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Abstract. In 2017, Garunkštis, Laurinčikas and Macaitienė proved

the discrete universality theorem for the Riemann zeta-function

shifted by imaginary parts of nontrivial zeros of the Riemann zeta-

function. This discrete universality has been extended to various

zeta-functions and L-functions. In this paper, we generalize this

discrete universality for Matsumoto zeta-functions.
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1 Introduction

Let s = σ + it be a complex variable. The Riemann zeta-function ζ(s) is
defined by the infinite series

∑∞
n=1 n

−s in the σ > 1, and can be continued
meromorphically to the whole plane C. Let K(r) be a disc with centre 3/4 and
radius r. In 1975, Voronin [23] proved that for any non-vanishing continuous
function f and any ε > 0, there exists a positive τ for which

sup
s∈K(r)

|ζ(s+ iτ)− f(s)| < ε

holds for 0 < r < 1/4. This approximation theorem called the universality
theorem. From Voronin’s proof, the set of such τ has a positive density. Fur-
thermore we can replace K(r) by more general sets. The modern statement of
universality theorem is as follow.

Theorem 1 [Voronin’s universality theorem]. Let K be a compact set in
the strip 1/2 < σ < 1 with connected complement, and let f(s) be a non-
vanishing continuous function on K that is analytic in the interior of K. Then,
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for any ε > 0

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0,

where meas denotes the 1-dimensional Lebesgue measure.

In this universality, the shift τ can take arbitrary non-negative real values con-
tinuously. If the shift can take certain values discretely and the universality
holds by this shift, then we call it a discrete universality. First Reich [20] proved
the discrete universality for the Dedekind zeta-function, and many mathemati-
cians extended and generalized his result. See e.g., a survey paper [17] for the
recent studies.

Let 0 < γ1 ≤ γ2 ≤ . . . be imaginary parts of nontrivial zeros of the Riemann
zeta-function. Montgomery [19] conjectured the asymptotic relation

∑
0<γ,γ′≤T

2πα1
log T ≤γ−γ′≤ 2πα2

log T

1 ∼

∫ α2

α1

(
1−

(
sinπu

πu

)2
)
du+ δ(α1, α2)

 T

2π
log T

as T → ∞ for α1 < α2, where δ(α1, α2) = 1 if 0 ∈ [α1, α2] and δ(α1, α2) = 0
otherwise. We consider the weak Montgomery conjecture:∑

0<γ,γ′≤T
|γ−γ′|<c/ log T

1 ≪ T log T (1.1)

as T → ∞ with a certain constant c > 0. Under this conjecture, the following
discrete universality for the Riemann zeta-function holds.

Theorem 2 [Garunkštis, Laurinčikas and Macaitienė [5]]. Let K be a
compact set in the strip 1/2 < σ < 1 with connected complement, let f(s) be
a non-vanishing continuous function on K that is analytic in the interior of K
and assume (1.1). Then, for any ε > 0 and h > 0,

lim inf
N→∞

1

N
#
{
1 ≤ k ≤ N : sup

s∈K
|ζ(s+ ihγk)− f(s)| < ε

}
> 0,

where #A denotes the cardinality of a set A ⊂ N.

This universality theorem has been extended to other zeta-functions and
L-functions in [2, 3, 6, 10, 11, 15]. In this paper, we prove this universality for
the class of Matsumoto zeta-functions.

The notion of Matsumoto zeta-function φ(s) is introduced by Matsumoto
[16] and defined by

φ(s) =

∞∏
n=1

g(n)∏
j=1

(1− a(j)n p−f(j,n)s
n )−1,
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where g(n) ∈ N, f(j, n) ∈ N, a(j)n ∈ C, and pn is the nth prime number.
Assuming the conditions

g(n) ≤ c1p
α
n, |a(j)n | ≤ pβn (1.2)

with nonnegative constants α, β and a positive constant c1, we have

φ(s) =

∞∑
n=1

bn
ns

for σ > α+β+1. Furthermore, bn ≪ nα+β+ε for any ε > 0 if all prime factors
of n are large (see [7, Appendix]).

In this paper, we consider Matsumoto zeta-functions satisfying following
assumptions.

(i) The condition (1.2).

(ii) There exists α+ β + 1/2 ≤ ρ < α+ β + 1 such that the function φ(s) is
meromorphic in the half plane σ ≥ ρ, all poles in this region are included
in a compact set, and there is no pole on the line σ = ρ.

(iii) There exists a positive constant c2 such that φ(σ+ it) ≪ |t|c2 as |t| → ∞
for σ > ρ.

