗) ≥
gk(x̄), k = 1, 2, . . . ,K and gk(x

∗) > gk(x̄) for at least one k.

Therefore, gk(x
∗)

gk(x̄
≥ 1, k = 1, 2, . . . ,K and gk(x

∗)
gk(x̄

> 1 for at least one k.

From above inequality,(fk(x̄)
gk(x̄)

− 1
)
≥

(fk(x∗)

gk(x∗)
− 1

)gk(x∗)

gk(x̄)
≥

(fk(x∗)

gk(x∗)
− 1

)
implies ( fk(x̄)gk(x̄)

− 1) ≥ ( fk(x
∗)

gk(x∗) − 1).

Therefore, there does not exist x̄ ∈ Ω such that

( fk(x̄)gk(x̄)
) ≥ ( fk(x

∗)
gk(x∗) ) for k = 1, 2, . . . ,K and ( fk(x̄)gk(x̄)

) > ( fk(x
∗)

gk(x∗) ) for at least one k.

Hence, x∗ is an efficient solution of (5.1). ⊓⊔

A diagram for a better understanding of the algorithm is shown in Figure 1.
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Figure 1. Diagram for algorithm used to solve (FSMOLFPP).

7 Examples

In this section, we have illustrated a numerical example and a practical ap-
plication of the three-product inventory management problem based on the
proposed methodology.

7.1 Numerical example

For numerical illustration to validate the proposed method, we consider a
MOLFPP, which is undertaken by Nayak et al. [24] in the fuzzy stochastic
environment as

Max f1 (x) =
˜̄c11x1 + ˜̄c12x2 + ˜̄c13x3 + ˜̄r11˜̄d11x1 +

˜̄d12x2 +
˜̄d13x3 + ˜̄s11 =

˜̄7x1 +
˜̄9x2 +

˜̄5x3 +
˜̄5˜̄5x1 +

˜̄5x2 +
˜̄6x3 +

˜̄5 ,
Max f2 (x) =

˜̄c21x1 + ˜̄c22x2 + ˜̄c23x3 + ˜̄r21˜̄d21x1 +
˜̄d22x2 +

˜̄d23x3 + ˜̄s21 =
˜̄9x1 +

˜̄7x2 +
˜̄10x3 +

˜̄4˜̄10x1 +
˜̄5x2 +

˜̄12x3 +
˜̄5 , (7.1)

Max f3 (x) =
˜̄c31x1 + ˜̄c32x2 + ˜̄c33x3 + ˜̄r31˜̄d31x1 +

˜̄d32x2 +
˜̄d33x3 + ˜̄s31 =

˜̄5x1 +
˜̄7x2 +

˜̄11x3 +
˜̄5˜̄3x1 +

˜̄8x2 +
˜̄9x3 +

˜̄3 ,

s.t.

P [˜̄3x1 +
˜̄5x2 +

˜̄5x3 ≤ ˜̄8] ≥ 0.90, x1, x2, x3 ≥ 0.

Step 1. In this above problem (7.1), the parameter involved in objective as well
as subject to chance constraints is normally distributed fuzzy random variables,
so the expectation model is used for objective function as

Max E(f1 (x)) =
Ẽ(7)x1 + Ẽ(9)x2 + Ẽ(5)x3 + Ẽ(5)

Ẽ(5)x1 + Ẽ(5)x2 + Ẽ(6)x3 + Ẽ(5)
,

Max E(f2 (x)) =
Ẽ(9)x1 + Ẽ(7)x2 + Ẽ(10)x3 + Ẽ(4)

Ẽ(10)x1 + Ẽ(5)x2 + Ẽ(12)x3 + Ẽ(5)
, (7.2)
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Max E(f3 (x)) =
Ẽ(5)x1 + Ẽ(7)x2 + Ẽ(11)x3 + Ẽ(5)

Ẽ(3)x1 + Ẽ(8)x2 + Ẽ(9)x3 + Ẽ(3)
,

s.t.

P [˜̄3x1 +
˜̄5x2 +

˜̄5x3 ≤ ˜̄8] ≥ 0.90,
x1, x2, x3 ≥ 0.

