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Abstract. In this work, we begin by introducing a new notion of

coupled closed fractional boundary conditions to study a class of

nonlinear sequential systems of Caputo fractional differential equa-

tions. The existence and uniqueness of solutions for the class of

systems is proved by applying Banach contraction principle. The

existence of at least one solution is then accomplished by apply-

ing Schauder fixed point theorem. The Ulam Hyers stability, with

a limiting-case example, is also discussed. In a second part of our

work, we use the tanh method to obtain a new travelling wave solu-

tion for the coupled system of Burgers using time and space Khalil

derivatives. By bridging these two aspects, we aim to present an

understanding of the system’s behaviour.
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1 Introduction

Coupled systems of second-order ordinary differential equations (CSSODEs)
play a crucial role in modeling a variety of physical, biological, and engineering
phenomena. These systems consist of two ordinary equations whose solutions
are interdependent, often requiring simultaneous solutions to describe the dy-
namics of the system comprehensively. A common application of the CSSODEs
can be found in the study of mechanical vibrations, where the equations govern
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the motion of interconnected mechanical components. Similarly, in electrical
engineering, these systems describe the behavior of circuits with multiple in-
teracting components, such as inductors and capacitors [3, 9, 18].

Coupled systems involving Caputo derivatives (CSCDs) have garnered sig-
nificant attention ( by studying existence of solutions and their Ulam-Hyers
stabilities) in recent years due to their applicability in modeling complex phe-
nomena in various scientific and engineering disciplines, see [7, 10, 24, 28] for
more details. Other important papers dealing with fixed point theorems, and
Ulam–Hyers stability can be found in [20,21,22].

One crucial aspect in the analysis of the CSCDs is the consideration of
boundary conditions. While the literature extensively covers classical boundary
conditions, a novel contribution has emerged in the form of closed boundary
conditions, see the work [15, 23]. Building upon the well-established concept
of closed boundary conditions, our research seeks to delve deeper into their
application in the domain of CSCDs.

Closed boundary conditions, in their traditional form, play a pivotal role in
defining the behaviour of a system within a specified domain. These conditions
encapsulate the interactions between the system and its surroundings, ensuring
a well-posed problem with a clear set of constraints at the boundaries, see
[24]. However, as we navigate the landscape of fractional calculus and Caputo
derivatives, the traditional closed boundary conditions may require adaptation
to address the unique characteristics introduced by fractional order derivatives.

This paper focuses on analyzing a class of coupled differential systems with
derivatives close to two in the sense of the Caputo derivative. This focus lies
also in introducing a novel concept termed “coupled closed fractional boundary
conditions”. This innovation aims to capture the intricate interplay between
fractional order derivatives and boundary effects in differential systems. The
coupled closed fractional boundary conditions provide a more comprehensive
framework for understanding and solving differential equations involving Ca-
puto derivatives, enriching the mathematical tools available for researchers and
practitioners alike.

By shedding light on this novel concept, our work contributes to the evolving
field of fractional derivatives, paving the way for a more nuanced understanding
of differential systems with sequential Caputo derivatives and their associated
boundary conditions. This nuanced understanding is critical for advancing
both theoretical and applied aspects of fractional differential equations. For
instance, in [4], the authors introduced an important concept of coupled closed
boundary conditions to investigate the existence and uniqueness of solutions
for a system of nonlinear sequential fractional differential equations. This work
complements our research by providing a foundational approach to handling
complex boundary conditions in fractional systems, thereby enhancing the ap-
plicability and robustness of such problems in various scientific and engineering
disciplines. The sequential system of [4] is the following:

{
cDq1φ(t) = ρ1(t, φ(t), ψ(t)), t ∈ J = [0, T ] ,
cDq2ψ(t) = ρ2(t, φ(t), ψ(t)), t ∈ J = [0, T ] ,
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complemented with the conditions{
φ(T ) = α1ψ(0) + β1Tψ

′(0), Tφ′(T ) = γ1ψ(0) + δ1Tψ
′(0),

ψ(T ) = α2φ(0) + β2Tφ
′(0), Tψ′(T ) = γ2φ(0) + δ2Tφ

′(0),

where, cDq1 ,cDq2 denote the Caputo fractional derivatives of order q1,q2,
1 < q1, q2 < 2 respectively, α1, α2, β1, β2, γ1, γ2, δ1, δ2,∈ R, T > 0, and
ρ1, ρ1 ∈ C(J × R× R,R).

In another paper, B. Ahmed et al. [2] proposed new nonlocal variant of
closed boundary conditions and studied an integro-differential problem con-
taining a Caputo fractional derivative and mixed Riemann–Liouville type inte-
gral nonlinearities supplemented. Specifically, the authors explored the criteria
ensuring existence of solutions for their studied problem.

Also, in [6] the authors investigated the existence, uniqueness, stability and
approximate solutions of a thermostat fractional differential equation involving
ABC derivative. Very recently, A. Lamamri et al. [13] investigated a more
general couple Caputo sequential differential system by incorporating fractional
derivatives in some of the initial conditions. The authors focused on proving
the existence of unique solutions for the system.

In this paper, we have to investigate two parts. In the first part, motivated
by the above cited papers on CSSODEs and by the paper of [4], we study the
existence of solutions and their Ulam-Hyers stability for the following coupled
problem: {

Dα1Dα2x(t) = f1(t, x(t), y(t)),
Dβ1Dβ2y(t) = f2(t, x(t), y(t)),

(1.1)

under the coupled closed fractional boundary conditions:
x(1) = A1y(0) +B1D

β∗
y(0),

Dα∗
x(1) = ε1y(0) + ζ1D

β∗
y(0),

y(1) = A2x(0) +B2D
α∗
x(0),

Dβ∗
y(1) = ε2x(0) + ζ2D

α∗
x(0).

(1.2)

We impose the following conditions:
The derivatives Dα

i , D
β
i , D

β∗
, Dα∗

are in the sense of Caputo.
* The parameters A1, B1, ε1, ζ1, A2, B2, ε2, ζ2 ∈ R.
** To guarantee the absence of semi-group and commutativity properties on

the considered Caputo derivatives and to obtain the above closed conditions
of Alsaadi et al. as a particular case, we suppose that the following condi-
tions are valid: 0 < α1, β1, α2, β2 ⩽ 1, α∗ = min{α1, α2}, β∗ = min{β1, β2},
β1 + β2 > 1, α1 + α2 > 1.