(iv) For ρ ≤ σ < min{Re(z) : z is a pole of φ}, we have∫ T

−T

|φ(σ + it)|2 dt≪ T.

(v) There exists a positive κ such that

lim
x→∞

1

π(x)

∑
pn≤x

|
g(n)∑
j=1

f(j,n)=1

a(j)n |2p−2(α+β)
n = κ,

where π(x) is the prime counting function.

Let Dρ = {s ∈ C : ρ < σ < α+ β + 1}. Now we state the main theorem of
this paper.

Theorem 3. Let φ be a Matsumoto zeta-function satisfying (i)–(v). Let K be
a compact set in Dρ with connected complement, let f(s) be a non-vanishing
continuous function on K that is analytic in the interior of K and assume (1.1).
Then, for any ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#

{
N ≤ k ≤ 2N : sup

s∈K
|φ(s+ ihγk)− f(s)| < ε

}
> 0.
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We note that the class of Matsumoto zeta-functions satisfying (i)–(v) does
not coinside with the Selberg class. There are difference points between Mat-
sumoto zeta-functions and Selberg class. One example is that Matsumoto zeta
functions can have poles other than s = 1, but L-functions in the Selberg class
can have pole at s = 1 only.

Sourmelidis, Srichan and Steuding [21] proved similar universality for the
Riemann zeta-function unconditionally. Their statement holds for the wider
context of α-points of L-functions from the Selberg class. However, we have to
take a subsequence of α-points of L-functions from the Selberg class in their
result. Using their results, we have the following theorem without (1.1).

Theorem 4. Let K and f be same as Theorem 3. Let L be a non-constant
L-function in the Selberg class. Then, there exists a subsequence of α-points
(ρα,nk

)k∈N of L(s) such that for any ε > 0,

lim inf
N→∞

1

N + 1
#
{
N ≤ k ≤ 2N : sup

s∈K
|φ(s+ iγα,nk

)− f(s)| < ε
}
> 0

holds, where γα,nk
= Im(ρα,nk

).

Remark 1. In Theorem 4, we have to consider a subsequence of α-points of L-
functions from the Selberg class same as [21, Theorem 5]. This reason comes
from the fact that without (1.1) we can take a subsequence of α-points of L-
functions from the Selberg class such that it is uniformly distributed in mod 1
and it can be approximated by certain values. However, it is difficult to compute
such subsequence explicitly.

2 Preliminaries

We fix a compact subset K satisfying the assumptions of Theorem 3. We define
ρ < σ0 < mins∈K Re(s) as all poles are contained in σ > σ0. Then, we fix σ1, σ2
such that

ρ < σ0 < σ1 < min
s∈K

Re(s), max
s∈K

Re(s) < σ2 < α+ β + 1.

Then, we define the rectangle region R by

R = (σ1, σ2)× i
(
min
s∈K

Im(s)− 1/2, max
s∈K

Im(s) + 1/2
)
. (2.1)

Let H(R) be the set of all holomorphic functions on R.
We write B(T ) for the Borel set of T which is a topological space. Let

S1 = {s ∈ C : |s| = 1}. For any prime p, we put Sp = S1 and Ω =
∏

p Sp. Then,
there exists the probability Haar measure m on (Ω,B(Ω)). Then m is written
by m = ⊗pmp, where mp is the probability Haar measure on (Sp,B(Sp)).

Let ω(p) be the projection of ω ∈ Ω to the coordinate space Sp. {ω(p) :
p prime} is a sequence of independent complex-valued random elements defined
on the probability space (Ω,B(Ω),m).
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For ω ∈ Ω, we put ω(1) := 1, ω(n) :=
∏

p ω(p)
ν(n;p), where ν(n; p) is

the exponent of the prime p in the prime factorization of n. Here, we define
H(R)-valued random elements

φ(s, ω) :=

∞∏
n=1

g(n)∏
j=1

(1− a(j)m ω(p)f(j,n)p−f(j,n)s
n )−1 =

∞∑
n=1

bnω(n)

ns
.

We define probability measures on (H(R),B(H(R))) by

PN (A) =
1

N + 1
#
{
N ≤ k ≤ 2N : φ(s+ ihγk) ∈ A

}
,

P (A) =m
{
ω ∈ Ω : φ(s, ω) ∈ A

}
for A ∈ B(H(R)).

