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Abstract. We present algorithms for constructing and resolving spectral problems
for novel photonic crystal surface-emitting lasers with large emission areas, given by
first-order PDEs with two spatial dimensions. These algorithms include methods to
overcome computer-arithmetic-related challenges when dealing with huge and small
numbers. We show that the finite difference schemes constructed using relatively
coarse numerical meshes enable accurate estimation of several major optical modes,
which are essential in practical applications.
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1 Introduction

Semiconductor lasers (SLs) are small, efficient, relatively long-living, and cheap
devices used in many modern applications, such as sensors requesting an en-
hanced coherence of light, optical communication systems demanding regular
and stationary or irregular dynamics, or for material processing requiring up
to a few kilowatt optical power. The emission of conventional high-power edge-
emitting lasers [9, 13], however, has different beam divergence in vertical and
lateral directions, so that the use of additional optical elements (lenses) for
collimating the emitted fields is unavoidable. Despite that, even sophisticated
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external optics can not improve the poor lateral beam quality induced by mul-
tiple lateral optical modes contributing to the emission of broad area lasers [12].
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Figure 1. Schematics of photonic-crystal surface-emitting laser. (a): sandwiching of
material layers along vertical (z ∈ [0, Z]) direction. (b): three-dimensional scheme. (c):

lateral ((x, y) ∈ [0, L]× [0, L]) PC layer consisting of three vertically-homogeneous sublayers.
(d): structure of the elementary (a× a)-large cell within each sublayer of the crystal.

In 1999, Prof. Susumu Noda and his group from Kyoto University proposed
a Photonic-Crystal (PC) surface-emitting laser (SEL) [5], see Figure 1. The
operation of this device is determined by the vertical structure of the SL (pan-
els (a), (b)), the size and configuration of the PC layers (panel (c)), and the
structure of unit cells of the PC (panel (d)). Whereas the vertical configura-
tion should support a single vertical transverse-electric optical mode, the PC
structure provides diffraction of the field in both lateral directions and its redi-
rection towards the vertical output facet of the laser. Currently, the emission
power of the best PCSELs [11] is comparable to that of the best edge emitters.
In contrast to edge-emitting SLs, high-power PCSELs can have a single-mode-
defined emission and possess radial symmetry and low emission divergence,
which allows avoiding additional optical elements. Thus, modern PCSELs are
comparable to or outperforming the best conventional edge-emitting SLs in
many characteristics (besides the electrical-to-optical energy conversion effi-
ciency) and have the potential to become preferable SLs in many applications.

A three-dimensional coupled wave theory [6, 7, 8, 11], a system of PDEs in
temporal and two spatial directions, is used for modeling of PCSELs. However,
matrix C, which couples counter and cross-propagating optical fields within the
PC, is not known explicitly; it should be constructed using parameters defined
by integrals of yet-to-be-found functions. Even though the construction of C
is well documented [6, 7], we could not find publications on fast and reliable
algorithms for estimating the required integral parameters or discussing calcu-
lation efficiency when building C. The estimation of these parameters is quite
nontrivial. Due to small and large exponential terms e∓µz entering the integral
expressions, standard numerical integration techniques require fine discretiza-
tions, and, thus, are slow. Moreover, without the additional precautions to
avoid too large exponential multipliers and too small terms in denominators,
the parameter recovery fails when |µ| is too large. Thus, a detailed description
of the efficient analytic-formula-based algorithms for calculating the composite
parts of C working even when |µ| ≫ 1 is one of the main results of this work.
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The best modern PCSELs rely on PCs composed of periodically made air
holes within semiconductor layers. Due to the high refractive index contrast,
already small PCSELs can emit light. However, field losses due to the combi-
nation of air and semiconductor material seem to be one of the reasons for the
suboptimal efficiency of PCSELs. In contrast, large-size PCSELs not only allow
achieving a higher emission power but also admit usage of all-semiconductor
PC layers with less pronounced refractive index contrast (i.e., weaker coupling
of optical field components by diffraction) and, possibly, smaller field losses and
higher efficiency. Increasing the lateral size of PCSEL (factor L in Figure 1(c))
also requires adapting, developing, and analyzing numerical schemes used for
solving model equations. In this work, we analyze the performance of the finite-
difference schemes and spectral solvers applied to the field-equation-induced
spectral problem. We show that a moderate refinement of the discretization
mesh and the higher precision order schemes imply good precision of several
dominant optical modes. This is the second important result of our paper.

Our work is structured as follows. In Section 2, we introduce a spectral prob-
lem for PCSELs. Subsection 2.1 presents a (1+2)-dimensional dynamic system
of the first-order PDEs for slowly varying complex optical field amplitudes and
a corresponding spectral problem used to define optical modes. Subsection 2.2
introduces a set of auxiliary problems and functions used for the construction
of the effective parameters entering the model equations. Section 3 contains a
collection of parameters, definitions, statements, and methods explored later
to construct the field coupling matrix C. The readers more interested in the
problem’s practical aspects can skip these preliminaries and directly proceed to
the following Section 4, which presents algorithms for estimating of parameters
used when constructing C and discusses the efficiency and precision of this
construction in dependence on the complexity of the PCSEL’s vertical config-
uration and the number of terms accounted for when truncating infinite series.
Section 5 discusses numerical methods for solving the spectral problem. Here,
we construct, apply, and analyze finite difference schemes of different preci-
sion. We show that the schemes constructed using coarse numerical meshes
can provide acceptable precision for a few primarily important optical modes.

2 Mathematical model

2.1 Optical field equations and optical modes

The spatio-temporal dynamics in PCSELs is governed by the three-dimen-
sional coupled-wave model [6, 7] derived from the Maxwell equations. The
central part of this model, a system of PDEs for slowly varying field amplitudes
u(x, y, t) = (u+, u−)T , v(x, y, t) = (v+, v−)T (T : the transpose), is given by

1
vg

∂
∂t

(
u
v

)
=
[
iC −

(
σ ∂

∂x 0
0 σ ∂

∂y

)
−i∆β

](
u
v

)
, (x, y) ∈ [0, L]×[0, L],

boundary conditions: u+|x=0 = u−|x=L = v+|y=0 = v−|y=L = 0.

(2.1)

Here, L defines the lateral dimensions of the PCSEL, vg = c0/ng is the group
velocity (c0: speed of light in vacuum, ng: group index), σ =

(
1 0
0 −1

)
, 0 is a 2×2
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zero matrix, whereas C is a nontrivial 4×4 field coupling matrix, which will be
discussed in detail in the second part of this section. Finally, ∆β = ∆β(N ;T ) is
a carrier N - and temperature T -dependent relative propagation factor [13]. Its
real part represents changes in the refractive index and, thus, deviation of the
lasing frequency (or wavelength) from the reference frequency (wavelength λ0).
The imaginary part is defined by (N -dependent) optical amplification and losses
within the PCSEL. The dependence of ∆β on self-heating in high-power SLs is
essential. Due to significantly differing time scales of the photon, carrier, and
temperature dynamics, T remains nearly unchanged within typically calculated
time windows and should be accounted for parametrically [13]. On the contrary,
temporal and spatial changes of N in dynamical simulations are crucial, such
that one has to supplement the model with equations governing the carrier
dynamics [6, 12]. If the current injected into a laser is switched on, N grows,
causes changes of ∆β, and, most importantly, implies growth of ℑ∆β until
it reaches a threshold at which lasing begins. After this lasing threshold is
reached, (averaged) N and ∆β remain approximately fixed, whereas further
growth of electrical pumping induces growth of the emission’s power. In the
present paper, we are mainly interested in the study of the threshold behavior
of PCSELs, where ∆β remains (nearly) uniform in space and stationary in
time, thus can be well represented by a single complex constant ∆β.

