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Abstract. We infix the duality-symmetric and the mirror symmetry conversion
processes into a dynamical system representing an electric circuit diagram with three
input (or output) as shown in Figure 2. Hence, a new non-linear variable order ini-
tial value problem is obtained and solved using the Haar wavelet numerical method
(HWNM). Error, stability and entropy analyzes show the reliability of the method.
Numerical simulations are then implemented and show for the new system, existence
of various attractors’ types (point attractors (PAs), limit cycles, strange attractors
(SAs), double attractor (DA), coexisting attractors (CoAs)) with their mirror reflec-
tions. Both are in a symmetrical structure in which they face each other, separated
by a changing symmetry line and exhibiting similar properties. The circuit imple-
mentation using a Field Programmable Gate Array (FPGA) is performed and concur
with the expected results.
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perturbation, circuit implementation.
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1 Introduction

1.1 Mirroring remarks

In everyday life, the mirror process is sometimes opposed or compared to the
matching art (as one can see in Figure 1 (left)). It occurs in areas like social sci-
ence, psychology, psychobiology, neuropsychology, cognitive science, economics,
anthropology and many other behaviorial sciences [8,21]. The principal objec-
tive is to impact the behavior of humans and/or animals through naturalistic
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Figure 1. (Left) Mirroring vs matching is real life. (Right) Mirroring perturbations and
transformations.

observation. It may enhance, for instance, communication effectiveness in sales
presentations, objection handling and customer service.

In a mathematical point of view, both mirror and matching processes can
apply the method of images which consists of extending the domain of the
solution to a differential equation by adding another domain. This is especially
the case for mirror process where the additional domain is obtained via the
solution’s mirror image with respect to a symmetry (hyper)plane. The resulting
mirror system can therefore be perturbed via mathematical operations such as
rotation, translation, etc., as shown in Figure 1 (right).

This leads to an intriguing question: Is it also possible to get a similar
perturbation results using the model’s parameters? We try to bring an answer
by solving a system of differential equations and analysing its related electronic
circuit model.

1.2 Preliminaries

Chaos and bifurcating behavior became subject of interest for the scientific
community more than five decades ago when Lorenz developed and described
his well known attractor [4,10,15]. Doors were then open, marking the starting
point of a series of researches which led to a panoply of new types of chaotic
perturbations. Number of scientific fields related to such dynamics, including
synchronization or chaos control and application were also developed and are
better understood today. Innovative ideas have also been introduced paving the
way for a better understanding of the concepts underlying chaos phenomenon.
A variety of techniques capable of producing chaotic behaviors were proposed
along side with techniques able to control or synchronize some of them [11,14,
16]. The authors in [5] for instance, investigated the dynamical trajectories
of a chaotic oscillator of order three which is non-linear and whose non-linear
element contains a threshold controller. They managed to show existence of a
certain number of complex dynamics together with the coexistence of multiple
attractors. The impacts of metaheuristic and swarm intelligence approach in
optimization have also been studied [2].

Definition 1 [Time-variable order operator [3, 9]]. Consider ϵ : R+ ∋ θ 7−→
[0, 1], to be a continuous function, consider h : R+ ∋ t 7−→ R to be a continuous
and differentiable function, and H > 0. The variable order derivative of h in
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[0, H) is defined as:

D
ϵ(θ)
t h(t) =

1

Γ (1− ϵ(θ))

∫ t

0

(t− e)−ϵ(θ)h′(e)de, with t ∈ [0, H), θ ∈ R+. (1.1)

This operator exhibits the advantage that its derivative of a constant vanishes.
Its associated integral operator with variable order ϵ(θ) reads as

I
ϵ(θ)
t h(t) =

∫ t

0

1

Γ (γ(t))
(t− e)ϵ(θ)−1h(e)de, with t ∈ [0, H), θ ∈ R+. (1.2)

1.3 Description of the electric circuit diagram

In this section, we are interested in the electric circuit diagram depicted in
Figure 2,

Figure 2. The circuit diagram used in the circuit realization of system (1.3).

which can be used for the circuit realization of the following system


D

ϵ(θ)
t x(t) = γ1x− 2yz,

D
ϵ(θ)
t y(t) = −γ2y + 2xz,

D
ϵ(θ)
t z(t) = −γ3z+ xyz+ 1

2r.

(1.3)

Note that this system is restricted from saturation of circuit elements, which
was done by reducing the voltage values of the circuit. Hence we have to
first consider a more global system with no restriction. Such a model can be
obtained from the system (1.3) using variables scaling by setting: x = x, y = y
and z = 1

2z. This transformation yields the system
D

ϵ(θ)
t x(t) = γ1x− yz,

D
ϵ(θ)
t y(t) = −γ2y + xz,

D
ϵ(θ)
t z(t) = −γ3z + xyz + r,

(1.4)

Math. Model. Anal., 29(4):731–752, 2024.
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where x, y, z are real state variables and γ1, γ1, γ1 and r are constant real pa-
rameters. To this model, we can associate the following initial conditions for
the sake of solvability.

x(0) = x̂(x), y(0) = ŷ(y), z(0) = ẑ(z). (1.5)

2 Attractors’ evolution in the case ϵ(θ) = 1

When ϵ(θ) = 1, the model (1.4) becomes
D1

t x(t) =
dx(t)
dt = γ1x− yz,

D1
t y(t) =

dy(t)
dt = −γ2y + xz,

D1
t z(t) =

dz(t)
dt = −γ3z + xyz + r.

(2.1)

The standard graphical simulation of system (2.1) shows that it is character-
ized by an attractor of type butterfly as depicted by Figure 3 for the parameter
values γ1 = 4, γ2 = 9, γ3 = 4, r = 4 and initial conditions x̆ = 1, y̆ = 1 and
z̆ = 1. In Figure 4, are depicted two times series of variable z, formed for 2
different initial conditions, which are (a) (x̆ = 1, y̆ = 1 and (b) z̆ = 1) and
(x̆ = 1, y̆ = 1 and z̆ = 1.001), respectively.