*** We also suppose that the two functions f1, f2 are continuous over J×R2.

The reader can see clearly that our problem is more general than the above
two problems of [4]. Another important motivation is in introduction of the
coupled closed fractional boundary conditions, which lead to a significant differ-
ence between our system and the associated integral representations presented
in [4]. Another important novelty of our problem is given by the sequential
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concept on the derivatives of the left hand side of our problem. The absence of
the semi group and the commutativity on the derivatives of our system is also
to be noted in this study.

In the second part, we focus on the application of the tanh method; we
employ this technique to uncover a new traveling wave solution for a system of
Burgers equations, involving time and space conformable derivatives in accor-
dance with Khalil’s framework. The tanh method is particularly effective for
solving nonlinear differential equations, allowing us to find exact solutions by
transforming the original problem into a simpler form.

This approach highlights the versatility and robustness of the tanh method
in dealing with complex systems that are influenced by fractional derivatives.
In particular, the use of conformable derivatives as defined by Khalil provides
a more flexible framework to model physical phenomena, as these derivatives
generalize the concept of differentiation to non-integer orders, offering more
accurate descriptions of processes with memory and hereditary properties.

By integrating these two distinct yet interconnected aspects, our study aims
to present to the reader and to deliver a comprehensive understanding of the
system’s behavior from a holistic perspective. The theoretical groundwork
laid by the Caputo derivatives in the first part is effectively complemented by
the practical applications demonstrated through the tanh method, via Khalil
approach, in the second part. This synthesis underscores the critical role of
fractional calculus in expanding classical mathematical approaches to tackle
more intricate and realistic problems. By doing so, we significantly enhance our
capability to analyze nonlinear systems with fractional derivatives, providing
valuable insights and broader applicability in various scientific and engineering
contexts.

The paper is arranged as follows: In Section 2, we recall some background
notions that will be used later. Section 3 is concerned with the main exis-
tence results for the class of coupled systems equipped with introduced closed
conditions. The Ulam-Hyers stability of the solutions for the class of systems
is investigated in the same Section. Some detailed examples are discussed in
Section 4. In Section 5, we employ the tanh technique to uncover a new trav-
elling wave solution for a coupled system of Burgers equations, incorporating
conformable derivatives in the sense of Khalil. At the end a conclusion follows.

2 Preliminaries on fractional calculus

We introduce some definitions and lemmas on fractional calculus. We invite
the reader the see [12,17] for more informations on these concepts.

2.1 Definitions and lemmas

Definition 1. For any α > 0 and any continuous function f : J 7−→ R, the
Riemann-Liouville integral is defined by:

Iαf(t) =
1

Γ (α)

∫ t

0

(t− τ)α−1f(τ)dτ.
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Definition 2. If f ∈ Cn(J,R), such that n − 1 < α ≤ n, then the Caputo
derivative is defined by:

Dαf(t) = In−α d
n

dtn
(f(t)).

The following two lemmas will be used in the present paper.

Lemma 1. Let n ∈ N∗, and n−1 < α ≤ n. Then, the homogeneous differential
equation Dαy(t) = 0; t ∈ J admits as general solution the function y given by

y(t) =

n−1∑
i=0

cit
i, ci ∈ R.

Lemma 2. Let n ∈ N∗ and n− 1 < α ≤ n. Then, the property

IαDαy(t) = y(t) +

n−1∑
i=0

cit
i, ci ∈ R

is valid.

Let us now pass to prove the following equivalence:

Lemma 3. Let G1 and G1 be two continuous functions over J. Suppose also
that 0 < α1, β1, α2, β2 ⩽ 1, α∗ = min{α1, α2}, β∗ = min{β1, β2}, β1 + β2 >
1, α1+α2 > 1, and A1, B1, ε1, ζ1, A2, B2, ε2, ζ2 ∈ R. Then, the linear differential
problem 

Dα1Dα2x(t) = G1(t), Dβ1Dβ2y(t) = G2(t),

x(1) = A1y(0) +B1D
β∗
y(0),

Dα∗
x(1) = ε1y(0) + ζ1D

β∗
y(0),

y(1) = A2x(0) +B2D
α∗
x(0),

Dβ∗
y(1) = ε2x(0) + ζ2D

α∗
x(0),

is equivalent to the following integral problem

(x(t), y(t))

=

(
Iα1+α2G1(t) +

[
Γ (α2 − α∗ + 1)

(
ε1
∆

+
ε1φ∆

−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2G1(1)

− Γ (α2 − α∗ + 1)

(
ε1
[
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

]
+ 1

)
Iα1+α2−α∗

G1(1)

+ ε1∆
−1Γ (α2 − α∗ + 1)

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

G2(1)
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+
ε1∆

−1φΓ (α2 − α∗ + 1)

ε2Γ (β2 − β∗ + 1)
Iβ1+β2G2(1)

]
tα2

Γ (α2 + 1)
+

(
φ∆−1

ε2Γ (β2 − β∗ + 1)

)

× Iα1+α2G1(1)−

(
φ∆−1ν

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2−α∗

G1(1) +

(
1

ε2

+
(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

G2(1) +
φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2G2(1),

Iβ1+β2G2(t) +

[
φ∆−1Iα1+α2G1(1)− φ∆−1νIα1+α2−α∗

G1(1)

+
(∆−1 −A2)φ

ε2
Iβ1+β2−β∗

G2(1) + φIβ1+β2G2(1)

]
tβ2

Γ (β2 + 1)

+

(
∆−1 +

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2G1(1)−

(
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

)

× Iα1+α2−α∗
G1(1) +∆−1

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

G2(1)

+
∆−1φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2G2(1)

)
,

where

ν :=
Γ (α2 − α∗ + 1)

Γ (α2 + 1)
, ∆ := A1 − ε1ν ̸= 0,

φ :=
( A2 −∆−1

ε2Γ (β2 − β∗ + 1)
− 1

Γ (β2 + 1)

)−1

.

Proof. Applying Lemma 2 to the above linear problem, we can write

(x(t), y(t))

= (Iα1+α2G1(t) + c0
tα2

Γ (α2 + 1)
+ c1, I

β1+β2G2(t) + k0
tβ2

Γ (β2 + 1)
+ k1).