3 A limit theorem

This section is in the principle of Bagchi [1]. We can confirm Bagchi’s method at
Laurinčikas’s book [12], Steuding’s book [22] or Kowalski’s book [9]. However,
the way of taking φX (cf. after Lemma 1) based on Kowalski’s book differs
from Bagchi’s original way. Certainly, Bagchi’s original way is valid since the
previous studies [2,3,6,10,11,15] are based on Bagchi’s original way. However,
this section and the way of taking φX are based on Kowalski’s book.

Lemma 1. Let ψ : [0,∞) → C be smooth and assume that ψ and all its deriva-
tives decay faster than any polynomial at infinity, and let

ψ̂(s) =

∫ ∞

0

ψ(x)xs−1 dx

be the Mellin transform of ψ on Re(s) > 0.

(1) The Mellin transform ψ̂ extends to a meromorphic function on Re(s) >
−1, with at most a simple pole at s = 0 with residue ψ(0).

(2) For any real numbers −1 < A < B, the Mellin transform has rapid decay
in the strip A ≤ σ ≤ B, in the sense that for any integer k ≥ 1, there
exists a constant C = C(k,A,B) ≥ 0 such that

|ψ̂(σ + it)| ≤ C(1 + |t|)−k

for all A ≤ σ ≤ B and |t| ≥ 1.

(3) For any σ > 0 and any x ≥ 0, we have the Mellin inversion formula

ψ(x) =
1

2πi

∫ σ+i∞

σ−i∞
ψ̂(s)x−s ds.

Proof. See [9, Proposition A.3.1]. ⊓⊔

Math. Model. Anal., 30(1):97–108, 2025.
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Now let

ψ0(t) = e−
1
t I(0,∞)(t),

where I(0,∞) is the indicator function on (0,∞). For R > 1 fixed, we define

ψ(x) =
ψ0(R

2 − x2)

ψ0(R2 − x2) + ψ0(|x|2 − 1)
.

Then, ψ(x) is a a real-valued smooth function on [0,∞) with compact support
satisfying ψ(x) = 1 for 0 ≤ x ≤ 1 and 0 ≤ ψ(x) ≤ 1. Therefore, ψ(x) satisfies
assumptions of Lemma 1. Furthermore, we have

ψ̂(k)(σ + it) ≪k (1 + |t|)−k.

We put

φX(s) =

∞∑
n=1

bnψ(n/X)

ns
, φX(s, ω) =

∞∑
n=1

bnω(n)ψ(n/X)

ns

for X ≥ 2.

Lemma 2. For all compact set C ⊂ R

lim
X→∞

lim sup
N→∞

1

N + 1

2N∑
k=N

sup
s∈C

|φ(s+ ihγk)− φX(s+ ihγk)| = 0.

Proof.
From Lemma 1 (3) and definition of φX(s), we see that

φX(s) =
1

2πi

∫ c+i∞

c−i∞
φ(s+ w)ψ̂(w)Xw dw

for c > α+ β + 1. We write z1, . . . , zM for the poles of φ contained in Dρ and
n1, . . . , nM for its orders. Let δ(z) be a positive number satisfying Re(z) −
δ(z) = σ0 for Re(z) > σ0. If z ̸= zj for 1 ≤ j ≤ M and Re(z) > σ0, then by
the residue theorem, we have

φ(z)− φX(z) =− 1

2πi

∫ −δ(z)+i∞

−δ(z)−i∞
φ(z + w)ψ̂(w)Xw dw

−
M∑
j=1

Resw=zj−zφ(z + w)ψ̂(w)Xw.

Since Resw=zj−zφ(z + w)ψ̂(w)Xw can be represented by the linear form of

ψ̂(l)(zj − z)(logX)nj−lXzj−z, we have

Resw=zj−zφ(z + w)ψ̂(w)Xw ≪nj
(logX)njX

1
2 (1 + |Im(z − zj)|)−1. (3.1)
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Let N be sufficiently large. Then, φ(s+ ihγk)− φX(s+ ihγk) is holomorphic
on R for N ≤ k ≤ 2N . Therefore, we have

2N∑
k=N

sup
s∈C

|φ(s+ ihγk)− φX(s+ ihγk)|

=
1

2π

2N∑
k=N

sup
s∈C

∣∣∣∣∫
∂R

φ(z + ihγk)− φX(z + ihγk)

z − s
dz

∣∣∣∣
≤ 1

2πdist(C, ∂R)

∫
∂R

2N∑
k=N

|φ(z + ihγk)− φX(z + ihγk)||dz|

≤ 1

4π2dist(C, ∂R)