Figure 3. Two and three dimensional attractor of type butterfly characterizing the
system (2.1), for the parameter values γ1 = 4, γ2 = 9, γ3 = 4, r = 4 and initial conditions

x̆ = 1, y̆ = 1 and z̆ = 1.

Figure 4. Times series of variable z for the initial conditions: (a) x̆ = 1, y̆ = 1 and z̆ = 1.
(b) x̆ = 1, y̆ = 1 and z̆ = 1.001.

The disparities between these two figures show how sensitive is the depen-
dence of the model (2.1) on its initial conditions, while making the subsequent
trajectories of the system non predictable in a longer range of time (t ≫≫ 0.)
Using the crossing section given by Π = {(y, z) ∈ R2 : x = 0}, we can depict
the Poincaré map of the model (2.1) as presented in Figure 5(a) and which
proves that the Poincaré map in this system is a collection of points. The
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Lyapunov exponents of the system (2.1) for γ3 ∈ (0, 6) is shown in Figure 5(b)
and when fixing the following parameter values as γ1 = 2 and r = 4 we obtain
the bifurcating dynamics for the model (2.1) when it varies with respect to
the parameter γ3. The bifurcation diagrams, for a varying γ3 are depicted in
Figure 6 for γ2 = 0.02, 1.02, 8 and they show that the dynamical evolutions of
the system lead to attractors.

Figure 5. (a) Poincaré map of the model (2.1) using the crossing section given by
Π = {(y, z) ∈ R2 : x = 0}, showing a collection of points. (b) Lyapunov exponents of the

system (2.1) for γ3 ∈ (0, 6).

For γ2 = 0.02, we have the coexistence of only two foci located on the
sections F± together with a saddle on F∗. Therefore, the foci evolve to limit
cycles using Hopf bifurcations (HB) as depicted in shown in Figure 6 (a), where
limit cycles coexist. A similar scenario is shown in Figure 6 (b) for γ2 = 1.02.
Further increase of γ2 may result in the cascade of period-doubling bifurcation
associated with the limit cycles as shown in Figure 6 (c). Different types of
coexistence can arise in the system, such as the coexistence of limit cycles and
a chaotic attractors (CA). The illustration of some of these attractors can be
seen in Figure 7 for two different values of parameter γ3, namely γ3 = 1.2 in
Figure 7 a) and γ3 = 1.4 in Figure 7 b).

3 Case of a general variable order ϵ(θ): induction of
symmetrical fractal structure

This section is all about setting the model and generating a symmetrical fractal
structure. The case where the variable order ϵ(θ) covers its general definition is
considered here. Hence, using the perturbation method, we start by introducing
into (1.4) two functions: A duality-symmetric function denoted by χ, which
depends on the variable y and a function symbolizing the mirror reflecting
operation denoted by ϖ. Such a procedure leads to a new model given as
follows: 

D
ϵ(θ)
t x(t) = γ1x− yz,

D
ϵ(θ)
t y(t) = −γ2χ(y) + xz,

D
ϵ(θ)
t z(t) = −γ3z + xχ(y)z + r,

Math. Model. Anal., 29(4):731–752, 2024.
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Figure 6. The bifurcation diagrams with the typical cases depending on the variation of
γ3 for (a) γ2 = 0.02; (b) γ2 = 1.02 and (c) γ2 = 8, all showing the system (2.1) has

dynamical evolutions that lead to attractors.

which becomes after inserting ϖ,
D

ϵ(θ)
t x(t) = γ1x− yz,

D
ϵ(θ)
t y(t) = −γ2χ(y) + x× [sgn(z − z̆)× (z − z̆)−ϖ(z)],

D
ϵ(θ)
t z(t) = −γ3[(z − z̆) + sgn(z − z̆)×ϖ(z)]

+x× χ(y)× [sgn(z − z̆)× (z − z̆)−ϖ(z)] + r.

(3.1)

In the later system, the duality-symmetric function χ(y) represents a multi-
segment non-quadratic function and its expression reads as

χ(y) = U0y +

m∑
l=1

Ul

(
sgn(y + Ŭl)− sgn(y − Ŭl)− 1

)
,

here l = 1, 2, · · · ,m and N ∋ m ≥ 1. The family Ul, l = 0, 1, 2, . . . ,m and Ŭl

are defined by

U0 = τ, Ul =
α

τl
, Ŭl =

α

2τ
(l + 1).

As for the ϖ(z) function, it characterizes in the system the mirror symmetry

Figure 7. Attractors of the system (2.1) for γ3 = 1.2 in a) and γ3 = 1.4 in b).

conversion process and its expression reads as

ϖ(z) =

M∑
l=1

(±θ · (1± sgn(sgn(z − z̆)× (z − z̆)− (zl − z̆)))) , (3.2)

where M ≥ 1, z̆, τ, θ, α zl, l = 1, 2, . . . ,M are all real numbers. Now, that
we have perturbed and got the system (3.1) with χ(y) and ϖ(z), it is time to
solve it and assess the impact of the said perturbation. Recall that the initial
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conditions (1.5) are associated to the system (3.1). Then it is possible to make
use of the state vectors in order to put the model (3.1) into a compact form.
To do that, we simplify the notations as

w(t) = (x(t), y(t), z(t)); w0(x, y, z) = w(0) = (x(0), y(0), z(0)) = (x̂, ŷ, ẑ) .
Moreover, the x, y, z−dependent matrix J given as

J(w(t), t) = J(x(t), y(t), z(t), t) = (J1(w(t), t), J2(w(t), t), J3(w(t), t)) ,

leads to the system

J1(w(t), t) = J1(x(t), y(t), z(t), t) = γ1x− yz,

J2(w(t), t) = J2(x(t), y(t), z(t), t) = −γ2χ(y)

+x× [sgn(z − z̆)× (z − z̆)−ϖ(z)],

J3(w(t), t) = J3(x(t), y(t), z(t), t) = −γ3[(z − z̆) + sgn(z − z̆)×ϖ(z)]

+x× χ(y)× [sgn(z − z̆)× (z − z̆)−ϖ(z)] + r.