Consequently, we obtain

Dα∗
x(t) =Iα1+α2−α∗

G1(t) + c0t
α2−α∗

/Γ (α2 − α∗ + 1),

Dβ∗
y(t) =Iβ1+β2−β∗

G2(t) + k0t
β2−β∗

/Γ (β2 − β∗ + 1).

In the above four expressions of x(t), y(t), Dβ∗
y(t), Dα∗

x(t), by taking t = 0,
then t = 1, we obtain the following quantities with four unknown parameters
k1, c1, k0, c0, that need to be determined:

y(0) = k1, x(0) = c1, D
β∗
y(0) = 0, Dα∗

x(0) = 0,

x(1) = Iα1+α2G1(1) + c0
1

Γ (α2 + 1)
+ c1,
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y(1) = Iβ1+β2G2(1) + k0/Γ (β2 + 1) + k1,

Dα∗
x(1) = Iα1+α2−α∗

G1(1) + c0/Γ (α2 − α∗ + 1),

Dβ∗
y(1) = Iβ1+β2−β∗

G2(1) + k0/Γ (β2 − β∗ + 1).

Thanks to our imposed conditions, we obtain the following four values for the
above unknown parameters:

c0 = ε1Γ (α2 − α∗ + 1)
(
∆−1 +

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2G1(1)

− Γ (α2 − α∗ + 1)

(
ε1
[
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

]
+ 1

)
Iα1+α2−α∗

G1(1)

+ ε1∆
−1Γ (α2 − α∗ + 1)

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

G2(1)

+
ε1∆

−1φΓ (α2 − α∗ + 1)

ε2Γ (β2 − β∗ + 1)
Iβ1+β2G2(1),

c1 =

(
φ∆−1

ε2Γ (β2−β∗ + 1)

)
Iα1+α2G1(1)−

(
φ∆−1ν

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2−α∗

G1(1)

+

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

G2(1)+
φ

ε2Γ (β2−β∗+1)
Iβ1+β2G2(1),

k0 =φ∆−1Iα1+α2G1(1)− φ∆−1νIα1+α2−α∗
G1(1) +

(∆−1 −A2)φ

ε2
Iβ1+β2−β∗

×G2(1) + φIβ1+β2G2(1),

k1 =

(
∆−1+

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2G1(1)−

(
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

)
× Iα1+α2−α∗

G1(1) +∆−1

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

×G2(1) +
∆−1φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2G2(1).

The first implication of the equivalence is thus proved.
The second implication is trivial and hence, we omit it. ⊓⊔

2.2 Fixed points of Banach spaces

Since we use fixed point theory to study the above problem, so to be able to
do this, we need to introduce the following notions:

1. We consider the space S × S := {(x, y) : x, y ∈ C(J,R)}.

2. Then, over this space, we take the sum norm
∥∥(x, y)∥∥

S×S
= ∥x∥∞ +

∥y∥∞ , where, ∥x∥∞ = sup
t∈J

|x(t)| , ∥y∥∞ = sup
t∈J

|y(t)| .
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3. Also, we take the nonlinear coupled operator Q : S × S → S × S:
Q (x, y) =

(
Q1(x, y), Q2(x, y)

)
, such that, for any t ∈ J , the components

of the operator are given by the following two expressions:

Q1(x, y)(t) = Iα1+α2f1(t, x(t), y(t)) +

[
ε1Γ (α2 − α∗ + 1)

(
∆−1

+
φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2f1(1, x(1), y(1))− Γ (α2 − α∗ + 1)

×
(
ε1
[
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

]
+ 1

)
Iα1+α2−α∗

f1(1, x(1), y(1))

+ ε1∆
−1Γ (α2 − α∗ + 1)

(
1

ε2
+

(∆−1 −A2)

ε22

φ

Γ (β2 − β∗ + 1)

)
× Iβ1+β2−β∗

f2(1, x(1), y(1)) +
ε1∆

−1φΓ (α2 − α∗ + 1)

ε2Γ (β2 − β∗ + 1)

× Iβ1+β2f2(1, x(1), y(1))

]
tα2

Γ (α2 + 1)
+

(
φ∆−1

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2

× f1(1, x(1), y(1))−
(

φ∆−1ν

ε2Γ (β2−β∗ + 1)

)
Iα1+α2−α∗

f1(1, x(1), y(1))

+

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

f2(1, x(1), y(1))

+
φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2f2(1, x(1), y(1)),

Q2(x, y)(t) = Iβ1+β2f2(t, x(t), y(t)) +

[
φ∆−1Iα1+α2f1(1, x(1), y(1))

− φ∆−1νIα1+α2−α∗
f1(1, x(1), y(1)) +

(∆−1 −A2)φ

ε2

× Iβ1+β2−β∗
f2(1, x(1), y(1)) + φIβ1+β2f2(1, x(1), y(1))

]
tβ2

Γ (β2 + 1)

+

(
∆−1 +

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
× Iα1+α2f1(1, x(1), y(1))

−

(
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2−α∗

f1(1, x(1), y(1))

+∆−1

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
× Iβ1+β2−β∗

f2(1, x(1), y(1))

+
∆−1φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2f2(1, x(1), y(1)).

The reader can remark that the fixed points of the above coupled operator are
the vector solutions of (1.1)–(1.2).



A class on nonlinear systems with travelling waves 241

2.3 Hypotheses

We consider the following hypotheses:
(H1) : There exist positive constants ιf1,1, ιf1,2, ιf2,1, ιf2,2, such that for any
t ∈ J and for any yi, y

∗
i ∈ R, the inequalities

|f1(t, y1, y2)− f1(t, y1
∗, y2

∗)| ≤
2∑

i=1

ιf1,i|yi − yi
∗|,

|f2(t, y1, y2)− f2(t, y1
∗, y2

∗)| ≤
2∑

i=1

ιf2,i|yi − yi
∗|

are valid, such that

µ := max(ιf1,1, ιf1,2), µ
∗ := max(ιf2,1, ιf2,2).

(H2) : There exist positive constants Ui, Vi,Wi; i = 1, 2, such that

|fi(t, x, y)| ≤ Ui|x|+ Vi|y|+Wi, for t ∈ J, x, y ∈ R.