For any fixed in time ∆β, the field equations (2.1) define optical modes
(Ω,Φ(x, y)). The four-component vector-eigenfunction Φ(x, y) provides spatial
distributions of four field components. The real and imaginary parts of the
complex frequency Ω represent the mode’s relative frequency and damping,
respectively. These modes can be found by substituting the ansatz(

u(x, y, t)
v(x, y, t)

)
= Φ(x, y)eiΩt, Φ =

(
Φu
Φv

)
, Φν =

(
Φ+
ν

Φ−
ν

)
, ν ∈ {u, v} (2.2)

into Equations (2.1) and resolving the resulting spectral problem[
iC −

(
σ ∂

∂x 0
0 σ ∂

∂y

)
− Λ

]
Φ = 0, (x, y) ∈ [0, L]× [0, L],

Λ = i(∆β + Ω
vg
), Φ+

u (0, y) = Φ−
u (L, y) = Φ+

v (x, 0) = Φ−
v (x, L) = 0.

(2.3)

Here, we exploit our assumption of spatially uniform distribution of ∆β = ∆β,
which allows combining the complex optical frequency Ω and the complex
factor ∆β into a single complex eigenvalue Λ. −ℜΛ represents the threshold of
the mode, i.e., the value of ℑ∆β at which the mode damping ℑΩ vanishes.

The spectral problem (2.3) defines multiple optical modes (Λ,Φ) and is vital
when designing PCSEL devices. Mode with the largest but still negative ℜΛ
(the main mode) is excited first when up-tuning the bias current, which causes
an increase of ℑ∆β. The damping ℑΩ of this mode vanishes; a threshold of
this mode is the lasing threshold, −ℜΛ1 = [ℑ∆β]th; the remaining modes have
positive ℑΩ, i.e., ℜΛrest < ℜΛ1, and remain damped. In practical applications,
PCSELs should have a small lasing threshold (large ℜΛ1), and a large threshold
gap to other modes (large ℜ(Λ1 − Λrest), which is needed for a desired single-
mode lasing. Besides, when analyzing separate modes, one can be interested
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in the balance of the generated intensity, losses within and at the lateral edges
of the PCSEL, and radiation in the vertical to PC and QW layers direction.
Equation (2.3) allows relating integral factors Il (losses at the lateral borders),
Ig, and Iv (mainly determined by the generated and vertically radiated field
intensity but also include field losses inside the PCSEL) [7].

Lemma 1. Let Λ and the nontrivial four-component vector-function Φ(x, y)
satisfy Equation (2.3). Then the following integral balance relations hold:

Ig = Iv + Il, where Ig = −2ℜΛ ∥Φ∥2 , Iv = 2ℑ(Φ,CΦ),

Il =
∫ L

0
|Φ+

u (L, y)|2 + |Φ−
u (0, y)|2dy +

∫ L

0
|Φ+

v (x, L)|2 + |Φ−
v (x, 0)|2dx.

(2.4)

Here (ξ, ζ) =
∫ L

0

∫ L

0

∑dim{ξ,ζ}
j=1 ξ∗j (x, y)ζj(x, y)dxdy is the scalar product of vector-

functions ξ and ζ, and ∥ξ∥ = (ξ, ξ)1/2 is a corresponding norm of ξ.

Proof. The relations (2.4) can be obtained after scalar multiplication of both
sides of Equation (2.3) by 2Φ and taking the real part of the resulting equation.
⊓⊔

2.2 Coupling of the optical fields

The matrix C depends on the laser’s vertical structure, see Figure 1(a)-(c),
the PC unit cells’ size (latice constant a) and shape, Figure 1(d), and the
real squared refractive index n̄2(x, y, z), which is a part of the complex di-
electric constant ϵ̄(x, y, z) = n̄2(x, y, z) + ∆ϵ(x, y, z) in each material layer,
Figure 1(a). Here, complex ∆ϵ includes the material’s absorption and carrier-
and temperature-induced corrections of ϵ̄. Lasing of PCSELs can be achieved
only when λ0 ≈ an• (n•: effective refractive index of the main vertical optical
mode).

The PCSEL device is sandwiched from m vertically homogeneous material
layers S̄k along the vertical coordinate z, see Figure 1(a). Let

Sk = (zk−1, zk), S̄k = [zk−1, zk], ∪m
k=1S̄k = [0, Z],

|Sk| = zk − zk−1, z̄k = zk−1+zk
2 , k = 1, . . . ,m,

SL ≡ S0 = (−∞, 0), SU ≡ Sm+1 = (Z,+∞),

where z0 = 0, zm = Z, and other zk are interfaces of corresponding layers.
Here and in the following, the indices L and U indicate that the functions or
parameters are assigned to the lower or upper part of the infinitely extended
vertical domain or individual material layers. Each layer is either laterally ho-
mogeneous with a real refractive index nk ≡ n̄(x, y, z)|z∈Sk

or a PC with a pair
of real indices (nI

k, n
II
k ) representing the material within the PC feature (e.g.,

air with nII
k ≈ 1 [6, 7]) and surrounding semiconductor material, respectively.

Within the PC, n2
k is the spatial average of n̄2 over the unit cell:

n2
k =

1

a2

∫ a/2

−a/2

∫ a/2

−a/2

n̄2(x, y, z)|z∈Sk
dxdy.

Math. Model. Anal., 29(3):575–599, 2024.
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The real positive piece-wise function n(z), n(z)|z∈Sk
= nk, k = 1, . . . ,m, repre-

sents the (laterally-averaged) refractive index of each material layer, including
PC layers. Real refractive indices of the infinitely broad lower (SL) and upper
(SU) materials surrounding the PCSEL device are denoted as nL and nU. Here
we assume that the outer material is air, i.e., nL = nU ≈ 1. nL, nU and the
function n(z) define the layer-wise constant function σ(z) and factors σL, σU,

σ(z)|z∈Sj
= σj

def
= σ̃(n•, nj), j = {1, . . . ,m} ∪ {L,U},

where σ̃(ξ, ζ) = k0
√

ξ2 − ζ2 ∈ C, ℜσ̃(ξ, ζ) ≥ 0, k0
def
= 2π

λ0
,

(2.5)

exploited in the one-dimensional Helmholtz problem

d2

dz2Θ(z)− σ2(z)Θ(z) = 0, z ∈ [0, Z], σ2(z) ∈ R, (2.6)

satisfying homogeneous Dirichlet (ρ = 0) or natural radiating (ρ = 1) boundary
conditions (BCs) at z = 0 and z = Z:

ρdΘ
dz (0) = σLΘ(0), ρdΘ

dz (Z) = −σUΘ(Z), σL, σU ∈ R+ ∪ 0. (2.7)

Within each Sk, function Θ(z) can be written as a linear combination of two
special solutions θ+k (z) and θ−k (z) to a linear homogeneous Equation (2.6):

Θ(z)|z∈Sk
= (BΘ

k )
T θk(z), BΘ

k

def
=

(
Θ(zk)

Θ(zk−1)

)
, θk =

(
θ+k
θ−k

)
,

θ±k |z∈Sk
satisfy Equation (2.6), θk(zk) =

(
1
0

)
, θk(zk−1) =

(
0
1

)
.