This system can therefore be reduced to a compact form and referring to the

model (3.1) we have the following equation D
ϵ(θ)
t w(t) = J(w(t), t), equivalently,

D
ϵ(θ)
t x(t) = J1(w(t), t), D

ϵ(θ)
t y(t) = J2(w(t), t), D

ϵ(θ)
t z(t) = J3(w(t), t), (3.3)

satisfying the initial conditions: x(0) = x̂(x), y(0) = ŷ(y), z(0) = ẑ(z). At this
step, we can use a suitable numerical method to address the solvability of the
Cauchy problem expressed above. The most adequate method is the HWNM
defined in [1], which enables us to find and express the best approximation of
the state vector w. To achieve it, we make use of a system of basis functions,
denoted as Ba,b and called the Haar orthonormal basis system.

w(t) ≈ wπ(t) =

m∑
a=1

π−1∑
b=0

Ba,bpa,b(t), with π ∈ {2e : e = 0, 1, 2, 3, . . .}, (3.4)

Ba,b =⟨w,pa,b⟩ =
∫ ∞

0

w(t)pa,b(t)dt.

The kernel pa,b appearing inside the integral is called the Haar function and
its definition is given by

pa,b(t) = pb(t− a+ 1), a = 1, 2, . . . ,m and b = 0, 1, 2, 3, . . . , (3.5)

where

pb(t) =

{
2

e
2Fh(2

it− π), for b = 1, 2, . . . ;
1, for b = 0,

(3.6)

and

Fh(t) =

 1, if t ∈ [0, 1/2[;
−1, if t ∈ [1/2, 1[;
0, everywhere else.

Math. Model. Anal., 29(4):731–752, 2024.
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To get these results, we have made use of the power property for discrete
numbers that can be summarized as follows: considering any number b ∈
{0, 1, 2, 3, . . .}, it can always be written into the sum with power b = 2e+π with
e = 0, 1, 2, 3, . . . and π = 0, 1, 2, 3, . . . , 2e − 1. Recall that the approximation
scheme expressed in (3.4) can also take an explicit matrix form and becomes

w(t) ≈ wπ(t) = gmπ×1
T qmπ×1,

where the vector gmπ×1 is defined by

gmπ×1 = (B1,0, · · · ,B1,π−1,B2,0, · · · ,B2,π−1, · · · ,Bm,0, · · · ,Bm,π−1, )

and the transpose T qmπ×1 of the vector qmπ×1 reading as

qmπ×1 =
(
p1,0, · · · ,p1,π−1,p2,0, · · · ,p2,π−1, · · · ,pm,0, · · · ,pm,π−1,

)
.

At this step, we make use of the ϵ(θ)-variable order operator D
ϵ(θ)
t defined in

(1.1) and where ϵ is assumed to vary with respect to the time t. The application

of operator D
ϵ(θ)
t yielded the associated system (3.3) and using the analysis

performed above leads to the following approximation system

D
ϵ(θ)
t x(t) = J1(w(t), t) ≈ D

ϵ(θ)
t xπ(t) =

T g1mπ×1qmπ×1;

D
ϵ(θ)
t y(t) = J2(w(t), t) ≈ D

ϵ(θ)
t yπ(t) =

T g2mπ×1qmπ×1;

D
ϵ(θ)
t z(t) = J3(w(t), t) ≈ D

ϵ(θ)
t zπ(t) =

T g3mπ×1qmπ×1.

(3.7)

On both sides of the system (3.7), we apply the inverse operator defined in
(1.2) and get

x(t) ≈ xπ(t) =
T g1mπ×1ϕ

q
mπ×mπqmπ×1 + x̂;

y(t) ≈ yπ(t) =
T g2mπ×1ϕ

q
mπ×mπqmπ×1 + ŷ;

z(t) ≈ zπ(t) =
T g3mπ×1ϕ

q
mπ×mπqmπ×1 + ẑ.

(3.8)

Such a scheme is consistent with our desired result as it includes the opera-
tional matrix ϕq

mπ×mπ also called the Haar variable order operational matrix
(see equivalent operational matrix in [1]). At this step, the Cauchy problem
(3.1)–(1.5) is almost numerically solved if we recall and consider the technique
of collocation points via the Galerkin’s method. This leads the existence of
residual errors related to the scheme’s use and whose expressions are obtained
after substituting both Equations (3.7) and (3.8) into the system (3.1). They
are therefore given by

f1
(
e1, e2, e3, t

)
=T g1mπ×1qmπ×1 − J1(

T g1mπ×1ϕ
q
mπ×mπqmπ×1,

T g2mπ×1ϕ
q
mπ×mπqmπ×1,

T g3mπ×1ϕ
q
mπ×mπqmπ×1, t);

f2
(
e1, e2, e3, t

)
=T g2mπ×1qmπ×1 − J2(

T g1mπ×1ϕ
q
mπ×mπqmπ×1,

T g2mπ×1ϕ
q
mπ×mπqmπ×1,

T g3mπ×1ϕ
q
mπ×mπqmπ×1, t);

f3
(
e1, e2, e3, t

)
=T g3mπ×1qmπ×1 − J3(

T g1mπ×1ϕ
q
mπ×mπqmπ×1,

T g2mπ×1ϕ
q
mπ×mπqmπ×1,

T g3mπ×1ϕ
q
mπ×mπqmπ×1, t),
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where

e1 =B1
1,0, · · · ,B1

1,π−1, · · · ,B1
m,0, · · · ,B1

m,π−1;

e2 =B2
1,0, · · · ,B2

1,π−1, · · · ,B2
m,0, · · · ,B2

m,π−1;

e3 =B3
1,0, · · · ,B3

1,π−1, · · · ,B3
m,0, · · · ,B3

m,π−1;

and the components Bb
·,· are those of the matrix TCb

·×·. With the assumption
that

f1
(
e1, e2, e3, tl,b

)
= 0; f2

(
e1, e2, e3, tl,b

)
= 0; f3

(
e1, e2, e3, tl,b

)
= 0,

it is ultimately easy to get a system of 3mπ differential equations containing
3mπ unknowns, all represented by

B1
1,0, · · · ,B1

1,π−1, · · · ,B1
m,0, · · · ,B1

m,π−1;

B2
1,0, · · · ,B2

1,π−1, · · · ,B2
m,0, · · · ,B2

m,π−1;

B3
1,0, · · · ,B3

1,π−1, · · · ,B3
m,0, · · · ,B3

m,π−1.