Expected values of the fuzzy stochastic parameters of the objective functions
has been considered to be a triangular fuzzy number as,

Ẽ (7) = (4, 7, 11), Ẽ (9) = (6, 9, 15), Ẽ (5) = (3, 5, 9), Ẽ (5) = (2, 5, 7),

Ẽ (5) = (2, 5, 6), Ẽ (5) = (4, 5, 7), Ẽ (6) = (3, 6, 8), Ẽ (5) = (2, 5, 8),

Ẽ (9) = (6, 9, 11), Ẽ (7) = (5, 7, 9) , Ẽ (10) = (8, 10, 12), Ẽ (4) = (3, 4, 5),

Ẽ (10) = (8, 10, 12), Ẽ (5) = (3, 5, 7), Ẽ (12) = (8, 12, 14), Ẽ (5) = (4, 5, 8),

Ẽ (5) = (3, 5, 12), Ẽ (7) = (5, 7, 8), Ẽ (11) = (8, 11, 15), Ẽ (5) = (2, 5, 6),

Ẽ (3) = (1, 3, 4), Ẽ (8) = (2, 8, 14), Ẽ (9) = (3, 9, 12) , Ẽ (3) = (1, 3, 5).
The mean and variance of the fuzzy random variables present in constrained
are also taken as triangular fuzzy numbers, which are given as

m̃1 (3) = (1, 3, 5), m̃2 (5) = (2, 5, 7), m̃3 (5) = (3, 5, 6), m̃4 (8) = (6, 8, 12),

σ̃2
1 (3) = (1, 2, 3), σ̃2

2 (5) = (1, 3, 5), σ̃2
3 (5) = (2, 3, 4), σ̃2

4 (8) = (3, 5, 7).

Step 2. Now, using the level set property of fuzzy set which is given in Step 2
of Section 6, and for an appropriate value of β, let us assume that the decision
maker accepts an β-level of 0.5. The expectation model of the objective function
would be replaced by its deterministic form and problem (7.2) can be rewritten
as

Max f1 (x) =
9x1 + 12x2 + 7x3 + 6

3.5x1 + 4.5x2 + 4.5x3 + 3.5
,

Max f2 (x) =
10x1 + 8x2 + 11x3 + 4.5

9x1 + 4x2 + 10x3 + 4.5
, (7.3)

Max f3 (x) =
8.5x1 + 7.5x2 + 13x3 + 5.5

2x1 + 5x2 + 6x3 + 2
,

s.t.

P [3̃x1 + 5̃x2 + 5̃x3 ≤ 8̃] ≥ 0.90,
x1, x2, x3 ≥ 0.

Steps 3, 4. By using Equation (6.4) for the objective, and for the constraint
set as discussed in (6.5). The problem (7.3) is transform into the MONLPP as

Max f1 (x) =5.5x1 + 7.5x2 + 2.5x3 + 2.5,

Max f2 (x) = x1 + 4x2 + x3, (7.4)

Max f3 (x) = 6.5x1 + 2.5x2 + 7x3 + 3.5,

s.t.
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(1, 3, 5)x1 + (2, 5, 7)x2 + (3, 5, 6)x3 + 1.28

×
√
(1, 2, 3)x2

1+(1, 3, 5)x2
2+(2, 3, 4)x2

3+(3, 5, 7) ≤ (6, 8, 12), x1, x2, x3 ≥ 0.

Now, by considering one objective at a time of the problem (7.4), for different

Table 1. Solution obtained for Max f1(x) of (7.4) for different values of α.