(2.8)

Equations (2.6), (2.7) with σ from Equation (2.5) define the real effective
refractive index n• ∈ (0,maxz n(z)] and the corresponding vertical mode Θ(z),
normalized by

∫
R |Θ(z)|2dz = 1. In typical applications, n• is between 3 and

4, such that BCs (2.7) for ρ = 1 and nL = nU ≈ 1 represent at z → ±∞
vanishing optical fields. Non-vanishing Fourier expansion coefficients within
the PC layers Sj ,

ξjr,s =
1

a2

∫ a/2

−a/2

∫ a/2

−a/2

n̄2(x, y, z)|z∈Sje
i2π(rx+sy)/adxdy, r, s ∈ Z \ 0, (2.9)

together with the PC-layer-wise integrals and related 2× 2 matrices pj , g
(k,j)
(r,s) ,

PΘ
j =

∫
Sj
|Θ(z)|2dz = (BΘ

j )
TpjBΘ∗

j , pj
def
=
∫
Sj
θj(z)θ

∗T
j (z)dz,

G(k,j)
(r,s) =

∫
Sk

∫
Sj
G(r,s)(z, z

′)Θ(z′)dz′ Θ∗(z)dz = (BΘ
j )

Tgk,jBΘ∗
k ,

g
(k,j)
(r,s)

def
=
∫
Sk

∫
Sj
θj(z

′)G(r,s)(z, z
′)dz′ θ∗Tk (z)dz, r, s ∈ Z,

(2.10)

are used to construct the coupling matrix C. Green’s functions Gp(z, z
′) with

p
def
= (r, s) and |p|2 def

= r2 + s2 solve the inhomogeneous problem [8]

∂2

∂z2Gp(z, z
′)− σ2

p(z)Gp(z, z
′) = −δ(z − z′), (z, z′) ∈ [0, Z]× [0, Z], (2.11)



Spectral Problem for Photonic Crystal Surface-Emitting Lasers 581

with radiating boundary conditions

∂Gp(0,z
′)

∂z = σp,LGp(0, z
′),

∂Gp(Z,z′)
∂z = −σp,UGp(Z, z

′). (2.12)

δ(ζ) in Equation (2.11) is the Dirac’s delta-function, whereas σp is defined by

σp(z) = σ̃( |p|λ0

a , n(z)), σp,j = σ̃( |p|λ0

a , nj), j ∈ {1, . . . ,m} ∪ {L,U}.

Since λ0

a ≈ n•, for |p| = 1 (not used when building C), the left-hand side of
Equation (2.11) reminds that of Equation (2.6). At z = z′±0, Equation (2.11)
implies

Gp(z
′ + 0, z′) = Gp(z

′ − 0, z′),
∂Gp(z

′+0,z′)
∂z =

∂Gp(z
′−0,z′)
∂z − 1. (2.13)

In typical applications, for |p| > 1, σp,j are strictly positive real, such that
BCs (2.12) imply the convergence of |Gp(z, z

′)| to zero when z → ±∞. When
|p| = 0, the real parts of σp,L and σp,U are absent, such that the radiated fields
preserve their intensity outside the domain [0, Z]. In this case, we use σp,j =
ik0|nj |, j ∈ {L,U}, which reminds us of Sommerfeld’s radiation conditions,
even though those are formulated only for two- and three-dimensional cases.

Matrix C is defined as an infinite sum of simpler 4×4-dimensional matrices,
which are functions of G(r,s), PΘ, and ξr,s:

C = C1D(PΘ, ξ±2,0, ξ0,±2) +Crd(G(0,0), ξ±1,0, ξ0,±1) +C2D,

C2D =
∑

|r|+|s|>1 C
(r,s)
2D (G(r,s),PΘ, ξr±1,s, ξr,s±1).

(2.14)

Crd is responsible for the outcoupling of the radiated light. For considered real-
valued n̄2, C1D is a Hermitian matrix, inducing coupling of counter propagating
fields only, whereas another Hermitian matrix C2D incorporates all higher-
order effects, including cross-coupling of fields, which is necessary for achieving
high quality of radiation. For more details on the definition of C, see [6, 7].

Remark 1. Since C1D and C2D in Equation (2.14) are Hermitian, i.e., C −
C∗T = Crd−C∗T

rd , the integral factor Iv in Equation (2.4) can be reformulated
as

Iv = 2ℑ
(
Φ,CΦ

)
= −

(
Φ, i[C −C∗T ]Φ

)
= 2ℑ

(
Φ,CrdΦ

)
,

i.e., is determined only by the radiative component of the matrix C.

3 Preliminaries

In this section, we introduce a set of new parameters and statements, which
are actively explored when constructing the field coupling matrix C.

3.1 Large and small number problem

The main numerical cost in estimating C is calculations of the double integrals

G(k,l)
(r,s) in Equation (2.10) for large sets of parameters (r, s). Estimation of

these integrals using numerically discretized functions Θ(z) and G(r,s)(z, z
′) is

Math. Model. Anal., 29(3):575–599, 2024.
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inefficient, especially when |p| is large, which causes a very fast exponential
growth and decay of |G(r,s)(z, z

′)| at z ≈ z′. Luckily, provided n• is known, θ
and G(r,s) can be written as linear combinations of exponentials1{

eσj(z−z̄j), e−σj(z−z̄j) for θj(z) in Sj ,

eνσp,k(z−z̄j)eν
′σp,j(z

′−z̄j), ν, ν′∈ ± for G
(k,j)
p (z, z′) in Sk × Sj ,

(3.1)

and the matrices pj , g
(k,j)
p in Equation (2.10) admit analytic expressions re-

lying on their integrals. Still, these expressions rely on possibly huge and
almost vanishing exponentials eσ·,j |Sj | and corresponding sinh and cosh func-
tions, which can not be properly handled by computer arithmetics. To avoid
numerical problems even when σj → 0 (not a very probable case in realistic
problems, achievable only when n• = nj) or e

σ·,j|Sj | → ∞ (unavoidable in cal-
culations of Green’s function with large |p| and large positive σ), we introduce
new notations:

(1− Γj)
def
= 2e−σj |Sj |

1+e−σj |Sj | , Γj = 1− (1− Γj) = tanh
σj |Sj |

2 ,

such that ℜΓj ≥ 0, Γj
σj→0−→ 0,

Γj

σj

σj→0−→ |Sj |
2 , Γj

ℜσj |Sj |≫1−→ 1.
(3.2)

In practical calculations, we define first 1− Γj (almost zero when Γj ≈ 1) and
only then Γj and the remaining Γj-dependent expressions. In this way, we can
keep a tiny but still non-vanishing factor 1−Γj , which could otherwise be lost
due to computer arithmetics2. When formulating our algorithms, we eliminate
this possibly tiny term from the denominators of all formulas.

3.2 Transfer matrices

When building C, we solve Equations (2.6) and (2.11), both related to the
equation

F ′′(z)− σ2(z)F (z) = 0, z ∈ ∪m
j=1Sj , (3.3)

where σ(z) is a complex layer-wise constant function,

σ(z)z∈Sj = σj ∈ C, σ2
j ∈ R, ℜσj ≥ 0, j ∈ {1, . . . ,m}. (3.4)

Below, we give several formulas for translating F and F ′ between spatial po-
sitions z and z′ by transfer matrices [2] and present algorithms for avoiding
possibly huge exponentials |eσj |Sj || in calculations. These formulas and al-
gorithms are used for constructing the vertical mode function Θ(z), Green’s
functions Gp(z, z

′), and required integral expressions of these functions.

1 In general, it is possible that n• = nk in specific layers Sk, such that σk = 0, and instead
of exponentials (3.1), we have to use linear w.r.t. z functions. In most cases, the formulas
derived below for nonzero σk can be corrected by taking their limit with σk → 0. Factors
σp,k used to construct Green’s functions are never zero in real applications.

2 For example, e−2σj |Sj | can be of order 10−100 and still be treated correctly in mul-
tiplicative expressions in the computer code. However, nominally the same number
(e−2σj |Sj | + 1)− 1 can be treated as zero during the calculations.
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Lemma 2. Assume that F (z) ∈ C2(Sj) satisfies Equations (3.3), (3.4), and
BF
j (i.e., F (zj−1) and F (zj)) are known. Then, according to Equation (2.8),

F (z) = (BF
j )

T θj(z), where θj =
(
θ+
j

θ−
j

)
, θ±j (z) =

± sinhσj(z−z̄j±|Sj |/2)
sinhσj |Sj | . (3.5)

If instead of F (zj) (or F (zj−1)) we have F ′(zj−1) (or F ′(zj)), the vector(
F
F ′
)
(z) at any z ∈ Sj can be written using transfer matrices:(
F
F ′

)
(z) = M j(z, zj−1;σj)

(
F
F ′

)
(zj−1) = M j(z, zj ;σj)

(
F
F ′

)
(zj),

M j(z, z̃;σj)|z,z̃∈S̄j

def
=

(
cosh(σj(z − z̃)) sinh(σj(z − z̃))/σj

σj sinh(σj(z − z̃)) cosh(σj(z − z̃))

)
.