∫
∂R

2N∑
k=N

∫ −δ(z)+i∞

−δ(z)−i∞
|φ(z + w + ihγk)||ψ̂(w)Xw| |dw||dz|

+
|∂R|

2πdist(C, ∂R)
sup
z∈∂R

2N∑
k=N

M∑
j=1

Resw=zj−z−ihγk
φ(z + w + ihγk)ψ̂(w)X

w

≤ |∂R|
4π2dist(C, ∂R)

sup
z∈∂R

X−δ(z)

×
∫ ∞

−∞

2N∑
k=N

|φ(Re(z)− δ(z) + iτ + ihγk)||ψ̂(−δ + iτ)| dτ

+
|∂R|

2πdist(C, ∂R)
sup
z∈∂R

2N∑
k=N

M∑
j=1

Resw=zj−z−ihγk
φ(z + w + ihγk)ψ̂(w)X

w,

where dist(C, ∂R) is the minimal distance between C and ∂R, and |∂R| is the
length of ∂R.

We consider the first term. Using (1.1), assumption (iv) and the Gallagher
Lemma on the discrete mean (see [18, Lemma 1.4]), we have

1

N + 1

2N∑
k=N

|φ(Re(z)− δ(z) + iτ + ihγk)| ≪ 1 + |τ |,

(cf. [5, Lemma 2.7]). Thus, we obtain

1

N + 1
sup
z∈∂R

∫ ∞

−∞

2N∑
k=N

|φ(Re(z)− δ(z) + iτ + ihγk)||ψ̂(−δ(z) + iτ)| dτ ≪ 1.

We consider the second term. It is known that γk ∼ 2πk/log k as k → ∞,
so we have

γk ≫ k

log k
.

Math. Model. Anal., 30(1):97–108, 2025.
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By Lemma 1 and (3.1), we have

sup
z∈∂R

2N∑
k=N

M∑
j=1

Resw=zj−z−ihγk
φ(z + w + ihγk)ψ̂(w)X

w

≪nj
sup
z∈∂R

2N∑
k=N

M∑
j=1

(logX)njX
1
2 (1 + |Im(zj)− Im(z)− hγk|)−1

≪M,zj ,R X
1
2 sup
1≤j≤M

(logX)nj

2N∑
k=N

log k

k
≪nj ,ε X

1
2+ε(logN)

for ε > 0. Since δ(z) ≥ σ1 − σ0 > 0 for all z ∈ ∂R, we conclude

lim
X→∞

lim sup
N→∞

1

N + 1

2N∑
k=N

sup
s∈C

|φ(s+ ihγk)− φX(s+ ihγk)|

≪ lim
X→∞

lim sup
N→∞

(X−(σ1−σ0) +X
1
2+ε(logN)N−1) = 0.

⊓⊔

Lemma 3. The following statements hold.

(i) The product
∏∞

n=1

∏g(n)
j=1 (1− a

(j)
m ω(p)f(j,n)p

−f(j,n)s
n )−1 and the series∑∞

n=1 bnω(n)n
−s are holomorphic on the domain σ > α + β + 1/2 for

almost all ω ∈ Ω.

(ii) For σ > (σ0 + σ1)/2,

Em[|φ(s, ω)|] ≪K,σ0 1 + |t|

holds.

Proof. Applying the Kolmogorov theorem (see [12, Theorem 1.2.11]) and the
convergence theorem relating with orthogonal random elements (see [12, The-
orem 1.2.9]), we can prove (i).

We consider (ii). Let

S(u) =
∑
n≤u

bnω(n)

nσ0
.

By the Cauchy–Schwartz inequality, there exists M > 0 such that

Em[|Su|] ≤
(
Em[|Su|2]

) 1
2

=
(∑

n≤u

|bn|2/n2σ0

) 1
2

< M.

By the definition of Su, we have

φ(s, ω) =

∫ ∞

1−

1

us−σ0
dSu = (s− σ0)

∫ ∞

1

Su

us−σ0−1
du.
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Thus, for Re(s) > (σ0 + σ1)/2, we have

Em[|φ(s, ω)|] ≤ |s− σ0|
∫ ∞

1

Em[|Su|]
uσ−σ0−1

du ≤M
|s− ρ|
σ − σ0

≪K,σ0
1 + |t|.

⊓⊔

From this lemma, we see that

φ(s, ω) =

∞∏
n=1

g(n)∏
j=1

(1− a(j)m ω(p)f(j,n)p−f(j,n)s
n )−1 =

∞∑
n=1

bnω(n)

ns

holds for σ > ρ for almost all ω ∈ Ω in the sense of analytic continuation.