α x1 x2 x3 f1 f2 f3

0 1.4279 0.7676 0 2.3479 1.2202 2.6908
0.2 1.2904 0.5748 0 2.3117 1.1949 2.7873
0.4 1.1922 0.4606 0 2.2838 1.1777 2.8543
0.6 1.1204 0.3849 0 2.2617 1.1649 2.9049
0.8 1.0667 0.3309 0 2.2437 1.1549 2.9455
1 1.0256 0.2902 0 2.2289 1.1468 2.9795
0.8 0.9635 0.357 0 2.2357 1.1639 2.8646
0.6 0.9120 0.4159 0 2.2419 1.1792 2.7731
0.4 0.8677 0.4676 0 2.2474 1.1930 2.6974
0.2 0.8285 0.5142 0 2.2524 1.2058 2.6330
0 0.7930 0.5570 0 2.2570 1.2178 2.5769

EV 2.2651 1.2093 2.8069

values of α, we get the solution for Max f1 (x) using MATLAB (free online
version), and also get the corresponding values of f2 (x) and f3 (x), results
obtained has been summarized in Table 1.
Step 5. Now, calculate the expected values for each objective as the procedure
discussed in Subsection 4.6.∫ 1

0

f l
1αdα =

∫ 0.2

0

0.4695− 0.0362α

0.2
dα+

∫ 0.4

0.2

0.4678− 0.0279α

0.2
dα

+

∫ 0.6

0.4

0.4655−0.0221α

0.2
dα+

∫ 0.8

0.6

0.4631−0.018α

0.2
dα+

∫ 1

0.8

0.4605−0.0148α

0.2
dα

gives
∫ 1

0
f l
1αdα=2.2772, similarly,

∫ 1

0
fu
1αdα=2.4434, EI (f1)= [2.2772, 2.4434] .

Thus, EV (f1) = 2.2651, EV (f2) = 1.2093, EV (f3) = 2.8069.
Step 6. Similarly, calculate the expected values for Max f2 and Max f3 for
different values of α and construct the pay-off matrix of these expected values as2.2651 1.2093 2.8069

2.2645 1.4868 1.8442
2.2011 1.0760 3.5354

 .

With the above matrix, the Max and Min expected values for each of the
objective functions are as

EV (f1)
max

= 2.2651, EV (f1)
min

= 2.2011,

EV (f2)
max

= 1.4868, EV (f2)
min

= 1.0760,

EV (f3)
max

= 3.5354, EV (f3)
min

= 1.8442.
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Step 7. Now, by constructing the linear membership function for the ex-
pected values of each objective and by using the fuzzy programming technique,
problem (7.4) can be converted to non-linear programming problem (NLPP)
as

Maximize λ s.t.

5.5x1 + 7.5x2 + 2.5x3 + 2.5− 0.064λ ≥ 2.2011,

x1 + 4x2 + x3 − 0.4108λ ≥ 1.0760,

6.5x1 + 2.5x2 + 7x3 + 3.5− 1.6912λ ≥ 1.8442, (7.5)

(5− 2α)x1 + (7− 2α)x2 + (6− α)x3

+ 1.28
√

(3−α)x2
1+ (5−2α)x2

2+(4− α)x2
3+(7− 2α) ≤ (6+2α).

By using MATLAB (online free version), for α = 0.5, the NLPP (7.5) has been
solved and the solution is obtained as follows

x1 = 0.1758, x2 = 0.3661, x3 = 0.0897, λ = 1.

f1 (x) = 2.0439, f2 (x) = 1.2049, f3 (x) = 2.3105.

Similarly, one can solve the problem (7.5) for distinct values of α.
Step 8. We have solved problem (7.2) for different values of β, and the obtained
results are placed in Table 2.

7.2 Application of three-product inventory management problem

The inventory management problem helps organizations manage their inven-
tory effectively while maintaining a balance between costs and profits. In this
example, we focus on a three product inventory management problem in which
the manager wants to maximise the two objectives within a given organisational
perspective. The first objective is to maximize the overall profit from inventory
sales. For every unit of inventory, the management wants to optimise the ratio
of the profit cost to the back order quantity. In order to ensure effective use of
storage resources, the second objective is to minimize the holding cost to total
inventory ratio. In order to avoid overstocking, the constraint of the problem
include a maximum budget limit for inventory purchases, a maximum storage
capacity for products, and an upper limit on the number of orders.
Market price fluctuations, imprecise demand predictions, and varying storage
conditions, parameters like selling price, purchasing cost, holding cost and or-
dering cost exhibit significant uncertainty and imprecision. As consequently,
these factors have been represented as fuzzy random variables to allow for the
combined impacts of randomness and fuzziness, which provides a more realistic
depiction of the decision-making situation. we have consider a three-product
inventory management problem as Kumar and Dutta [16].
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Table 2. Solution of problem (7.2) for different acceptable values of β.