The following quantities will be used in the proof of our results:

δ =
1

Γ (α1 + α2 + 1)
, δ∗ =

1

Γ (α1 + α2 − α∗ + 1)
, ϑ =

1

Γ (β1 + β2 + 1)
,

ϑ∗=
1

Γ (β1+β2−β∗ + 1)
, ς1=

φ∆−2

ε2Γ (β2−β∗+1)
, ς2=

1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)
,

Υ = µ
(
δ +

[
|ε1|Γ (α2 − α∗ + 1)|∆−1 + ς1|δ + Γ (α2 − α∗ + 1)

×
(
|ε1|[ν|∆−1|+ |ς1|] + 1

)
δ∗ + |ε1∆−1|Γ (α2 − α∗ + 1)|ς2|ϑ∗ +

|ε1∆ς1|
δ∗

ϑ
]

× 1

Γ (α2 + 1)
+ |∆ς1|δ + ν|∆ς1|δ∗ + |ς2|ϑ∗ +

|φ|
|ε2|Γ (β2 − β∗ + 1)

ϑ
)
,

Υ ∗ = µ∗
(
ϑ+

[
|φ∆−1|(δ + νδ∗) +

|(∆−1 −A2)φ|
|ε2|

ϑ∗

+ |φ|ϑ
] 1

Γ (β2 + 1)
+ (|∆−1|+ |ς1|)(δ + νδ∗) + |∆−1ς2|ϑ∗ + |∆ς1|ϑ

)
.

3 Main results

3.1 Application of Banach contraction principle

Using (H1), we prove the following result as a consequence of Banach fixed
point theorem.

Theorem 1. If the functions f1 and f2 satisfy (H1), with Ω < 1;Ω = Υ +Υ ∗,
then, system (1.1)–(1.2) has a unique solution.

Proof. First of all, it trivial to prove the stability of the above Banach space
by Q. This point is thus omitted in the proof of this theorem. But, we have
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to prove the contraction of the operator. To do this, let consider x, y ∈ S × S.
So, some easy calculations and by passing to the maximum over J will allow
us to obtain the following two estimates on Qi, i = 1, 2 :∥∥Q1(y1, y2)−Q1(x1, x2)

∥∥
∞ ≤ µ

(
δ +

[
|ε1|Γ (α2 − α∗ + 1)|∆−1 + ς1|δ

+ Γ (α2−α∗+1)
(
|ε1|[ν|∆−1|+ |ς1|]+1

)
δ∗ + |ε1∆−1|Γ (α2 − α∗ + 1)|ς2|ϑ∗

+
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2 + 1)
+ |∆ς1|δ + ν|∆ς1|δ∗ + |ς2|ϑ∗

+
|φ|

|ε2|Γ (β2 − β∗ + 1)
ϑ
)∥∥(y1, y2)− (x1, x2)

∥∥
S×S

,

∥∥Q2(y1, y2)−Q2(x1, x2)
∥∥
∞ ≤ µ∗

(
ϑ+
[
|φ∆−1|(δ+νδ∗)+ |(∆−1 −A2)φ|

|ε2|
ϑ∗

+ |φ|ϑ
] 1

Γ (β2 + 1)
+ (|∆−1|+ |ς1|)(δ + νδ∗) + |∆−1ς2|ϑ∗ + |∆ς1|ϑ

)
×
∥∥(y1, y2)− (x1, x2)

∥∥
S×S

.

Consequently, the following two inequalities∥∥Q1(y1, y2)−Q1(x1, x2)
∥∥
∞ ≤ Υ

∥∥(y1, y2)− (x1, x2)
∥∥
S×S

,∥∥Q2(y1, y2)−Q2(x1, x2)
∥∥
∞ ≤ Υ ∗

∥∥(y1, y2)− (x1, x2)
∥∥
S×S

are valid. Then, we have∥∥Q(y1, y2)−Q(x1, x2)
∥∥
S×S

≤ Ω
∥∥(y1, y2)− (x1, x2)

∥∥
S×S

.

The contraction of the above coupled operator is thus achieved. ⊓⊔

3.2 Application of Schauder fixed point theorem

Under the weaker hypothesis (H2), we can establish the following existence re-
sult as a consequence of Schauder fixed point theorem. The following quantities
will be needed:

ð1 =δ(U1 + V1) +
[
(U1 + V1)|ε1|Γ (α2 − α∗ + 1)|∆−1

+ (U1 + V1)ς1|δ + Γ (α2 − α∗ + 1)
(
|ε1|[ν|∆−1|+ |ς1|] + 1

)
δ∗

+ (U2 + V2)|ε1∆−1|Γ (α2 − α∗+1)|ς2|ϑ∗+(U2+V2)
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2 + 1)

+ (U1 + V1)|∆ς1|δ + (U1 + V1)ν|∆ς1|δ∗ + (U2 + V2)|ς2|ϑ∗

+ (U2 + V2)
|φ|

|ε2|Γ (β2 − β∗ + 1)
ϑ,

ð2 =(U2 + V2)ϑ+
[
(U1 + V1)|φ∆−1|(δ + νδ∗) + (U2 + V2)

×
( |(∆−1 −A2)φ|

|ε2|
ϑ∗+|φ|ϑ

)] 1

Γ (β2 + 1)
+ (U1+V1)(|∆−1|+|ς1|)(δ + νδ∗)
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+ (U2 + V2)
(
|∆−1ς2|ϑ∗ + |∆ς1|ϑ

)
,

τ1 =δ[W1]+
[
[W1]|ε1|Γ (α2 − α∗ + 1)|∆−1

+ [W1]ς1|δ + Γ (α2 − α∗ + 1)
(
|ε1|[ν|∆−1|+ |ς1|] + 1

)
, δ∗

+ [W2]|ε1∆−1|Γ (α2 − α∗ + 1)|ς2|ϑ∗ + [W2]
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2 + 1)

+ [W1]|∆ς1|δ + [W1]ν|∆ς1|δ∗ + [W2]|ς2|ϑ∗ + [W2]
|φ|

|ε2|Γ (β2 − β∗ + 1)
ϑ,

τ2 =[W2]ϑ+
[
[W1]|φ∆−1|(δ+νδ∗)+[W2]

( |(∆−1−A2)φ|
|ε2|

ϑ∗+|φ|ϑ
)] 1

Γ (β2 + 1)

+ [W1](|∆−1|+ |ς1|)(δ + νδ∗) + [W2]
(
|∆−1ς2|ϑ∗ + |∆ς1|ϑ

)
.