In this analysis, tl,b is defined as tl,b =
2πe−1
2π +l−b−1, l = 1, 2, . . . ,m; b =

1, 2, . . . , π and it gives all the mπ collocation points that are needful to con-
veniently realize the desired approximation scheme. Hence, at this level the
most difficult part is done and we only have to solve the problem for the re-
quired unknowns. With the expressions of these unknowns in hand, it is then
straightforward to substitute into (3.8) and finally obtain the intended numer-
ical results as w(t) = (xπ(t), yπ(t), zπ(t)).

4 Stability of the mirror process and comparison

To assess the chaotic properties of a non-linear dynamical system, people some-
time determine and analyze its Lyapunov exponent (LE) . For instance, given
a non-linear map T(zj), 0 ≤ j ≤ n with n ∈ N, the LE reads as

L = lim
n→∞

1

n

n−1∑
j=0

ln |T′(zj)|

and its value greater than 0 indicates that the map T has turned into a chaotic
state, with the said value positively proportional to the map’s chaotic mani-
festation. Due to the fact the ϵ(θ) is variable, we need to find an applicable
range where the mirror effect is less dependent and less impacted by the chaotic
performance of the system. Then, considering (3.8), (1.1) and (3.2), the ap-
proximated system (3.8) is put into a compact form

θTϵ
k(zj), 0 ≤ j ≤ n with n ∈ N. (4.1)

Putting for instance, ϵ as the product of θ with another number p0 (real and
arbitrary as ϵ(θ) = p0θ), the summary of the system’s state is given in Table 1.
Compared with different values of θ, the system for θ = 1 and θ = 1.05 admits
stable performance with less impact on the mirror process while conserving a
better complex chaotic behavior, as depicted in Figure 8.

Math. Model. Anal., 29(4):731–752, 2024.
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Table 1. Different states of the system with the green zone representing a more favorable
range.

θ 0 0.3 0.5 0.9 1

p0 0.95 0.55 0.95 0.55 0.95 0.55 0.95 0.55

State Ins Ins Ins Ins Ins Ins Sta Sta

θ 1.05 2 2.5 3 · · ·

p0 0.95 0.55 0.95 0.55 0.95 0.55 0.95 0.55 · · ·

State Sta Sta Ins Ins Ins Ins Ins Ins · · ·

Figure 8. Comparison of different performance states of the system.

5 System entropy and comparison

In order to measure series complexity based on approximate entropy, we can
make use of the sample entropy (SE) by considering again (4.1). For the se-
ries {θTϵ

k(z1),
θ Tϵ

k(z2), · · · ,θ Tϵ
k(zV )}, V ∈ N, and the v-dimension vector

θTϵ
k+v(i) = {θTϵ

k(zi),
θ Tϵ

k(zi+1), · · · ,θ Tϵ
k(zi+v−1)}, the SE is given as [18]

S = S(v, t0, V ) = lnDv − lnDv+1 where Dv indicates the number vectors for
which the Chebyshev distance ( [20]) d

(
θTϵ

k+v(i),
θ Tϵ

k+v(j)
)
of the generate

vectors is less than the acceptance tolerance number t0. Meaning[
d
(
θTϵ

k+v(i),
θ Tϵ

k+v(j)
)
< t0

]
.

Setting v = 2 and t0 = 0.4, the calculations of different SE for the system is
depicted in Figure 9. As expected, the results obtained for θ = 1 and θ = 1.05
have larger SE values than other cases, which guarantee the mirror aspect with
chaotic state for the system with a high complexity. The disparities (∆L and
∆S) related to performance and complexity are summarized in Table 2.

6 Error tolerance

Any approximation scheme comes with a margin of error and in this section,
we are looking for the condition under which the error committed when using
the HWNM to solve the problem (3.1)–(1.5) is tolerable. Due to the fact that
w is from L2[0,m) then, we have x ∈ L2[0,m), y ∈ L2[0,m) and z ∈ L2[0,m).
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Figure 9. Comparison of different complxity states of the system.

Table 2. Comparison of extreme disparities related to performance and complexity.

θ = 0.3 θ = 0.9 θ = 1 θ = 1.05 θ = 2.5 θ = 3

Max L 1.5 5.0 4.5 4.0 3.1 0.3
Min L −6.0 −6.0 2.7 2.0 −5.3 −4.5
∆L 7.5 11.0 1.8 2.0 8.4 4.8

Max S 1.000 0.956 1.125 1.011 1.000 0.333
Min S 0 0 1.083 0.916 0 0
∆S 1 0.956 0.042 0.095 1 0.333

This allows the equality

∥w∥22 = ∥x∥2L2 + ∥y∥2L2 + ∥z∥2L2 , (6.1)

which defines a norm ∥w∥2 of w with

∥x∥2L2 =

∫ m

0

|x(t)|2dt, ∥y∥2L2 =

∫ m

0

|y(t)|2dt, ∥z∥2L2 =

∫ m

0

|z(t)|2dt.

The consequence drawn from (3.7) to (3.8) is that, the general variable order

ϵ(θ)−operator D
ϵ(θ)
t wπ(t) represents an approximation operator for D

ϵ(θ)
t w(t)

as reading in the following expression

D
ϵ(θ)
t wπ(t) =

m∑
a=1

π−1∑
b=0

Ba,bPa,b(t)
[
≈ D

ϵ(θ)
t w(t)

]
.