α x1 x2 x3 f1 f2 f3

0 0.4277 0 0.0570 4.0370 1.3187 7.4982
0.2 0.5877 0 0.0301 4.2060 1.3224 8.0476

β = 0 0.5 0.8548 0 0 4.4217 1.3288 8.7651
0.8 1.1501 0 0 4.5698 1.3371 9.2094
1 1.3945 0 0 4.6647 1.3420 9.4942

EV 4.5398 1.3295 8.7629

0 0.2064 0.1195 0.1141 2.7881 1.2716 4.1324
0.2 0.3891 0.0897 0.1047 2.9013 1.2548 4.5333

β = 0.2 0.5 0.7167 0.0382 0.0805 3.0725 1.2351 5.1814
0.8 1.1501 0 0 3.2790 1.2258 5.9768
1 1.3945 0 0 3.3448 1.2304 6.1395

EV 3.0775 1.2430 5.1923

0 0 0.3524 0 2.0112 1.23855 2.1645
0.2 0.0478 0.3695 0.0311 2.0259 1.2317 2.1991

β = 0.5 0.5 0.1758 0.3661 0.0897 2.0439 1.2049 2.3105
0.8 0.3077 0.3938 0.1430 2.0730 1.1971 2.3754
1 0.4397 0.4034 0.1827 2.0943 1.1879 2.4426

EV 2.0497 1.21174 2.2945

0 0.2341 0.1283 0.0392 1.4002 1.0259 1.8429
0.2 0.2857 0.1529 0.0607 1.4199 1.0422 1.8215

β = 0.8 0.5 0.4103 0.1801 0.0923 1.4498 1.0671 1.8198
0.8 0.5158 0.2523 0.1260 1.4866 1.0927 1.7779
1 0.6336 0.2788 0.1612 1.5027 1.1048 1.7788

EV 1.45169 1.0666 1.8079

0 0.0818 0.0538 0.1864 1.0283 0.8549 1.4637
0.2 0.0989 0.0600 0.2436 1.0267 0.8593 1.4397

β = 1 0.5 0.1172 0.0735 0.3492 1.0222 0.8633 1.4037
0.8 0.1456 0.0860 0.4607 1.0195 0.8677 1.3780
1 0.1606 0.972 0.5532 1.0163 0.8693 1.3605

EV 1.0223 0.8627 1.4088

Notations and assumptions
The following nomenclature is used to deal the proposed approach:
k = Number of items, ϕ = Fixed cost per item,
˜̄Sk = Selling price for the kth item, ˜̄Pk = Purchasing price for kth item,
Qk = Order quantity for item k, (decision variables),
˜̄Rk= Holding cost for kth item, Y0= Maximum number of orders placed,
W = Maximum available space for all the items,˜̄Dk= Demand per unit time for kthitem, B= Maximum available budget
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for all items, ˜̄wk = Space required for per unit of kth item,
˜̄OCk = Ordering cost for kth item.

Assumptions
1. The time horizon is considered as infinite.
2. The lead time is taken as zero.
3. The holding cost is constant for each product.
4. Purchase cost is constant for each item, i.e., discount is not available.
5. The demand is inversely proportional to the selling price of each item.˜̄Dk = δ(˜̄Sk)

−θ

, where, δ > 0 is scaling constant and θ > 1 is price-elasticity
parameter.

With the above mentioned assumptions, the multi-objective fuzzy stochastic
linear fractional inventory model is formulated as follows:

Max ˜̄Z1 =

∑n
k=1 (

˜̄Sk−˜̄Pk)Qk∑n
k=1 (δ(

˜̄Sk)
−θ

−Qk)

=
Total profit

Back order quantity
,

Min ˜̄Z2 =

∑n
k=1

˜̄RkQk

2∑n
k=1 Qk

=
Holding cost

Total ordering cost
,

s.t.