(3.6)

When σj → 0, expressions
sinhσjξ

sinhσj |Sj | within θj(z) in Equation (3.5) should be

replaced by ξ
|Sj | , and M j(z, z̃;σj) in (3.6) by the matrix

(
1 z−z̃
0 1

)
.

Proof. One can easily check that the expressions for θj(z) in (3.5) and F (z)
in (3.6) satisfy Equation (3.3), whereas at the edges of Sj , θj(z) fulfills Equa-
tion (2.8). Since the second-row elements of M j in (3.6) are z-derivatives
of the corresponding first-row elements, M j provides a correct expression of
F ′(z) along Sj . The expressions for σj → 0 follow directly from the relation

limξ→0
sinh ξ

ξ = 1. ⊓⊔

Remark 2. Transfer matrices are invertible, M j(z, z̃;σj) = M−1
j (z̃, z;σj), and

can be combined with each other, M j(z, z̃;σj) = M j(z, z
′;σj)M j(z

′, z̃;σj).
In both these cases we assume that z, z′, z̃ ∈ S̄j .

Corollary 1. A complex conjugate of F (z) satisfying all conditions of Lemma 2
is given by Equation (3.5) using BF∗

j instead of BF
j .

Proof. We can easily show that the vector-function θj(z) in Equation (3.5) is
real, which immediately proves our statement. Recall that σ2

j ∈ R. For σ2
j > 0,

we have σj > 0 and
sinhσjξ

sinhσj |Sj | ∈ R. When σ2
j < 0, σj = i|σj | and the same

expressions can be written as
sin |σj |ξ

sin |σj ||Sj | ∈ R. ⊓⊔

Corollary 2. Matrix pj introduced in Equation (2.10) can be written as

pj
def
=

(
p+j p−j
p−j p+j

)
, p±j =

2[Γ 2
j ±1]+[Γ 2

j ∓1](1−Γ 2
j )|Sj |

σj
Γj

8σjΓj

σj→0−→ (3±1)|Sj |
12 . (3.7)

Proof. According to Corollary 1, θj defined in Equation (3.5) is real, i.e.,
θj = θ∗j . Integration of θ+j θ

−
j , (θ

+
j )

2, and (θ−j )
2 over Sj imply expressions (3.7).

The limit of these expressions for σj → 0 can be found using L’Hopital’s rule.
⊓⊔

Math. Model. Anal., 29(3):575–599, 2024.
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3.3 Translation of boundary conditions

Lemma 3. Assume that the complex function F (z) ∈ C2(∪m
j=1Sj)∪C1([0, Z])

satisfies the problem (3.3), (3.4). Then, we can construct composite transfer
matrices M(zl, zk;σ), translating the vector

(
F
F ′
)
(z) between any layer inter-

faces zk and zl, 0 ≤ k, l ≤ m. If {Sj} are all layers between zk and zl, the
composite matrix elements can be written as linear combinations of all different
products of exponentials e±σj |Sj |.

Proof. For simplicity, let us assume that zl > zk, such that {Sj} are all layers
with indices j = k + 1, . . . , l. Because of the continuity of F and F ′, transfer
matrices (3.6) can also be used at the layer borders, which also are borders of
the neighboring layer Sj−1 or Sj+1. By superposing layer-wise transfer matrices
M j , we construct the required overall transfer matrix,

M(zl, zk;σ) = M l(zl, zl−1;σl) · · ·Mk+1(zk+1, zk;σk+1), (3.8)

propagating
(
F
F ′
)
(z) from zk to zl. Each of submatrices M j is determined by

combinations of e−σj |Sj | and e+σj |Sj | (or just constants 0, 1, |Sj | if σj → 0).
Thus, the elements of the overall matrix are as suggested in this lemma. An
invertibility of each M j , see Remark 2, allows us to construct an inverse matrix
M−1(zl, zk;σ) = M(zk, zl;σ) = Mk+1(zk, zk+1;σk+1) · · ·M l(zl−1, zl;σl). ⊓⊔

Corollary 3. We can rewrite matrices M(zl, zk;σ) with k ̸= l in Equation (3.8)
as

M(zl, zk;σ) =
[∏max{l,k}

j=min{l,k}+1 e
σj |Sj |

]
M

† sgn(l−k)
[l,k] (σ),

M †ν
[l,k](σ) =

{
M †ν

[l] (σl) · · ·M †ν
[k+1](σk+1) for ν = +

M †ν
[l+1](σl+1) · · ·M †ν

[k](σk) for ν = −
, where

M †±
[j] (σj)

def
= 1

(1+Γj)2

(
1 + Γ 2

j ±2Γj/σj

±2σjΓj 1 + Γ 2
j

)
σj→0−→

(
1 ±|Sj |
0 1

)
,

(3.9)

such that the reduced matrices M † do not depend on possibly huge |eσj |Sj ||.

Proof. The statement follows directly from Equations (3.8), (3.6), and (3.2).
⊓⊔

Lemma 4. Matrices M † translate Robin BCs

F ′(0) = σLF (0), F ′(Z) = −σUF (Z), (3.10)

of Equations (3.3) and (3.4) to similar conditions at any material layer inter-
face zj, j = 1, . . . ,m− 1:

F ′(zj) = ηLj+1F (zj), ηLj+1 =
M†+

[j,0],21
(σ)+σLM

†+
[j,0],22

(σ)

σLM
†+
[j,0],12

(σ)+M†+
[j,0],11

(σ)
,

F ′(zj) = −ηUj F (zj), ηUj =
M†−

[j,m],21
(σ)−σUM†−

[j,m],22
(σ)

σUM†−
[j,m],12

(σ)−M†−
[j,m],11

(σ)
.

(3.11)
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Proof. Equations (3.11) can be easily derived by relating the vectors
(
F
F ′
)
(0)

or
(
F
F ′
)
(Z) with

(
F
F ′
)
(zj) using transfer matrices M(zj , z0;σ) or M(zj , zm;σ),

see Equation (3.8), exploring the reduced form of M given in Equation (3.9),
and solving the resulting equations together with the BCs (3.10). ⊓⊔

Remark 3. To avoid problems induced by computer arithmetics when working
with almost vanishing numbers, for calculations of factors ηL and ηU, one should
better use the recurrent expressions, which do not fail even when in some Sj

Γj → 1 and still are well defined when |σj | → 0 and Γj → 0:

ηL1 = σL,
[
ηLj+1 − σj

]
=

(ηL
j −σj)(1−Γj)

2

(1+Γ 2
j )+

2Γj
σj

ηL
j

σj→0−→ ηL
j

1+|Sj |ηL
j
, 1 ≤ j < m,

ηUm = σU,
[
ηUj−1 − σj

]
=

(ηU
j −σj)(1−Γj)

2

(1+Γ 2
j )+

2Γj
σj

ηU
j

σj→0−→ ηU
j

1+|Sj |ηU
j
, m ≥ j > 1.

(3.12)

These conditions can be derived by transferring the Robin-type relations of F
and F ′ at material interfaces zj by a single adjacent material layer to zj+1

(using the matrix M †+
[j+1](σj+1) from Equation (3.9), obtaining the following

ηLj+2) or zj−1 (using M †−
[j] (σj), obtaining ηUj−1). When Γj ≈ 1, the expressions

at both sides of the equations are also small, and we avoid undesired additions
and subtractions of small and moderate numbers in this formula.

Remark 4. The procedures of Remark 3 can also be used for Dirichlet BCs,
F (0) = F (Z) = 0 (e.g., ρ = 0 in BCs (2.7)). The procedure (3.12) should be

started from
[
ηL2 −σ1

]
= σ1(1−Γ1)

2

2Γ1
and

[
ηUm−1−σm

]
= σm(1−Γm)2

2Γm
in this case.