It can be rewritten as
∑m

a=1

∑π−1
b=0 B1

a,bPa,b(t)∑m
a=1

∑π−1
b=0 B2

a,bPa,b(t)∑m
a=1

∑π−1
b=0 B3

a,bPa,b(t)

 =

m∑
a=1

π−1∑
b=0

Ba,bPa,b(t) = D
ϵ(θ)
t wπ(t)

=

 D
ϵ(θ)
t xπ(t)

D
ϵ(θ)
t yπ(t)

D
ϵ(θ)
t yπ(t)

 ,
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here we have π ∈ {2i : i = 0, 1, 2, 3, . . .} and

Ba,b =⟨Dϵ(θ)
t wπ,Pa,b⟩m =

∫ m

0

D
ϵ(θ)
t wπ(t)Pa,b(t)dt,

B1
a,b =⟨Dϵ(θ)

t xπ,Pa,b⟩m =

∫ m

0

D
ϵ(θ)
t xπ(t)Pa,b(t)dt,

B2
a,b =⟨Dϵ(θ)

t yπ,Pa,b⟩m =

∫ m

0

D
ϵ(θ)
t yπ(t)Pa,b(t)dt, (6.2)

B3
a,b =⟨Dϵ(θ)

t zπ,Pa,b⟩m =

∫ m

0

D
ϵ(θ)
t zπ(t)Pa,b(t)dt.

Therefore,

D
ϵ(θ)
t w(t)−D

ϵ(θ)
t wπ(t) =

m∑
a=1

∞∑
b=2i

Ba,bPa,b(t),

=

 ∑m
a=1

∑∞
b=2i B

1
a,bPa,b(t)∑m

a=1

∑∞
b=2i B

2
a,bPa,b(t)∑m

a=1

∑∞
b=2i B

3
a,bPa,b(t)

 , i = 0, 1, 2, 3, . . . .

(6.3)

At this stage, we can first assume that state coordinates (x, y, z) all belong to
H1[0,m) which is a Sobolev space. This allows the exploitation of (6.1) to
propose a desired result as formulated in the following theorem:

Theorem 1. Having fixed ϵ(θ) in [0, 1] with θ ∈ R+, and considered (x, y, z) ∈
[H1[0,m)]3. If for π ∈ {2i : i = 0, 1, 2, 3, . . .}, the general variable order

ϵ(θ)− operator D
ϵ(θ)
t wπ(t) approximates D

ϵ(θ)
t w(t) via the HWNM, then such

an approximation is acceptable conditional to a tolerable upper bound defined
as follows.

∥Dϵ(θ)
t w(t)−D

ϵ(θ)
t wπ(t)∥2 ≤ ζגπ/(ϵ, θ),

where

,π(ϵג θ) =
1

3
√
2m

2(Γ (1−ϵ(θ)))(1−ϵ(θ))

(
(1−1π(1−ϵ(θ)))
(π

3
2 )22ϵ(θ)−1−1

+
(1−1π(3−2ϵ(θ)))

√
π22ϵ(θ)−1−3(π

3
2 )

) 1
2

, ζ∈R+.

Proof. From (6.3) and (6.1) the following equality holds

∥Dϵ(θ)
t w(t)−D

ϵ(θ)
t wπ(t)∥22

=∥Dϵ(θ)
t x−D

ϵ(θ)
t xπ∥2L2 + ∥Dϵ(θ)

t y −D
ϵ(θ)
t yπ∥2L2 + ∥Dϵ(θ)

t z −D
ϵ(θ)
t zπ∥2L2

=

∫ m

0

∣∣∣∣∣
m∑
a=1

∞∑
b=π

B1
a,bPa,b(t)

∣∣∣∣∣
2

dt+

∫ m

0

∣∣∣∣∣
m∑
a=1

∞∑
b=π

B2
a,bPa,b(t)

∣∣∣∣∣
2

dt

+

∫ m

0

∣∣∣∣∣
m∑
a=1

∞∑
b=π

B3
a,bPa,b(t)

∣∣∣∣∣
2

dt.
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Making use of the Fubini-Tonelli Theorem [7, 24] and the remark that for 0 ≤
a ≤ m, {Pa,b(t)}∞b=0 is a complete orthonormal family on [0,m) lead to

∥Dϵ(θ)
t w(t)−D

ϵ(θ)
t wπ(t)∥22 ≤

{ m∑
a=1

∞∑
n=0

2n+1∑
b=2n

∫ m

0

|B1
a,b|2dt

+

m∑
a=1

∞∑
n=0

2n+1∑
b=2n

∫ m

0

|B2
a,b|2dt+

m∑
a=1

∞∑
n=0

2n+1∑
b=2n

∫ m

0

|B3
a,b|2dt

}
,

(6.4)

where we used the fact that π belongs to the family {2n : n = 0, 1, 2, 3, · · · }),
and that Bι

a,b, ι = 1, 2, 3 is given by (6.2). Now we just have to express each
Bι

a,b via (6.2) and also via (3.5) and (3.6) which define Pa,b. Hence,

B1
a,b =

(
2

n
2 +1
)∫ π+1

2
2n +a

π
2n +a

Dϵ(θ)
τ x(τ)dτ −

∫ π+1
2n +a

π+1
2

2n +a

Dϵ(θ)
τ x(τ)dτ

 ,

B2
a,b =

(
2

n
2 +1
)∫ π+1

2
2n +a

π
2n +a

Dϵ(θ)
τ y(τ)dτ −

∫ π+1
2n +a

π+1
2

2n +a

Dϵ(θ)
τ y(τ)dτ

 ,

B3
a,b =

(
2

n
2 +1
)∫ π+1

2
2n +a

π
2n +a

Dϵ(θ)
τ z(τ)dτ −

∫ π+1
2n +a

π+1
2

2n +a

Dϵ(θ)
τ z(τ)dτ

 .

Using the Mean value theorem for definite integrals, there are two times

tx ∈
(

π
2n + a,

π+ 1
2

2n + a
)

and t̃x ∈
(

π+ 1
2

2n + a, π+1
2n + a

)
such that

B1
a,b =(

√
2)n

(
1

2n+1
Dϵ(θ)

τ x(tx)dτ − 1

2n+1
Dϵ(θ)

τ x(̃tx)dτ

)
=2(

−2−n
2 )

(
Dϵ(θ)

τ x(tx)dτ −Dϵ(θ)
τ x(̃tx)dτ

)
.

Using the definition of the variable order derivative (1.1) yields

|B1
a,b| = 2(

−2−n
2 )|Dϵ(θ)

τ x(tx)dτ −D
ϵ(θ)
τ x(̃tx)dτ |

= 2(
−2−n

2 ) 1
Γ (1−ϵ(θ)) |

∫ tx
0

(tx − ξ)
−ϵ(θ) dx(ξ)

dξ dξ −
∫ t̃x
0

(̃
tx − ξ

)−ϵ(θ) dx(ξ)
dξ dξ|.