Theorem 2. Assume that (H2) is satisfied and ð1+ð2 < 1. Then, (1.1)–(1.2)
has at least one solution defined over J.

Proof. We need to prove that Q has a fixed point into a subset of the form

BR :=
{
(x1, x2) ∈ S × S;

∥∥(x1, x2)∥∥S×S
≤ R

}
,

for a suitable positive R. For (y1, y2) ∈ BR, we can write∥∥Q1(y1, y2)
∥∥
∞ ≤ δ[(U1 + V1)R+W1] +

[
[(U1 + V1)R+W1]|ε1|

× Γ (α2−α∗+1)|∆−1|+[(U1 + V1)R+W1]ς1|δ+Γ (α2−α∗ + 1)
(
|ε1|[ν|∆−1|

+ |ς1|]+1
)
δ∗+[(U2+V2)R+W2]|ε1∆−1|Γ (α2−α∗+1)|ς2|ϑ∗ + [(U2 + V2)R

+W2]
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2 + 1)
+ [(U1 + V1)R+W1]|∆ς1|δ + [(U1 + V1)R

+W1]ν|∆ς1|δ∗ + [(U2 + V2)R+W2]|ς2|ϑ∗ + [(U2 + V2)R+W2]

× |φ|
|ε2|Γ (β2 − β∗ + 1)

ϑ

≤
(
δ(U1 + V1) +

[
(U1 + V1)|ε1|Γ (α2 − α∗ + 1)|∆−1|+ (U1 + V1)ς1|δ

+ Γ (α2−α∗+1)
(
|ε1|[ν|∆−1|+ |ς1|] + 1

)
δ∗ + (U2 + V2)|ε1∆−1|Γ (α2 − α∗ + 1)

× |ς2|ϑ∗+(U2+V2)
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2+1)
+(U1+V1)|∆ς1|δ + (U1 + V1)ν|∆ς1|δ∗

+ (U2 + V2)|ς2|ϑ∗ + (U2 + V2)
|φ|

|ε2|Γ (β2 − β∗ + 1)
ϑ
)
R+

(
δW1 +

[
W1|ε1|

× Γ (α2−α∗+1)|∆−1|+[W1]ς1|δ+Γ (α2−α∗+1)
(
|ε1|[ν|∆−1|+ |ς1|] + 1

)
δ∗

+ [W2]|ε1∆−1|Γ (α2−α∗+1)|ς2|ϑ∗+[W2]
|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2+1)
+[W1]|∆ς1|δ

+ [W1]ν|∆ς1|δ∗ + [W2]|ς2|ϑ∗ + [W2]
|φ|

|ε2|Γ (β2 − β∗ + 1)
ϑ
)
≤ ð1R+ τ1,
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and∥∥Q2(y1, y2)
∥∥
∞ ≤ [(U2 + V2)R+W2]ϑ+

[
[(U1+V1)R+W1]|φ∆−1|(δ + νδ∗)

+ [(U2+V2)R+W2]
( |(∆−1−A2)φ|

|ε2|
ϑ∗+|φ|ϑ

)] 1

Γ (β2 + 1)
+ [(A1 +B1)R

+ C1](|∆−1|+ |ς1|)(δ + νδ∗) + [(U2 + V2)R+W2]
(
|∆−1ς2|ϑ∗ + |∆ς1|ϑ

)
≤
(
(U2 + V2)ϑ+

[
(U1 + V1)|φ∆−1|(δ + νδ∗) + (U2 + V2)

×
( |(∆−1 −A2)φ|

|ε2|
ϑ∗ + |φ|ϑ

)] 1

Γ (β2 + 1)
+ (U1 + V1)(|∆−1|+ |ς1|)(δ + νδ∗)

+ (U2 + V2)
(
|∆−1ς2|ϑ∗ + |∆ς1|ϑ

))
R+

(
[W2]ϑ+

[
[W1]|φ∆−1|(δ + νδ∗)

+ [W2]
( |(∆−1 −A2)φ|

|ε2|
ϑ∗ + |φ|ϑ

)] 1

Γ (β2 + 1)
+ [W1](|∆−1|+ |ς1|)(δ + νδ∗)

+ [W2]
(
|∆−1ς2|ϑ∗ + |∆ς1|ϑ

))
≤ ð2R+ τ2.

If R > (τ1 + τ2)/(1− (ð1 + ð2)), then Q maps BR into itself. A number R that
satisfies the above inequality exists in view of the condition ð1 + ð2 < 1.

Furthermore, thanks to Arzela-Ascoli theorem [16], we state that Q is a
completely continuous operator in BR; this can be justified as follows:
* The fact that f1, f2 are supposed continuous guarantees that Q is continuous
on S × S.
** The operator Q maps any bounded setM of S×S into a bounded set Q(M)
of the same space. (We can take M := BR).
***The equi continuity of the operator: we can prove it as follows. Let t1, t2 ∈
J, t1 < t2 and let BR be the above bounded set of S × S. So by considering
x = (x1, x2) ∈ BR, we can state that for each t ∈ J , we have

|Q1x(t1)−Q1x(t2)| ≤ δ
[
(U1 + V1)R+W1

][
|t1α1+α2−t2α1+α2 |+|t1−t2|α1+α2

]
+

∣∣∣∣[ε1Γ (α2 − α∗ + 1)
(
∆−1 +

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2f1(1, x(1), y(1))

− Γ (α2−α∗+1)
(
ε1
[
∆−1ν+

φ∆−2ν

ε2Γ (β2−β∗+1)

]
+1
)
Iα1+α2−α∗

f1(1, x(1), y(1))

+ ε1∆
−1Γ (α2−α∗+1)

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗+1)

)
Iβ1+β2−β∗

f2(1, x(1), y(1))

+
ε1∆

−1φΓ (α2 − α∗ + 1)

ε2Γ (β2 − β∗ + 1)
Iβ1+β2f2(1, x(1), y(1))

]∣∣∣∣ |tα2
1 − tα2

2 |
Γ (α2 + 1)

,

and

|Q2x(t1)−Q2x(t2)| ≤ ϑ
[
(U2+V2)R+W2

][
|t1β1+β2 − t2

β1+β2 |+|t1−t2|β1+β2

]
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+
∣∣∣[φ∆−1Iα1+α2f1(1, x(1), y(1))− φ∆−1νIα1+α2−α∗

f1(1, x(1), y(1))

+
(∆−1−A2)φ

ε2
Iβ1+β2−β∗

f2(1, x(1), y(1))+φI
β1+β2f2(1, x(1), y(1))

]∣∣∣ |tβ2

1 −tβ2

2 |
Γ (β2+1)

.