3.4 Helmholtz problem

The Helmholtz problem (2.5)–(2.7) defines the vertical mode Θ(z) and the
effective index n•. To find n•, we look for the roots of the related characteristic
equation [2, 4]. Θ(z) is reconstructed using transfer matrices.

Theorem 1. The problem (2.5)–(2.7) with ρ ∈ {0, 1} has a nontrivial solution
Θ(z) ∈ C2(∪m

j=1Sj) ∪ C1([0, Z]) if and only if the characteristic equality

0 = χ(σ)
def
=

{(
σU 1

)
M(Z, 0;σ)

(
1

σL

)
if ρ = 1 [Robin BC],

M12(Z, 0;σ) if ρ = 0 [Dirichlet BC]
(3.13)

holds. Here (2× 2)-matrix M(Z, 0;σ) is constructed as suggested in Lemma 3.

Proof. Let Θ(z) be a nontrivial solution to the considered problem. Assume
that ρ = 1, s.t. Θ(0) ̸= 0. Otherwise,

(
Θ
Θ′
)
vanishes at z = 0 due to BCs (2.7),

at all material layer interfaces due to Lemma 3, and at the remaining z due to
Lemma 2. The same consideration allows us to conclude that Θ(Z) ̸= 0 as well.
Translation of the nontrivial

(
Θ
Θ′
)
(0) over [0, Z] using M(Z, 0;σ) and apply-

ing BCs (2.7) to eliminate Θ′(0) and Θ′(Z) from the resulting relation implies
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the condition
(

1
−σU

)
Θ(Z) = M(Z, 0;σ)

(
1
σL

)
Θ(0), which, after the multiplica-

tion of both sides by the row-vector (σU 1) from the left gives characteristic
equation (3.13). Assume now that χ(σ) = 0, i.e.,

−σU[M11(Z, 0;σ) + σLM12(Z, 0;σ)] = M21(Z, 0;σ) + σLM22(Z, 0;σ).

Let us translate a vector
(

1
σL

)
(satisfying BCs (2.7) at z = 0) with M(z, 0;σ)

over [0, Z], obtaining nontrivial Θ(z) and Θ′(z) in this way. Within [0, Z], Θ(z)
solves Equations (2.5), (2.6). At z = Z,

(
Θ
Θ′
)
(Z) = M(Z, 0;σ)

(
1
σL

)
∝
(

1
−σU

)
,

i.e., Θ(z) satisfies BCs (2.7) at z = Z and, thus, solves our problem.
For ρ = 0, the BCs (2.7) are of Dirichlet-type, such that a nontrivial Θ(z)

should have non-vanishing Θ′(0) and Θ′(Z). Translation of
(

0
Θ′(0)

)
over [0, Z]

implies
(
0
1

)
Θ′(Z) = M(Z, 0;σ)

(
0
1

)
Θ′(0), which gives us χ(σ) = 0 in (3.13). On

the other hand, if χ(σ) = 0, by propagating
(
Θ
Θ′
)
(0) =

(
0
1

)
over [0, Z], we obtain

a nontrivial Θ(z) solving Equations (2.5), (2.6), and at z = Z satisfying the
relation Θ(Z) = χ(σ), i.e., fulfilling Dirichlet BCs in (2.7). ⊓⊔

Corollary 4. MatrixM(Z, 0;σ) in Equation (3.13) can be replaced byM †+
[m,0](σ)

or by another matrix M ††+
[m,0](σ) obtained after substituting M †+

[j] (σj) within

some layers Sj in Equation (3.9) with the original layer-wise propagator
M j(zj , zj−1;σj).

Proof. The proof is identical to that of Theorem 1, since, due to Corollary 3,
M †+

[m,0](σ) or M ††+
[m,0](σ) can be obtained from M(Z, 0;σ) by multiplying it

with a non-vanishing factor composed of all or several multipliers e−σj |Sj |. ⊓⊔

4 Construction of the coupling matrix C

Notations and statements presented in the previous section are used for con-
structing the field coupling matrix C, which will be discussed in this section.

4.1 Vertical mode and its intensity

According to Theorem 1 and Corollary 4, Equation (3.13) can be written as

χ(n•)
def
= χ(σ̃(n•, n(z))) = 0, (4.1)

where σ̃ is defined in Equation (2.5), and n(z) is a layer-wise constant positive
real function introduced in Subsection 2.2. Since n(z) is real, all physically
relevant n• satisfying Equation (2.6) and, thus, Equation (3.13) are also real
and belong to the interval (0,maxz n(z)]. To find these roots, we scan χ(ξ)
along the suggested interval, detect rough approximations of n•, and correct
them using the Newton-Raphson iterative procedure, exploring analytic ex-
pressions for χ and χ′. We construct the characteristic function (4.1) using

the matrix M †+
[m,0](σ) (3.9). The layer-wise constant σ(z) is defined by the

parameters σL, σU, and σr, r = 1, . . . ,m, which are functions of the variable

ξ in (2.5). Accounting that d
dξσν(ξ) =

k2
0ξ

σν(ξ)
, we can construct the function
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χ(σ̃(ξ, n(z))) = χ(ξ) and its ξ-derivative using the recurrent matrix-vector
multiplication procedure:

χ(ξ) =
(
σU
1

)TFm(ξ), χ′(ξ) =
(
σU
1

)TF ′
m(ξ) +

k2
0ξ
σU

(
1
0

)TFm(ξ), whereFr(ξ)
def
= M †+

[r] (σr)Fr−1(ξ),

F ′
r(ξ)

def
= M †+

[r] (σr)F ′
r−1(ζ) +

k2
0ξ

d
dσM

†+
[r] (σr)

σr
Fr−1(ξ),

1 ≤ r ≤ m,

F0(ξ) =
(

1
σL

)
, F ′

0(ξ) =
[

d
dσL

(
1
σL

)]
dσL

dξ =
k2
0ξ
σL

(
0
1

)
.

If σj(ξ) → 0, factor F ′
j(ξ) is undefined. Thus, following the statement of

Corollary 4, for those layers where |e|Sj |σj(ξ)| remains moderate (1 for σj = 0),

during the construction of χ(ξ) instead of M †+
[j] (σj), one should better use

M j(zj , zj−1;σj), which has a well-defined ξ-derivative even for vanishing σj :

d

dξ
M j(zj , zj−1;σj(ξ)) =

k20ξ
d
dσM j(zj , zj−1;σj)

σj

σj→0−→ k20ξ|Sj |

(
|Sj | |Sj |2

3
2 |Sj |

)
.

After finding vertical-mode-defining n•, we reconstruct the vertical mode
and find its layer-wise intensities PΘ

j using the following steps:

i) Find σj = σ̃(n•, nj), 1 ≤ j ≤ m (and j ∈ {L,U}, if ρ = 1 in Equa-
tion (2.7));

ii) Find factors ηL (or ηU) for Robin-type relations of Θ and Θ′ (3.11) at
the border zk of the active zone or PC layer (where |Θ| is expected to be
large) using Remark 3 (and Remark 4, if Dirichlet BCs are considered);

iii) Set
(
Θu

Θ′
u

)
(zk) =

(
1

ηL
k+1

)
and propagate this vector towards z = Z and

z = 0 with transfer matrices (3.8) and (3.6). The selection of zk allows us
to avoid large exponential growth within the layers Sj with large ℜσj |Sj |.
Here, we can have less vital exponential decay towards zero instead;

iv) During propagation, collect Θu(z) at the layer borders and use them to
evaluate the mode power PΘu

j in each layer Sj ; see Equations (2.10)
and (3.7) for the definition of matrix pj . For Robin BCs, we have
Θu(±∞) = 0 and Γ0,m+1 → 1, s. t. in the infinitely long outside re-

gions S0 and Sm+1 the relations PΘu
0 = |Θu(0)|2/(2σL) and PΘu

m+1 =
|Θu(Z)|2/(2σU) hold;

v) PΘu

T =
∑m+1

j=0 PΘu
j is the overall intensity of the unscaled mode Θu(z).