Since x ∈ H1[0,m), there exists a real number ζx > 0 satisfying
∥ẋ (ξ) ∥ ≤ ζx for all ξ ∈ (0, tx) and ξ ∈ (0, t̃x). Therefore,

|B1
a,b| ≤ ζx2

(−2−n
2 ) 1

Γ (1−ϵ(θ)) |
∫ tx
0

(tx − ξ)
−ϵ(θ)

dξ −
∫ t̃x
0

(̃
tx − ξ

)−ϵ(θ)
dξ|. After

simplification, we obtain

|B1
a,b| ≤

ζx2
(−2−n

2 )

(1− ϵ(θ))Γ (1− ϵ(θ))
|tx(1−ϵ(θ)) − (̃tx)

(1−ϵ(θ))|

≤ ζx2
(−2−n

2 )

(1− ϵ(θ))Γ (1− ϵ(θ))
2n(1−ϵ(θ)),

(6.5)

knowing that 0 < ϵ(θ) ≤ 1, and where we have considered the interval of
definition for tx and t̃x given above. We can repeat the same analysis to show
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existence of ζy and ζz satisfying

|B2
a,b| ≤ ζy2

−(n
2

+1)
(1−ϵ(θ))Γ (1−ϵ(θ))2

n(1−ϵ(θ))

|B3
a,b| ≤ ζz2

(−2−n
2 )

(1−ϵ(θ))Γ (1−ϵ(θ))2
n(1−ϵ(θ)).

(6.6)

After setting ζ = max(ζx, ζy, ζz) and substituting (6.5), (6.6) into (6.4) we
obtain

∥Dϵ(θ)
τ w(t)−Dϵ(θ)

τ hπ(t)∥22 ≤ ζ2

((1− ϵ(θ))Γ (1− ϵ(θ)))
2

×

 m∑
a=1

∞∑
n=0

2n+1∑
b=2n

2(
−2−n

2 )2n(1−ϵ(θ))

2

≤ 9m2ζ2

(Γ (1− ϵ(θ)))2(1− ϵ(θ))2

×

((
2− 2π(1−ϵ(θ))

)
(π

3
2 )22ϵ(θ)−1−1

+

(
2− 2π(3−2ϵ(θ))

)
√
π22ϵ(θ)−1−3(π

3
2 )

)
≤ζ2

(
3
√
2m

2(Γ (1−ϵ(θ)))(1−ϵ(θ))

)2

×

( (
1− 1π(1−ϵ(θ))

)
(π

3
2 )22ϵ(θ)−1 − 1

+

(
1− 1π(3−2ϵ(θ))

)
√
π22ϵ(θ)−1 − 3(π

3
2 )

)
≤
(

ζ

,π(ϵג θ)

)2

,

and the proof is complete. ⊓⊔

Remark 1. For the states variable functions x, y, z ∈ L2[0,m), rather than
H1[0,m), we need additional conditions to formulate the theorem as seen in
the following corollary.

Corollary 1. Having fixed ϵ(θ) in [0, 1] with θ ∈ R+, and considered (x, y, z) ∈
[L2[0,m)]3. In addition, assume that d

dtx(t),
d
dty(t) and d

dtz(t) are continuous
and bounded on [0,m). If for π ∈ {2i : i = 0, 1, 2, 3, . . .}, the general variable

order ϵ(θ)− operator D
ϵ(θ)
t wπ(t) approximates D

ϵ(θ)
t w(t) via the HWNM, then

such an approximation is acceptable conditional to a tolerable upper bound
defined as follows.

∥Dϵ(θ)
t w(t)−D

ϵ(θ)
t wπ(t)∥2 ≤ ζ

,π(ϵג θ)
,

where

,π(ϵג θ) =
1

3
√
2m

2(Γ (1−ϵ(θ)))(1−ϵ(θ))

(
(1−1π(1−ϵ(θ)))
(π

3
2 )22ϵ(θ)−1−1

+
(1−1π(3−2ϵ(θ)))

√
π22ϵ(θ)−1−3(π

3
2 )

) 1
2

, ζ ∈ R+.

Proof. Since the interval [0,m) is not closed, this additional condition is nec-
essary to avoid the case where the states variable functions and their derivatives
finds themselves unbounded on [0,m) or not able to attain their bounds. The
rest of the proof follows the same route as the Theorem 1. ⊓⊔
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7 Numerical representations and interpretations

In this section, some numerical representations of the initial value problem
(3.1)–(1.5) are implemented using the scheme presented here above. The χ(y)−
and ϖ(z)− perturbation on the system (3.1) shall be showing up and this shall
allow a possible interpretation. We already have established that the dynamical
evolutions of the system will lead to attractors as illustrated by Figure 7. For
ϵ(θ) = 1, maintaining the parameter values at γ1 = 2, γ2 = 8, r = 4 and
considering γ3 = 1.2, the system (3.1)–(1.5) depicts an attractor represented
in Figure 10 (a) where the following initial conditions have been considered
x̂ = 0, ŷ = 2, ẑ = 1 and τ = 1, α = 0, ϖ(z) = 0.

Figure 10. Attractor representing (3.1)–(1.5) with initial conditions x̂ = 0, ŷ = 2, ẑ = 1.

For ϵ(θ) = 0.95θ, m = 2, M = 1 , keeping the other parameters unchanged
(γ1 = 2, γ2 = 8, r = 4, γ3 = 1.2) with the same initial conditions, x̂ =
0, ŷ = 2, ẑ = 1, we consider now τ = 3.2, α = 12. Taking ϖ(z) ̸= 0 by using
θ = 1.05, z̆ = −2.5, z1 = 4 and then

ϖ(z) = θ(1 + sgn(sgn(z − z̆)× (z − z̆)− (zl − z̆))),

we have the mirror representation depicted in Figure 10(b) and representing a
DA in a symmetrical structure facing each other with similar properties and
z = 1 as the symmetry line. In Figure 10(c), plotted for ϵ(θ) = 0.55θ the
symmetry line is moved to z = 0 but the DA in a symmetrical structure is
maintained.