So, according to the Arzela-Ascoli theorem, we state that Q(BR) is relatively
compact. Then, Q is a completely continuous operator. Hence, by Schauder
fixed point theorem, Q has at least a fixed point.
The proof of Theorem 2 is thus achieved. ⊓⊔

3.3 Stability in the sense of Ulam-Hyers

In order to study the Ulam-Hyers stability, we have first to adopt the following
two definitions to our problem.

Definition 3. The problem (1.1)–(1.2) has the Ulam-Hyers stability if there
exists a real number Σ > 0, such that for each γ1 > 0, γ2 > 0 and for each
(x∗, y∗) ∈ S × S solution of the coupled inequality{

|Dα1Dα2x∗(t)− f1(t, x
∗(t), y∗(t))| ≤ γ1,∣∣Dβ1Dβ2y∗(t)− f2(t, x
∗(t), y∗(t))| ≤ γ2,

(3.1)
x∗(1) = A1y

∗(0) +B1D
β∗
y∗(0),

Dα∗
x∗(1) = ε1y

∗(0) + ζ1D
β∗
y∗(0),

y∗(1) = A2x
∗(0) +B2D

α∗
x∗(0),

Dβ∗
y∗(1) = ε2x

∗(0) + ζ2D
α∗
x∗(0),

(3.2)

there exists (x, y) ∈ S × S satisfying (1.1)–(1.2), such that,∥∥(x− x∗, y − y∗)
∥∥
S×S

≤ γΣ,

where, γ := max{γ1 > 0, γ2 > 0}.

Using the same quantity γ, we give the following definition.

Definition 4. The system (1.1)–(1.2) has the Ulam-Hyers stability in the gen-
eralized sense if there exists Σ ∈ C(R+,R+); Σ(0) = 0, such that for each
γ1 > 0, γ2 > 0, and for any (x∗, y∗) ∈ S×S solution of (3.1)–(3.2), there exists
a solution (x, y) ∈ S × S of (1.1)–(1.2) , that satisfies∥∥(x− x∗, y − y∗)

∥∥
S×S

≤ Σ(γ).

Now, we can prove the following third main result.

Theorem 3. The conditions of Theorem 1 guarantee the Ulam-Hyers stability
of (1.1)–(1.2).

Proof. Let (x∗, y∗) ∈ S×S be a solution of (3.1)–(3.2), and let, by Theorem 1,
(x, y) ∈ S×S be the unique solution of (1.1)–(1.2). The inequalities (3.1) allow
us to write∣∣∣x∗(t)− Iα1+α2f1(t, x

∗(t), y∗(t)) +
[
ε1Γ (α2 − α∗ + 1)

Math. Model. Anal., 30(2):233–253, 2025.

https://doi.org/10.3846/mma.2025.20920


246 A. Lamamri, Y. Gouari, Z. Dahmani, M. Rakah and M.Z. Sarıkaya

×
(
∆−1 +

φ∆−2

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2f1(1, x

∗(1), y∗(1))− Γ (α2 − α∗ + 1)

×
(
ε1
[
∆−1ν +

φ∆−2ν

ε2Γ (β2 − β∗ + 1)

]
+ 1

)
Iα1+α2−α∗

f1(1, x
∗(1), y∗(1))

+ ε1∆
−1Γ (α2−α∗+1)

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

f2(1, x
∗(1), y∗(1))

+
ε1∆

−1φΓ (α2 − α∗ + 1)

ε2Γ (β2 − β∗ + 1)
Iβ1+β2f2(1, x

∗(1), y∗(1))

]
tα2

Γ (α2 + 1)

−
(

φ∆−1

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2f1(1, x

∗(1), y∗(1))

+

(
φ∆−1ν

ε2Γ (β2 − β∗ + 1)

)
Iα1+α2−α∗

f1(1, x
∗(1), y∗(1))

−
(

1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2 − β∗ + 1)

)
Iβ1+β2−β∗

f2(1, x
∗(1), y∗(1))

− φ

ε2Γ (β2 − β∗ + 1)
Iβ1+β2f2(1, x

∗(1), y∗(1))
∣∣∣ ≤ γ1

Γ (α1 + α2 + 1)
,

and ∣∣∣y(t)− Iβ1+β2f2(t, x
∗(t), y∗(t))−

[
φ∆−1Iα1+α2f1(1, x

∗(1), y∗(1))

− φ∆−1νIα1+α2−α∗
f1(1, x

∗(1), y∗(1)) +
(∆−1 −A2)φ

ε2
Iβ1+β2−β∗

× f2(1, x
∗(1), y∗(1)) + φIβ1+β2f2(1, x

∗(1), y∗(1))
] tβ2

Γ (β2 + 1)

−
(
∆−1 +

φ∆−2

ε2Γ (β2−β∗+1)

)
× Iα1+α2f1(1, x

∗(1), y∗(1))

+

(
∆−1ν+

φ∆−2ν

ε2Γ (β2−β∗+1)

)
Iα1+α2−α∗

f1(1, x
∗(1), y∗(1))

−∆−1

(
1

ε2
+

(∆−1 −A2)φ

ε22Γ (β2−β∗+1)

)
×Iβ1+β2−β∗

f2(1, x
∗(1), y∗(1))

− ∆−1φ

ε2Γ (β2−β∗+1)
Iβ1+β2f2(1, x

∗(1), y∗(1))

∣∣∣∣ ≤ γ2
Γ (β1+β2+1)

.