It is used for the final mode scaling, Θ(z) = Θu(z)/(PΘu

T )1/2, and for

defining the scaled mode power within the layers, PΘ
j = PΘu

j /PΘu

T .

An example with six calculated vertical modes and corresponding function n(z)
is shown in Figure 2. We used vertical structure and the cell size a from [6] and
Robin BCs with nL = nU = 1 in calculations. PC cells contain two air-filled
45◦ slanted ellipses centered at (x±, y±) = (±a

8 ,±
a
8 ), see the middle diagram

of Figure 1(d), implying n• ≈ 3.429 [6]. Besides the broad n- and p-cladding
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Figure 2. Six calculated scaled vertical
modes (solid lines) and corresponding
function n(z) (red dots). Magenta: the
main mode used for construction of C.
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Figure 3. Green’s functions G(0,0)

(magenta), G(1,1) (green), and G(2,2) (light
blue) at fixed z′ within the PC layer. Solid
and dashed: real and imaginary parts of Gp.

layers at the edges of Figure 2, we distinguish an active region composed of
three quantum wells (QWs) and a PC layer. The mode with the largest n• and
largest intensity within the QW layer is the vertical mode of our interest.

4.2 Green’s function and related integral expressions

When reconstructing Gp(z, z
′) [8] for (z, z′) ∈ Sk×Sj , we distinguish the cases

of k = j and k ̸= j. In the first case, for z ∈ ∪j−1
l=1Sl or z ∈ ∪m

l=j+1Sl and
z′ ∈ Sj , Equations (2.11), (2.12) are similar to (3.3), (3.10). We use matrices

M † and Remark 3 to calculate ηLp,j and ηUp,j , determining Robin BCs (3.11)
at the edges of Sj . In subregions z < z′ and z > z′ of the square Sj × Sj ,
the Green’s functions solve the homogeneous Equation (2.11), i.e., they can be
written as3

Gp(z, z
′) =

{
BL+

p,j (z
′)eσp,jz +BL−

p,j (z
′)e−σp,jz for z < z′,

BU+
p,j (z

′)eσp,jz +BU−
p,j (z

′)e−σp,jz for z > z.

Gp(z, z
′) satisfies BCs (3.11) at z = zj−1 and zj and the connection conditions

(2.13) at z = z′. By resolving the resulting system of four inhomogeneous
equations w.r.t. four variables BL±

p,j , B
U±
p,j , we can rewrite Gp(z, z

′) as

Gp(z, z
′) = e−σp,j |z−z′|

2σp,j
+ ET

p,j(z
′)Bp,jEp,j(z), where

Ep,j(ξ) = (1 + Γp,j)

(
eσp,j(ξ−zj)

eσp,j(zj−1−ξ)

)
,

Bp,j =

 (σp,j+ηL
p,j)(σp,j−ηU

p,j)

2σp,j∆p,j

(σp,j−ηL
p,j)(σp,j−ηU

p,j)(1−Γp,j)

2σp,j∆p,j(1+Γp,j)

(σp,j−ηL
p,j)(σp,j−ηU

p,j)(1−Γp,j)

2σp,j∆p,j(1+Γp,j)

(σp,j−ηL
p,j)(σp,j+ηU

p,j)

2σp,j∆p,j

,
∆p,j = (σp,j + ηLp,j)(σp,j + ηUp,j)(1 + Γp,j)

2

−(σp,j − ηLp,j)(σp,j − ηUp,j)(1− Γp,j)
2.

(4.2)

3 Note that |p| ̸= 1, such that |σp,j | is not vanishing.



Spectral Problem for Photonic Crystal Surface-Emitting Lasers 589

Inspired by the form of Gp(z, z
′) within Sj × Sj , given as a linear combination

of four exponentials eνσp,jzeν
′σp,jz

′
, {ν, ν′} ∈ {±}, we seek to write Gp for any

z′ ∈ Sj and z belonging to any of material interfaces, z = zl, 0 < l < m, as

Gp(zl, z
′) = (J j

p,l)
TEp,j(z′), with z′-independent J j

p,l =

(
J j+
p,l

J j−
p,l

)
. (4.3)

Indeed, at both sides of the Sj-layer, Equation (4.2) provides the relations

J j±
p,j−1 =

(1∓Γp,j)(σp,j∓ηU
p,j)

∆p,j
, J j±

p,j =
(1±Γp,j)(σp,j±ηL

p,j)

∆p,j
. (4.4)

Since z′ ∈ Sj , Green’s function defining Equation (2.11) is homogeneous for
z ≤ zj−1 and z ≥ zj . Due to Lemma 3 and Corollary 3, one can translate( Gp

∂zGp

)
(z, z′) from zj−1 to zl, l < j − 1, and zj to zl, l > j, using M †−

[l] (σp.l)

and M †+
[l] (σp.l) (3.9), respectively. Exploiting the relations ∂zGp(zl, z

′) =

ηLp,l+1Gp(zl, z
′), l < j, and ∂zGp(zl, z

′) = −ηUp,lGp(zl, z
′), l ≥ j, with ηL and

ηU derived following Remark 3 and collecting the terms at the corresponding
exponentials e±σp,l(z

′−z̄l) provide the required relations

J j±
p,l−1 =

σp,l(1−Γ 2
p,l)

σp,l(1+Γ 2
p,l)+2ηL

p,lΓp,l
J j±
p,l , l = j − 1, . . . , 1,

J j±
p,l =

σp,l(1−Γ 2
p,l)

σp,l(1+Γ 2
p,l)+2ηU

p,lΓp,l
J j±
p,l−1, l = j + 1, . . . ,m.

(4.5)

For any k ̸= j and z ∈ Sk, parametrically on z′ ∈ Sj depending Gp(z, z
′)

satisfies homogeneous equation (3.3) and, thus, is defined by the analog of

Equation (3.5) with boundary values BGp(·,z′)
k (i.e., Gp(zk−1, z

′) and Gp(zk, z
′))

given by Equations (4.3)–(4.5) and θp,k(z) defined using σp,k instead of σk. One
can show that in each subregion Sk × Sj , k ̸= j, Gp(z, z

′) can be written as

Gp(z, z
′) = ET

p,j(z
′)Aj

p,kEp,k(z), where

Aj
p,k =


A†j

p,kJ
j
p,k

(
(1 + Γp,k)(σp,k + ηLp,k)

(1− Γp,k)(σp,k − ηLp,k)

)T
if k < j,

A†j
p,kJ

j
p,k−1

(
(1− Γp,k)(σp,k − ηUp,k)

(1 + Γp,k)(σp,k + ηUp,k)

)T
if k > j,

A†j
p,k = 1

2(1+Γ 2
p,k)σp,k+2Γp,k

[
(ηL

p,k+ηU
p,k)−sgn(k−j)(ηL

p,k−ηU
p,k)
] .

(4.6)

Examples of three Green’s functions Gp(z, z
′) for p = (0, 0), (1, 1), and (2, 2)

for the fixed z′ and the parameters explored in Figure 2 are shown in Figure 3.
For |p| = 0, the function has non-vanishing and, within each but z′-containing
layer, harmonically oscillating real and imaginary parts. For other p, ℑGp = 0,
whereas ℜGp has a sharp exponentially growing/decaying spike at z = z′.
This shape of Gp suggests that for large |p|, a fully numerical estimation of Gp

requires fine numerical meshes and considerable computational time.