Remark 2. 1. The attractor depicted in Figure 10(a) has two PAs and a total
of five equilibria including one saddle node: (0, 0, 10/3) and four stable points:
(∓0.6,∓0.3, 4).
2. Due to the mirror symmetrical structure (MSS), the attractor depicted in
Figure 10(b) has two pairs of PAs and a pair with five equilibria each, in the
form of two saddle nodes: [(0, 0, 10/3); (0, 0,−4/3)] and the eight stable points:
[(∓0.6,∓0.3, 4); (∓0.6,∓0.3,−2)]. A similar scenario holds for Figure 10(c)
which has two pairs of PAs and a pair of five equilibria including:
[(0, 0, 13/3); (0, 0,−13/3)] and the eight stable points:
[(∓0.6,∓0.3, 5); (∓0.6,∓0.3,−5)].

For ϵ(θ) = 1 and maintaining the parameter values at γ1 = 2, γ2 = 8 and
r = 4 and for the value of γ3 = 1.4, the system (3.1)–(1.5) depicts an attractor
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represented in Figure 11(a) where the following initial conditions have been
considered x̂ = 0, ŷ = 2, ẑ = 1 and τ = 1, α = 0, ϖ(z) = 0.

Figure 11. Attractor representing (3.1)–(1.5) with two limit cycles and a total of five
equilibria.

Now, for ϵ(θ) = 0.95θ, m = 2, M = 1 , keeping the parameters γ1 = 2, γ2 =
8, r = 4, γ3 = 1.4 and the same initial conditions, x̂ = 0, ŷ = 2, ẑ = 1, we also
consider τ = 3.2, α = 12. Using θ = 1.05, z̆ = −2.5, z1 = 4, gives ϖ(z) ̸= 0
and we have the mirror representation depicted in Figure 11(b) which depicts
a DA in a symmetrical structure facing each other with similar properties. The
axis z = 1 is its symmetry line. In Figure 11(c), plotted for ϵ(θ) = 0.55θ the
symmetry line is moved to z = 0 but the DA in a symmetrical structure is
maintained.

Remark 3. 1. Unlike Figure 10(a), the attractor depicted in Figure 11(a),
has two limit cycles and a total of five equilibria including one saddle node:
(0, 0, 2.8) and the four saddle focuses: (∓0.9,∓0.4, 4).
2. Due to the MSS, the attractor depicted in Figure 11(b) has two pairs of
limit cycles and a pair with five equilibria each including the two saddle nodes:
[(0, 0, 2.8); (0, 0,−0.8)] and the eight stable points:
[(∓0.9,∓0.4, 4); (∓0.9,∓0.4,−2)]. A similar scenario holds for Figure 11(c),
which has two pairs of PAs and a pair of five equilibria that include two saddle
nodes: [(0, 0, 3.8); (0, 0,−3.8)] and eight stable points:
[(∓0.9,∓0.4, 5); (∓0.9,∓0.4,−5)].

For ϵ(θ) = 1 and maintaining the parameter values at γ1 = 2, γ2 = 8
and r = 4 and for the value of γ3 = 2.9, the system (3.1)–(1.5) depicts an
attractor represented in Figure 12(a), where the initial conditions have been
maintained as in Figure 10(a) and τ = 1, α = 0, ϖ(z) = 0. Now, for ϵ(θ) =
0.95θ, m = 2, M = 1, and γ1 = 2, γ2 = 8, r = 4, γ3 = 2.9 and the same
initial conditions, we also consider τ = 3.2, α = 12. Using ϖ(z) ̸= 0 with
θ = 1.05, z̆ = −2.5, z1 = 4, lead to the mirror representation depicted in
Figure 12(b) which depicts a DA in a symmetrical structure facing each other
with similar properties. The axis z = 1 is its symmetry line. In Figure 12(c),
plotted for ϵ(θ) = 0.55θ the symmetry line is moved to z = 0 but the DA in a
symmetrical structure is maintained.

Remark 4. 1. Unlike Figure 10(a), the representation depicted in Figure 12(a)
has two SAs and a total of five equilibria including one saddle node: (0, 0, 1.4)
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Figure 12. Attractor representing (3.1)–(1.5) two SAs and a total of five equilibria.

and the four saddle focuses: (∓1.9,∓1, 4).
2. Due to the MSS, the attractor depicted in Figure 12(b) has two pairs of
limit cycles and a pair with five equilibria each including the two saddle nodes:
[(0, 0, 1.4); (0, 0, 0.6)] and the eight stable points: [(∓1.9,∓1, 4); (∓1.9,∓1,−2)].
A similar scenario holds for Figure 12(c), which has two pairs of PAs and a
pair of five equilibria that include two saddle nodes: [(0, 0, 2.4); (0, 0,−2.4)] and
eight stable points: [(∓1.9,∓1, 5); (∓1.9,∓1,−5)].

For ϵ(θ) = 1 and maintaining the parameter values at γ1 = 4, γ2 = 9
and γ3 = 4 and for the value of r = 20, the system (3.1)–(1.5) depicts CoAs
represented in Figure 13(a), where the initial conditions have been maintained
as in Figure 10(a) and τ = 1, α = 0, ϖ(z) = 0. For ϵ(θ) = 0.95θ, m = 2, M =
1, we also consider τ = 3.2, α = 12. Using ϖ(z) ̸= 0 with θ = 1.05, z̆ =
−2.5, z1 = 4, giving

ϖ(z) = θ(1 + sgn(sgn(z − z̆)× (z − z̆)− (zl − z̆))).

Then, we have the mirror representation depicted in Figure 13(b) which depicts
two pairs of CoAs in a symmetrical structure facing each other with similar
properties. The axis z = 5.5 is its symmetry line. In Figure 13(c), plotted for
ϵ(θ) = 0.55θ the symmetry line is moved to z = 0 but the structure of the two
pairs of CoAs in a symmetrical representation is maintained.