Combining both (1.1)–(1.2) and (3.1)–(3.2), we get

∥x− x∗∥∞ ≤ γ1
Γ (α1 + α2 + 1)

+ µ
(
δ+
[
|ε1|Γ (α2−α∗+1)|∆−1+ς1|δ+Γ (α2 − α∗ + 1)

(
|ε1|[ν|∆−1|

+ |ς1|]+1
)
δ∗+|ε1∆−1|Γ (α2−α∗+1)|ς2|ϑ∗ +

|ε1∆ς1|
δ∗

ϑ
] 1

Γ (α2+1)

+ |∆ς1|δ+ν|∆ς1|δ∗+|ς2|ϑ∗+
|φ|

|ε2|Γ (β2−β∗+1)
ϑ
)∥∥(x−x∗, y−y∗)∥∥

S×S
,
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and

∥y − y∗∥∞ ≤ γ2
Γ (β1 + β2 + 1)

µ∗

×
(
ϑ+

[
|φ∆−1|(δ+νδ∗) + |(∆−1 −A2)φ|

|ε2|
ϑ∗+|φ|ϑ

]
1

Γ (β2 + 1)
+(|∆−1|

+ |ς1|)(δ + νδ∗) + |∆−1ς2|ϑ∗ + |∆ς1|ϑ
)∥∥(x− x∗, y − y∗)

∥∥
S×S

.

Therefore, we state that the inequalities

∥x− x∗∥∞ ≤ γ1
Γ (α1 + α2 + 1)

+ Υ
∥∥(x− x∗, y − y∗)

∥∥
S×S

,

∥y − y∗∥∞ ≤ γ2
Γ (β1 + β2 + 1)

+ Υ ∗ ∥∥(x− x∗, y − y∗)
∥∥
S×S

are valid. Consequently, we have∥∥(x− x∗, y − y∗)
∥∥
S×S

≤
(

γ1
Γ (α1 + α2 + 1)

+
γ2

Γ (β1 + β2 + 1)

)
+Ω

∥∥(x− x∗, y − y∗)
∥∥
S×S

,

∥∥(x− x∗, y − y∗)
∥∥
S×S

≤

γ1
Γ (α1 + α2 + 1)

+
γ2

Γ (β1 + β2 + 1)

1−Ω
.

Thus, ∥∥(x− x∗, y − y∗)
∥∥
S×S

≤ Σγ,

where, γ is the maximum between γ1 and γ2. Hence, (1.1)–(1.2) has the Ulam
Hyers stability. ⊓⊔

Remark 1. In the case Σ(γ) = γΣ, we obtain the generalised Ulam Hyers
stability for (1.1)–(1.2).

4 Illustrative examples

Example 1. Consider the following sequential coupled system:
D0.98D0.99x(t) =

sin t

t2 + 40
x(t) +

cos t

t2 + 50
y(t),

D0.99D0.98y(t) =
t

et + 50
x(t) +

t+ 1

e2t + 60
y(t),

under the fractional closed conditions:
x(1) = 1

7y(0) +
1
9D

0.98y(0),
D0.98x(1) = 1

2y(0) +
1
5D

0.98y(0),
y(1) = 1

11x(0) +
1
13D

0.98x(0),
D0.98y(1) = 1

3x(0) +
1
4D

0.98x(0).
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We see that

f1(t, x(t), y(t)) =
sin t

t2 + 40
x(t) +

cos t

t2 + 50
y(t), f2(t, x(t), y(t)) =

t

et + 50
x(t)

+
t+ 1

e2t+60
y(t), lf1,1=

1

40
, lf1,2=

1

50
, lf2,1=

1

50
, lf2,2=

1

60
, µ=

1

40
, µ∗ =

1

50
,

α1 = 0.98, α2 = 0.99, β1 = 0.99, β2 = 0.98, α∗ = 0.98, β∗ = 0.98,

δ = 0.5139, δ∗ = 1.0042, ϑ = 0.5139, ϑ∗ = 1.0042, A1=1/7, A2=1/11,

B1 =
1

9
, B1 =

1

13
, ε1 =

1

2
, ε2 =

1

3
, ς1 = 3.07133, ς2 = 0.3902, ν = 0.9984,

∆ = −0.3564, ∆−1 = −2.8058, ∆−2 = 7.8727, φ = 0.1293.

We also have

Υ = 0.2462, Υ ∗ = 0.2568, Ω = Υ + Υ ∗ = 0.5030 < 1.

So, thanks to Theorem 1, this system has a unique solution (x(t), y(t))
defined over [0, 1].Also, by Theorem 3, this system is Ulam-Hyers stable.

Example 2. Consider the following sequential coupled system:
D0.9D0.8x(t) =

|x(t)|
250(t2 + 1)(1 + |x(t)|)

+
sin(y(t))

300(t4 + 1)
y(t) +

et
2

20(1 + et2)
,

D0.85D0.97y(t) =
sin(2x(t) + y(t))

400et2
+

cos(t)

15(et2 + 1)
,

under the fractional closed conditions:
x(1) = 1

8y(0) +
1
9D

0.85y(0),

D0.8x(1) = 1
2y(0) +

1
5D

0.85y(0),

y(1) = 1
5x(0) +

1
9D

0.8x(0),

D0.85y(1) = 1
3x(0) +

1
4D

0.8x(0).

We see that

f1(t, x(t), y(t)) =
|x(t)|

250(t2 + 1)(1 + |x(t)|)
+

sin(y(t))

300(t4 + 1)
y(t) +

et
2

20(1 + et2)
,

f2(t, x(t), y(t)) =
sin(2x(t) + y(t))

400et2
+

cos(t)

15(et2 + 1)
,

U1 = 1/250, U2 = 1/200, V1 = 1/300, V2 = 1/400,

α1 = 0.9, α2 = 0.8, β1 = 0.85, β2 = 0.97, α∗ = 0.8, β∗ = 0.85,

δ = 0.6474, δ∗ = 1.0398, ϑ = 0.586, ϑ∗ = 1.0125, A1 = 1/8, A2 = 1/10

B1 =
1

5
, B1 =

1

9
, ε1 =

1

2
, ε2 =

1

3
, ς1 = 2.9046, ς2 = −0.3902, ν = 1,

∆ = −0.3750, φ = 0.1285.