Let us switch to calculating matrices g
(k,j)
p from Equation (2.10). For con-

tributions due to continuously differentiable part of Gp (defined by matrices
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B and A in Equations (4.2), (4.6)), separation of variables z and z′ is possi-
ble, and we only need to calculate layer-wise integrals of the matrix-function
θj(z)ET

p,j(z), with Ep,j and θj defined in Equations (4.2) and (3.5), respectively:

∫
Sj

θj(z)ET
p,j(z)dz = Ip,j =

(
I+p,j I−p,j
I−p,j I+p,j

)
, where

I±p,j =
(σp,j∓σjΓj)(Γp,j±1)∓

σj
Γj

(1−Γ 2
j )Γp,j

(σ2
p,j−σ2

j )

σj→0−→ σp,j |Sj |(Γp,j±1)∓2Γp,j

σ2
p,j |Sj | .

The least trivial is the major contribution to g
(j,j)
p , which involves double-

integration of e−σj |z−z′| over Sj×Sj and requires splitting the inner integration
region into two subintervals [zj−1, z] and [z, zj ]. Still, we can show that∫

Sj

∫
Sj

θj(z
′) e−σp,j |z−z′|

2σp,j
dz′ θTj (z)dz =

pj

(σ2
p,j−σ2

j )
− Ip,jRp,jIp,j , where

Rp,j = R†
p,j

(
R′

p,j R′′
p,j

R′′
p,j R′

p,j

)
, R′

p,j =
(σ2

p,j−σ2
j )

σp,j(1+Γj)

σj→0−→ σp,j ,

R′′
p,j=

(σ2
p,j+σ2

j )(1−Γp,j)+2
σj
Γj

σp,j(Γ
2
j −Γp,j)

σp,j(1+Γj)(1+Γp,j)

σj→0−→ (1−Γp,j)σp,j |Sj |−4Γp,j

(1+Γp,j)|Sj | ,

R†
p,j =

(1+Γj)

8
(
σp,j−

σj
Γj

Γp,j

)(
σp,jΓp,j−σjΓj

) σj→0−→ |Sj |
8Γp,jσp,j(σp,j |Sj |−2Γp,j)

.

The expressions for g
(k,j)
p now can be written as

g
(k,j)
p =

{ pj

(σ2
p,j−σ2

j )
+ Ip,j [Bp,j −Rp,j ]Ip,j if k = j,

Ip,jA
j
p,kIp,k if k ̸= j.

Recall that σp,j is non-vanishing, σp,j and ηLp,j or ηUp,j can be similar (corre-
sponding differences are small), and, especially for large |p|, factor Γp,l ≈ 1,
which should be ever accounted for when estimating the required expressions.
All formulas in this subsection are written avoiding summations of numbers
differing by many orders and divisions of very small or very large numbers.

Such operations, used in sometimes more compact formulas for PΘ
j and G(k,j)

(r,s) ,

have led to inaccuracies of computer arithmetics and violations of calculations
in our first version of the numerical code.

4.3 Truncation of the coupling matrix

As it was indicated in Equation (2.14), C, or, more precisely, C2D, relies on

the infinite sum of submatrices C
(r,s)
2D , depending on the Fourier coefficients

ξjr±1,s, ξ
j
r,s±1 (2.9) and integral parameters PΘ

j , G(k,j)
(r,s) (2.10) with integration

performed in the PC sublayer-defined regions. By the finite (truncated) sum

C
(M)
2D =

∑
|r|+|s|>1,{|r|,|s|}≤M C

(r,s)
2D , (4.7)

we denote approximations of C2D obtained using the truncation parameter
M . The Fourier coefficients ξjr,s are obtained using the Fast Fourier Trans-
form (FFT) of the uniformly in the unit cell of the PC discretized function
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n̄2(x, y, z)|z∈Sj
. Thus, calculations of C

(M)
2D are only possible if the number of

discretization steps along the cell sides more than twice exceeds the parameter
M . In the calculation examples of Figure 4, we used the model parameters as
in Figures 2 and 3 and a uniform 211×211 discretization of the unit cell, which
is sufficient for construction of the truncated sums with up to M = 1022.
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Figure 4. Calculations of C
(M)
2D in dependence on the truncation parameter M (4.7).

(a): Time required for calculations of C
(M)
2D in the same PCSEL with 1, 3, and 5 PC layers.

(b): Relative error of C
(M)
2D elements as function of M . Inset: moduli of these elements.

(c): Spectrum of iC in dependence on M . X: eigenvalues of iC obtained using C
(20)
2D .

In Figure 4(a), we show the time needed for calculations of C
(M)
2D with

different M when the PCSEL has a single PC layer (magenta) or this layer
is subdivided into three (green) and five (light blue) sublayers, respectively.
With an increase of M , this time grows quadratically in all three cases, which
is in accord with a quadratic growth of the parameter set {(r, s)} satisfying
the summation conditions in Equation (4.7). An increase in the number of PC
sublayers implies another, approximately quadratic, growth of the calculation

time, which is due to the necessity of estimating factors G(k,j)
p for growing

sets of PC layer indices {(k, j)} (recall that in the structure with a single PC

layer Sk, a single factor G(k,k)
p is needed for each value of |p|). We note that

Figure 4(a) shows only the time needed for the estimation of C
(M)
2D . Time spent

for construction of the whole matrix C using M = 1020 (including reading and
preprocessing of model parameters, 2-dimensional FFT of n̄(x, y, z), and finding
the vertical mode and the remaining components of C) was about 41, 107, and
268 s in 1-, 3-, and 5-PC-layer cases, respectively. In contrast to the above-used
analytic formulas, calculations of C using M = 20, multi-layer PCs, and fully

numerical procedures for integral factors G(k,j)
p and PΘ

j took the whole day and
even more.
Figure 4(b) shows the evolution of the relative error |(C(M)

2D,ij−C2D,ij)/C2D,ij |
(main diagram, C

(1020)
2D was used instead of the exactC2D) and |C(M)

2D,ij | (insert)
with an increase ofM . SinceC2D is Hermitian [6,7] and due to the symmetry of
the PC cell w.r.t. y = x line, the moduli of all C2D components are represented
by these four curves. Notably, M = 160 is sufficient to reduce the relative errors
of all C2D elements to 1% and less in this case. In practical calculations, where
estimation of the eigenvalues of the spectral problem (2.3) is required, even
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smaller values of M can be sufficient. The illustration is given in Figure 4(c),

showing changes in the spectra of iC calculated using truncated C
(M)
2D with

an increase of M . Crosses in this diagram, representing the eigenvalues ΛiC

obtained with a moderate M = 20, have nearly the same real parts and not so
much distinguishable imaginary parts as the eigenvalues calculated using high
M (dark bullets in the same figure). Since ΛiC give us decent approximations of
the eigenvalues solving Equation (2.3) with L → ∞, we expect that moderate
M can be sufficient when considering the same problem for large but still
finite L.

5 Numerical solution of the spectral problem

Similar spectral problems defined in one-dimensional domains occur, e.g., in the
analysis of edge-emitting distributed-feedback lasers. Often, these problems
can be solved exactly for a finite number of modes using transfer matrices,
characteristic functions, and replacement of the spectral problem by the root-
finding problem [10], as it was done in Subsection 4.1. In the limit case of fully
decoupled cross-propagating field functions Φu and Φv, i.e., when off-diagonal
2×2 blocks of matrixC are 0, Equation (2.3) splits into a pair of effectively one-
dimensional problems. As will be shown later in this work, exact eigenvalues
Λ1D for this limit-case problem can still provide reasonable approximations for
certain eigenvalues of the whole system. To find the modes in the general case,
we use a fully numerical approach based on finite difference approximations.
To construct a numerical scheme, we subdivide the domain [0, L] × [0, L] into
n2 squares with the side length h = L

n , and introduce the staggered mesh,

ωh
u = ω′h

x × ω′′h
y and ωh

v = ω′′h
x × ω′h

y , where

ω′h
ξ = {ξj = jh, 0 ≤ j ≤ n}, ω′′h

ξ = {ξj− 1
2
= (j − 1

2 )h, 1 ≤ j ≤ n},

see black and red bullets in Figure 5. This mesh defines the 4n(n+1)-component
grid function Φh, which is used to approximate Φ(x, y) from Equation (2.2):

Φh =
(
Φh

u

Φh
v

)
, Φh

u =
(
Φh+

u

Φh−
u

)
, Φh

v =
(
Φh+

v

Φh−
v

)
, where

Φh±
u,j,l−0.5 ≈ Φ±

u (xj , yl−0.5), Φh±
v,j−0.5,l ≈ Φ±

v (xj−0.5, yl).