Figure 13. A CoAs representing (3.1)–(1.5) with
ϖ(z) = θ(1 + sgn(sgn(z − z̆)× (z − z̆)− (zl − z̆))).
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8 Programmed hardware implementation via FPGA
development board

As the global trend in the world is becoming more and more oriented to the
digital hardware circuit, many authors have opposed it to the analog hardware
circuit, saying that the former provide us with a robust control and a reliable
stability, two factors very important is security technologies [17,23]. Moreover,
FPGA implementation has also been applied in connecting people and smart
devices within the so-called Internet of things [19]. Hence, for that reason, we
use a FPGA which has been reprogrammed and interconnected to meet the
reliable functionality of our application. The basic principle of that flow dia-
gram is shown in Figure 14. This gives a hardware block of the digital circuit

Figure 14. Representation of the basic principle for the implementation using the FPGA
development board.

with the FPGA Developer-board with a low-power but high-performance Al-
tera Cyclone III EP3C16 FPGA, a device offering about 15,408 Les, 56 M9K
Embedded memory blocks and 504K total RAM bits. It also contains a single-
channel, voltage and current output digital-to-analog converter (DAC) of series
AD5758. The ultimate goal is to generate DAs or multiple attractors with their
possible mirror images and perturbed mirror representations via the variable
order operator. Using the DAC converter, we can therefore easily transform
the digital signals into the analog signals that is directed into the RIGOL dig-
ital oscilloscope which records and keeps the resulting phase diagrams. For
concerns about the level of unwanted disturbance in the signals and any al-
teration of their original shape, we can analyze the intermodulation distortion
(IND), [12,13,22] where we consider an input signal Iϵ,θ(t) which contains only
two frequency components at ρ1ϵ,θ and ρ2ϵ,θ and taking the form

Iϵ,θ(t) = A1 sin(2πρ
1
ϵ,θt+ β1

ϵ,θ) +A2 sin(2πρ
2
ϵ,θt+ β2

ϵ,θ)

with Ai and βi respectively representing the amplitudes and phases of each of
the components. The output signal will include the original two frequencies
of and also their linear combinations (LCs). Graphs (a) to (h) in Figure 15
summarize the level of such disturbance IND(θ) for our mirror model with
regard to the parameters values θ = 0.3, 0.5, 0.9, 1, 1.05, 2, 2.5, 3 respectively.
As expected the results coincide with those found in the stability and entropy
analysis (Sections 4 and 5).
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Figure 15. Level of unwanted signal’s disturbance: (a) θ = 0.3, (b) θ = 0.5, (c) θ = 0.9,
and (d) θ = 1.

First of all we start with the model (2.1) easily solvable using the Crank–
Nicolson method [6] to get the discretized solution by setting for x, y and z the
numerical schemes for the model by taking tj = jτ with 0 ≤ j ≤ N, Nτ = T.
The number N represents the grid points while t is the time and τ the step
size. Hence, the discretization of first order differentiation found in (2.1) using
the Crank–Nicolson approach gives


dx(t)
dt =

x(tj+1)−x(tj)
2τ ,

dy(t)
dt =

y(tj+1)−y(tj)
2τ ,

dz(t)
dt =

z(tj+1)−z(tj)
2τ .

Substituting this system into (2.1) and considering the τ = 1/100000 and
initial conditions (x̂, ŷ, ẑ) = (0, 2, 1), approximated solutions (xj , yj , zj), j ∈ N
are obtained. The following step is to sent to the DAC, these solutions for time
series conversion, which yields the phase orbit graphs depicted by the digital
output represented by the Rigol oscilloscope as shown in Figures 16 and 17(a).
We can notice that it is the same attractor done in Figure 7(b). Turning now to
the system (3.8) with the general variable order ϵ(θ) operator, we get the initial
conditions set at x̂ = 0, ŷ = 2, ẑ = 1 and τ = 1, α = 0, ϖ(z) = 0, ϖ(z) ̸= 0
with z̆ = −2.5, z1 = 4. Repeating the same time series conversion described
above using the DAC yields the phase orbit with mirroring structure as depicted
in Figures 16 and 17. These representations are the hardware implementations
corresponding respectively to the same attractors done in Figures 11(a), 11(b),
12(a), 12(c) and 13(b).

Figure 16. Screenshot of the system assembly and devices used during implementation
with the FPGA development board.
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Figure 17. Representation of the multiple attractors before and after mirror
perturbation using the FPGA implementation.

9 Conclusions

Based on perturbation approaches, we have inserted the duality-symmetric
and the mirror symmetry conversion processes into a variable order dynamical
system to finally obtain a non-linear variable order and modified initial value
problem. It is represented by the electric circuit diagram with three input
seen in Figure 2. We have then solved the perturbed model using the HWNM.
Numerical simulations obtained from the implemented scheme have revealed
existence of various attractors’ types (PAs, limit cycles, SAs, DA, CoAs) and
their mirror reflections. The whole picture has shown a symmetrical structure
where attractors face each other with similar properties and a symmetry line
between them. The circuit implementation using a Field Programmable Gate
Array (FPGA) has been performed and correspond to the expected results
found mathematically. These results provide us with an alternative options
(either analytical or via circuit implementation) capable of creating multiple
attractors with their mirror symmetrical reflections, while preserving the initial
properties. Other types of non-linear perturbations and alternative circuit
implementation such as digital signal processing (DSP) implementation, may
be studied on similar models as doors are now open for it.
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state feedback control. Physica A: Statistical Mechanics and its Applications,
364:103–110, 2006. https://doi.org/10.1016/j.physa.2005.09.039.

[5] A. Chithra and I. Raja Mohamed. Multiple attractors and strange nonchaotic
dynamical behavior in a periodically forced system. Nonlinear Dynamics,
105(4):3615–3635, 2021. https://doi.org/10.1007/s11071-021-06608-8.

[6] J. Crank and P. Nicolson. A practical method for numerical evalua-
tion of solutions of partial differential equations of the heat-conduction
type. Advances in Computational Mathematics, 6(1):207–226, 1996.
https://doi.org/10.1007/BF02127704.

[7] G. Fubini. Opere scelte. II. Cremonese, Roma, 1958.

[8] V. Gallese, P.F. Ferrari and M.A. Umiltà. The mirror matching system: A shared
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