P{
n∑

k=1

˜̄PkQk ≤ B} ≥ β (Chance constraint on total budget),

P{
n∑

k=1

˜̄wkQk ≤ W} ≥ β (Chance constraint on storage space),

n∑
k=1

(˜̄Sk

)θ

Qk ≥ δ

Y0
(Upper limit on number of order),

Qk ≥ ϕδ˜̄OCk(
˜̄Sk)

θ
(Constraint on ordering cost of each item),

Qk > 0,∀k = 1, 2, . . . , n, Y0 > 0, δ > 0, θ > 1, 0 ≤ β ≤ 1.

Here, the maximum budget B = 100, 000, δ = 70, 000, Y0 = 10, ϕ = 9, the
maximum available space W = 200, θ = 1.1 and the probability level β= 0.5.
Since, the parameters involved in the objective function and the constraint of
the problem are fuzzy random variables. The fuzzy random coefficient and
their expected value is given in Tables 3 and 4 respectively. We have used
the expectation model and level set properties as given in Sections 6.1–6.2
and transformed the required problem into the MOLFPP. Further, we have
transformed MOLFPP into the deterministic form of MONLPP by using the
Sections 6.3–6.5. To solve the MONLPP, we have used the fuzzy programming
technique and the required NLPP is formulated as

Maximize λ s.t.
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76Q1 + 46Q2 + 66Q3 − 2773.03λ ≥ 1747.64,

2.5Q1 + 2.5Q2 + 4.5Q3 + 84.32λ ≤ 169.90,

(360− 10α)Q1 + (370− 10α)Q2 + (400− 10α)Q3

+ ϕ−1(0.5)
√
(110−5α)Q2

1+(113−5α)Q2
2+(122−5α)Q2

3 ≤ 100, 000,

(4− α)Q1 + (6− α)Q2 + (5− α)Q3

+ ϕ−1(0.5)
√
(2− α)Q2

1 + (4− α)Q2
2 + (3− α)Q2

3 ≤ 200,

768.37Q1 + 728.22Q2 + 828.96Q3 ≥ 7000,

Q1 ≥ 10.24, Q2 ≥ 9.61, Q3 ≥ 7.99.

By using MATLAB (online free version), for α = 0.5, the NLPP has been solved
and the solution is obtained as follows: Q1 = 27.76, Q2 = 9.61, Q3 = 7.99, Max
Z1 = 13.40, Min Z2 = 2.85, Total Profit= 3034.28, Total back order quantity
= 226.3, Holding cost=129.38 and Total ordered quantity = 45.36.

Table 3. Fuzzy random coefficients for different products.

˜̄Sk
˜̄Rk

˜̄Pk
˜̄OCk ˜̄wk

k = 1 ˜̄420 ˜̄6 ˜̄350 ˜̄80 ˜̄3

k = 2 ˜̄400 ˜̄6 ˜̄360 ˜̄90 ˜̄5

k = 3 ˜̄450 ˜̄10 ˜̄390 ˜̄95 ˜̄4

Table 4. Expected value and the variance of fuzzy random variables.

E( ˜̄S1) (400, 420, 440) E( ˜̄S2) (380,400,420) E( ˜̄S3) (430,450,470)

E( ˜̄P1) (340, 350, 360) E( ˜̄P2) (350, 360, 370) E( ˜̄P3) (380, 390, 400)

E( ˜̄R1) (4,6,8) E( ˜̄R2) (4,6,8) E( ˜̄R3) (8,10,12)
E( ˜̄w1) (2, 3, 4) E( ˜̄w2) (4, 5, 6) E( ˜̄w3) (3, 4, 5)

E( ˜̄OC1) (60,80,100) E( ˜̄OC2) (70, 90, 110) E( ˜̄OC3) (75,95,115)

σ2
(
˜̄P1

)
(100,105,110) σ2

(
˜̄P2

)
(103,108,113) σ2

(
˜̄P3

)
(112,117,122)