Lemma 4. For all compact sets C ⊂ R,

lim
X→∞

Em[sup
s∈C

|φ(s, ω)− φX(s, ω)|].

Proof. By Lemma 3 (i) we have

sup
s∈C

|φ(s, ω)− φX(s, ω)| ≪ X−δ

∫
∂R

|dz|
∫ ∞

−∞
|φ(z − δ + iτ, ω)||ψ̂(−δ + iτ)| dτ,

where δ = (σ1 − σ0)/4 in the same way as Lemma 2. From Lemma 3 (ii), we
have

Em[sup
s∈C

|φ(s, ω)− φX(s, ω)|]

≪ X−δ

∫
∂R

|dz|
∫ ∞

−∞
Em[|φ(z − δ + iτ, ω)|]|ψ̂(−δ + iτ)| dτ ≪ X−δ → 0

as X → ∞. ⊓⊔

We consider the discrete topology on NN≤n≤2N := {n ∈ N : N ≤ n ≤ 2N}.
Then we define the probability measure on (NN≤n≤2N ,B(NN≤n≤2N )) by

PN (A) =
1

N + 1
#A,

for A ∈ B(NN≤n≤2N ). Furthermore, let P0 be a finite set of prime numbers,
and we define the probability measure on (

∏
p∈P0

Sp,B(
∏

p∈P0
Sp)) by

QP0

N (A) =
1

N + 1
#
{
N ≤ k ≤ 2N : (pihγk)p∈P0 ∈ A

}
,

for A ∈ B(
∏

p∈P0
Sp). Then, the next lemma holds.

Lemma 5. The probability measure QP0

N converges weakly to ⊗p∈P0
mp as N →

∞.

Proof. We can prove this lemma in the same way as [5, Theorem 2.3]. ⊓⊔

Math. Model. Anal., 30(1):97–108, 2025.
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Proposition 1. The probability measure PN converges weakly to P as N → ∞.

Proof. Using the Portmanteau theorem (see [8, Theorem 13.16]), Lemma 2,
Lemma 4 and Lemma 5, we can prove this Proposition (cf. [4, Proposition 1]).

⊓⊔

4 Proof of main theorems

Let
S := {f ∈ H(R) : f(s) ̸= 0 or f(s) ≡ 0}.

Then, using assumption (v) and same method [13, Lemma 6], we see that the
support of the measure P coincides with S (cf. [14, Lemma 6]).

Proof of Theorem 3. Let K be a compact set in Dρ with connected comple-
ment, let f be a non-vanishing continuous function on K that is analytic in the
interior of K. We define R as (2.1). Fix ε > 0.

By the Mergelyan theorem, there exists a polynomial G(s) such that

sup
s∈K

|f(s)− exp(G(s))| < ε/2

since f is non-vanishing on K. Here we define an open set of H(R) by

Φ(G) :=
{
g ∈ H(R) : sup

s∈K
|g(s)− exp(G(s))| < ε/2

}
.

Applying the Portmanteau theorem, Proposition 1, and a property of the sup-
port of P , we have

lim inf
N→∞

1

N + 1
#
{
N ≤ k ≤ 2N : sup

s∈K
|φ(s+ ihγk)− exp(G(s))| < ε/2

}
= lim inf

N→∞
PN (Φ(G)) ≥ P (Φ(G)) > 0.

Now, the inequality

sup
s∈K

|φ(s+ihγk)−f(s)| ≤ sup
s∈K

|φ(s+ihγk)−exp(G(s))|+sup
s∈K

| exp(G(s))−f(s)|

holds. Thus, we obtain Theorem 3. ⊓⊔

Finally, we prove Theorem 4. We utilize the following theorem.

Theorem 5. Let L be a non-constant L-function in the Selberg class, b > 0 be
a real number and alpha a complex number. Then, there exists a subsequence of
alpha-points (ρα,nk

)k∈N, of L(s), such that γα,nk
= bk+o(1), and the sequence

(aγα,nkm )k∈N is uniformly distributed mod 1 for every real number a /∈ b−1Q
and every positive integer m.

Proof. This is Corollary 1 in [21] and we can find this proof in [21]. ⊓⊔

Proof of Theorem 4. In Lemma 2 and Lemma 5, we replace γk by γα,k. Using
Theorem 5 and proceeding along the same line as in the proof of Lemma 2 and
Lemma 5 respectively, we can prove analogue of Lemma 2 and Lemma 5 with
γk replaced by γα,k. Therefore we obtain Theorem 4. ⊓⊔
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