We have ð1 = 0.0804, ð2 = 0.1016, ð1 + ð2 = 0.1821 < 1. So, thanks to
Theorem 2 this system has at least one solution (x(t), y(t)) defined over [0, 1].
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5 Travelling waves for the conformable coupled system of
Burgers equations

The coupled system of Burgers equations that we study is given by [26,27]:{
K2β

x u = Kα
t u+ 2uKβ

xu+mKβ
x (uv),

K2β
x v = Kα

t v + 2vKβ
x v + nKβ

x (uv),

where, 0 < α, β ≤ 1, n,m are real constants with nm ̸= 1 and Kα
z is the

conformable fractional derivative of order α with respect to z given by the
following expression, (see [11,14]):

(Kα
t u) (x, t) = lim

ε→0

((
u
(
x, t+ εt1−α

)
− u(x, t)

)
/ε
)
, t > 0, 0 < α ≤ 1.

The same definition in the case of z = x. To search for traveling wave solutions
for this system, we use the transformation [5, 8]:

u(x, t) = U(ξ); ξ = wxβ/β + ktα/α.

So, we have the following three quantities

∂αu(x, t)

∂tα
= kUξ,

∂βu (x, t)

∂xβ
= wUξ, and

∂2βu (x, t)

∂x2β
= w2Uξξ.

Using these quantities, the above time and space fractional system can easily
be converted into the following ordinary differential system:{

kUξ − ω2Uξξ + 2ωUUξ +mωV Uξ +mωUVξ = 0,

kVξ − ω2Vξξ + 2ωV Vξ + nωV Uξ + nωUVξ = 0.
(5.1)

Now, we use the transformation η = tanh(ξ) and we suppose that

u(x, t) = U(ξ) = F (η) =

m∑
i=0

aiη
i, v(x, t) = V (ξ) = F ⋆(η) =

n∑
i=0

biη
i.

By substitution in the two Equations of (5.1), we can write

k
(
1− η2

) dF
dη

− ω2
[
− 2η

(
1− η2

) dF
dη

+
(
1− η2

)2 d2F
dη2

]
+ 2ωF

(
1− η2

) dF
dη

+mωF ⋆
(
1− η2

) dF
dη

+mωF
(
1− η2

) dF ⋆

dη
= 0

(5.2)

and

k
(
1− η2

) dF ⋆

dη
− ω2

[
− 2η

(
1− η2

) dF ⋆

dη
+
(
1− η2

)2 d2F ⋆

dη2

]
+ 2ωF ⋆

(
1− η2

) dF ⋆

dη
+ nωF

(
1− η2

) dF ⋆

dη
+ nωF ⋆

(
1− η2

) dF
dη

= 0.

(5.3)
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The balance technique [14,25] allows us to propose the following form of solu-
tion: {

F (η) = a0 + a1η,

F ⋆(η) = b0 + b1η.
(5.4)

Substituting (5.4) into (5.2), we can get

k
(
1− η2

)
a1 + 2ω2η

(
1− η2

)
a1 + 2ω(a0 + a1η)

(
1− η2

)
a1

+mω(b0 + b1η)
(
1− η2

)
a1 +mω(a0 + a1ψ)

(
1− η2

)
b1 = 0.

Also, by substitution of (5.4) into (5.3), we can write

k
(
1− η2

)
b1 + 2ω2η

(
1− ψ2

)
b1 + 2ω(b0 + b1ψ)

(
1− η2

)
b1

+ nω(a0 + a1η)
(
1− η2

)
b1 + nω(b0 + b1η)

(
1− η2

)
a1 = 0,

Then, we have:
η0 : mωa0b1 +mωa1b0 + 2ωa0a1 + ka1 = 0,
η1 : 2mωa1b1 + 2ω2a1 + 2ωa21 = 0,
η2 : mωa0b1 −mωa1b0 − 2ωa0a1 − ka1 = 0,
η3 : −2mωa1b1 − 2ω2a1 − 2ωa21 = 0,

(5.5)

and 
η0 : nωb0a1 + nωb1a0 + 2ωb0b1 + kb1 = 0,
η1 : 2nωa1b1 + 2ω2b1 + 2ωb21 = 0,
η2 : −nωa0b1 − nωa1b0 − 2ωa0a1 − ka1 = 0,
η3 : −2nωa1b1 − 2ω2b1 − 2ωb21 = 0.

(5.6)

Solving (5.5) and (5.6) with the aid of Maple, we obtain

a0 = − (m− 1)k

2ω(mn− 1)
, a1 = − (m− 1)ω

mn− 1)
, b0 = − (n− 1)k

2ω(mn− 1)
, b1 = − (n− 1)ω

mn− 1)
.

Hence, the following traveling wave solution is obtained:

u(x, t) =
(1−m)k

2ω(mn− 1)
+

(1−m)ω

mn− 1)
tanh(ξ), (5.7)

v(x, t) =− (n− 1)k

2ω(mn− 1)
− (n− 1)ω

mn− 1)
tanh(ξ). (5.8)

The graphical illustration of the Equations (5.7)–(5.8) can be seen in Figures 1
(A) and (B), respectively.
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(A) Solution (5.7) (B) Solution (5.8)

Figure 1. Plot of (u, v); 0 ≤ x ≤ 10, 0 ≤ t ≤ 30, m = 2, n = −3, α = 7
10

, β = 9
10

.

6 Conclusions
In summary, we have studied two parts:

In the first part, we have investigated the above class of nonlinear differential
systems with Caputo derivatives, augmented by the introduction of coupled
closed fractional boundary conditions. The establishment of the two first main
theorems on existence of solutions shows the efficacy of our proposed conditions,
providing a good framework for modeling complex phenomena. Moreover, the
stability in the sense of Ulam-Hyers with the detailed examples add a layer
of practical significance to the main results. Our research, on this first part,
contributes a foundational understanding of coupled closed fractional boundary
conditions.

In the second part of our work, we have oriented our focus to the application
of the tanh numerical method to obtain a new travelling wave solution for the
coupled system of Burgers equations, incorporating conformable derivatives in
accordance with Khalil framework.
By bridging these two aspects, we have aimed to provide an understanding of
the system’s behavior in a large sense, linking the theoretical foundation of
Caputo derivatives with the practical implications revealed through the tanh
method for the coupled Burgers system in the context of Khalil approach.
By integrating high-order fractional operators and new weighted approaches,
[1, 19] future research can continue to enhance the applicability and precision
of fractional calculus in capturing the dynamics of the above studied system.
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