σ2
(
˜̄w1

)
(0,1,2) σ2

(
˜̄w2

)
(2,3,4) σ2

(
˜̄w3

)
(1,2,3)

8 Result and discussion

8.1 Explanation of the result

By using the different values for α and β, decision makers can choose from a
wide range of objective values with effectively manage both types of uncertain
situations. Maximizing the acceptable range of β- level from the perspective of
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decision-makers within the framework of the level set properties of fuzzy set,
which is used for conversion of fuzziness into its deterministic form. With the
increment of the value of β, the length of the β–cut interval decreases. This
decrease in the length results in a corresponding reduction in the coefficients of
the fractional objective. Therefore, one can easily verify that with the increased
value β, the expected values of each objective are decreased. The same can be
easily seen in Figure 2, which comprises the obtained results for different β
values with the bar diagram.

The solution to the real application of the three-product inventory manage-
ment problem obtained using the proposed approach provides more accuracy
and robustness to deal with the fuzzy random uncertainty present in practical
situations.

The comparison between the proposed method and the existing approach
is presented in Table 5. We can see that the range of the objective function
given by this method is more adaptable and wide for decision-makers than the
existing one. In the existing approach [24], the methodology only considered
the uncertainty (fuzzy) and finds an acceptable range of objectives for different
values of α and β. In the proposed methodology, both types of uncertain-
ties (fuzzy and stochastic) have been considered simultaneously which allows
decision-makers to adapt their wide ranges for acceptable objective values for
different β-levels.

Table 5. Comparison of result of proposed method with Nayak and Ojha [24].

Nayak and Ojha [24] Proposed method

f1(x) [0.8519, 2.3265] [1.0223, 4.5398]
f2(x) [0.7063, 1.4217] [0.8627, 1.3295]
f3(x) [0.8240, 3.8214] [1.4088, 8.7629]

8.2 Limitations of the study

As, we have restricted the denominator of the fractional objective function, it is
taken as a nonzero positive fuzzy number so that level set properties have to be
applicable. This is the limitation of the suggested approach. For mathematical
feasibility and tractability to be guaranteed, this limitation is required. The
denominator may change and even turn negative in some real-life situations.
Due to this constraint, the model’s capacity to handle situations where the
denominator may change is limited, which affects how broadly the solution can
be applied.

8.3 Future development and challenges

In the future, this limitation could be overcome by applying advanced methods
that provide more flexibility in the denominator. One approach could be to
reformulate the objective function or use robust optimization techniques that

Math. Model. Anal., 30(3):480–503, 2025.
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handle cases where the denominator might vary or become negative. Another
approach is to include penalty terms or specific conditions to allow these fluc-
tuations and make the model more applicable to real-life situations without
imposing strict non-negativity restrictions.

9 Conclusions

Here, this study developed a novel approach for solving MOFSLFPP which
involves FRV with respect to both the objectives and the chance constraint
parameters. Using the expectation model for the fuzzy-stochastic objective
function, the chance constraint approach and β-level set property of the fuzzy
set are utilized to transform MOFSLFPP to its equivalent deterministic-crisp
form. The proposed method is used to achieve the maximum compromise
solution for the acceptable range of β- level according to the perspective of
the decision maker. For validation of this method, we have taken the same
numerical problem of Nayak et al. [24] with the changed environment, and
find the solution for different values of α. The comparison of the results of
the proposed method with the existing method has been placed in Table 5.
For easy visualization of the comparison, an area graph has also been given in
Figure 3, which clearly shows the superiority of the proposed method over the
existing method. To illustrate the effectiveness of the proposed methodology,
an inventory management problem has been mathematically formulated and
analysed.

Figure 2. Comparison bar graph for
different values of β.

Figure 3. Results obtained from
proposed method and existing method.

10 Future scope

In the future, we can apply this approach to solving multi-objective integer
fractional decision-making problems in a fuzzy stochastic environment. It can
also be applicable in real-life applications such as inventory control optimiza-
tion, supply chain planning, transportation, assignment problems, etc. Also,
the proposed work can be improved by taking nonlinear membership functions
for the fuzzy numbers to model realistic problems more efficiently.
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