These components are variables of the linear system consisting of 4n2 equations
approximating each of four equations in (2.3) at n2 spatial positions ω′′h

x ×ω′′h
y

(central positions of small squares in Figure 5) and 4n BC-induced relations:(
σ∂h

x 0
0 σ∂h

y

)
Φh =

[
iC − Λh

]
Φ̄h, (x, y) ∈ ω′′h

x × ω′′h
y ,

Φh+
u,0,k−0.5 = Φh−

u,n,k−0.5 = Φh+
v,k−0.5,0 = Φh−

v,k−0.5,n = 0, 1 ≤k≤ n.

(5.1)

Here, ∂h
xΦ

h, ∂h
yΦ

h, and Φ̄h are linear operators of the grid function Φh, provid-

ing finite-difference approximations of ∂
∂xΦ,

∂
∂yΦ, and Φ at ω′′h

x × ω′′h
y .
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Figure 5. Scheme of the discretized
computation domain. Bullets indicate

spatial positions where mesh functions Φh
u

and Φh
v are defined.
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Figure 6. Schematics of sparse matrices
Hh (non-vanishing black and red elements)
and Dh (non-vanishing red elements) for the

second order finite difference scheme.

5.1 Second order finite difference scheme

A simple approximation of Equations (2.3) at ω′′h
x ×ω′′h

y is given by the second-
order finite difference scheme (5.1), obtained using

Φ̄h±
u,j,l

def
= σh

j Φ
h±
u,·,l−0.5, Φ̄h±

v,j,l

def
= σh

l Φ
h±
v,j−0.5,·,

∂h
xΦ

h±
u,j,l

def
= σ†h

j Φh±
u,·,l−0.5, ∂h

yΦ
±
v,j,l

def
= σ†h

l Φh±
v,j−0.5,·,

(5.2)

where operators σh
k and σ†h

k are given by

σh
kV

h =
V h
k +V h

k−1

2 , σ†h
k V h =

V h
k −V h

k−1

h , 1 ≤ k ≤ n. (5.3)

A discrete analog of conservation law (2.4) holds for Equations (5.1)–(5.3),
which indicates good quality of the numerical scheme.

Lemma 5. Let Λh and nontrivial Φh satisfy Equations (5.1)–(5.3). Then

Ih
g = Ih

v + Ih
l , where Ih

g = −2ℜΛh

∥∥Φ̄h
∥∥2
h
, Ih

v = 2ℑ(Φ̄h,CrdΦ̄
h)h,

Ih
l = h

n∑
j=1

|Φh+
u,n,j−0.5|2 + |Φh−

u,0,j−0.5|2 + |Φh+
v,j−0.5,n|2 + |Φh−

v,j−0.5,0|2.

(5.4)
Here Φ̄h and CΦ̄h are n2-component sets of four-component vectors Φ̄h

j,l and

CΦ̄h
j,l; (ξ̄h, ζ̄h)h = h2

∑n
j,l=1 ξ̄

h∗T
j,l ζ̄hj,l and

∥∥ξ̄h∥∥
h

= (ξ̄h, ξ̄h)
1/2
h are discrete

analogs of scalar products and norms introduced in Lemma 1.

Proof. Linear equations in (5.1) can be interpreted as a n2-component set
of four-equation subsystems, each approximating Equation (2.3) at different
positions of ω′′h

x × ω′′h
y . By applying the discrete scalar product with respect
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to this set and 2Φ̄h, taking the real part, and eliminating 4n boundary el-
ements, we get Ih

l = 2ℜ
(
Φ̄h, iCΦ̄h

)
h
+ Ih

g . As in Remark 1, the relation

2ℜ
(
Φ̄h, iCΦ̄h

)
h
= i
(
Φ̄h, [C − C∗T ]Φ̄h

)
h
= Ih

v immediately leads to the proof
of this Lemma. ⊓⊔

Substituting the expressions (5.2), (5.3) into Equation (5.1), multiplying them
by 2, and eliminating the BCs allow rewriting our schemes as a standard gen-
eralized spectral problem (or corresponding classical spectral problem):

HhW
h = ΛhDhW

h ⇔ D−1
h HhW

h = ΛhW
h. (5.5)

Here, the 4n2-dimensional vector Wh contains all variables of Φh except for
boundary elements from Equation (5.1). Complex non-Hermitian Hh and real-
valued Dh are sparse 4n2×4n2-matrices with ∼ 32n2 and ∼ 8n2 non-vanishing
elements each. For example, we can set

Wh
2j−1+2n(l−1) = Φh−

u,j−1,l−0.5, Wh
2j+2n(l−1) = Φh+

u,j,l−0.5,

Wh
2l−1+2n(j−1+n) = Φh−

v,j−0.5,l−1, Wh
2l+2n(j−1+n) = Φh+

v,j−0.5,l,

such that matrices Hh and Dh have at least half of their non-vanishing ele-
ments concentrated close to the main diagonal; see schematic representation of
these matrices in Figure 6 for the case of n = 4. In the matrix Hh, only the
elements denoted by black or red stars are non-vanishing. In the easily invert-
ible matrix Dh, the elements denoted by black stars vanish as well, whereas
at the red star positions stands 1. Once the algorithm is constructed correctly,
calculating both matrix-vector products HhV

h and DhV
h requires ∼ 44n2

arithmetic operations; estimating D−1
h V h with arbitrary 4n2-dimensional vec-

tor V h can be done with ∼ 4n2 operations. Construction of the whole matrix
D−1

h Hh with ∼ 8n3 non-vanishing entries also requires ∼ 4n2 operations.

5.2 Example

All formulas, algorithms, and schemes presented above were implemented in
the solver, which is well suited for the calculation of several essential optical
modes of the PCSEL and is extensively used for simulating new design con-
cepts of all-semiconductor broad-emission-area PCSELs. The implementation
of algorithms was performed using the Julia programming language (version
1.9) [3]; the spectra of Equation (5.5) have been calculated exploring the func-
tion “eigen()” available within the Julia’s “LinearAlgebra” library and/or using
additionally installed ARPACK library. The choice of programming environ-
ment will enable a simplified connection to other in-house available Julia-based
solvers for the simulation of different semiconductor device aspects. The ex-
ample calculations presented in Figure 7 were performed for the PCSEL device
with L = 300µm (as considered in [6]), with the vertical structure and PC
layer’s configuration explored already when performing calculations for Fig-
ures 2–4. In this example, the modes (Λh, Φ

h) solve the discrete spectral prob-
lem (5.1) for several small-to-moderate discretization parameter n values.

The numerical scheme (5.1) has 4n2 (i.e., a finite number of) eigenvalues
Λh and, thus, is not able to approximate all (an infinite number of) eigenvalues
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Figure 7. Calculations of eigenvalues Λh solving Equation (5.1). (a): All Λh for n = 16
(magenta), 32 (red), and 48 (light blue). (b): same Λh close to the origin. (c) and (d):
Evolution of the main (smallest threshold) and the second mode with growing n. Empty

symbols (squares, circles, triangles, rhombs) in (b)-(d): five main modes for n = 48. Orange
full squares in (a), (b): eigenvalues Λ1D in the limit case of the original system (2.3) with
decoupled Φu and Φv . Black triangle in (b): lowest-threshold eigenvalue ΛiC. Bottom row:

intensity distributions of five main eigenfunctions, |Φh(x, y)|2, within [0, L]× [0, L].

Λ of the original problem (2.3). Figure 7(a) shows how the spectra of (5.1)
evolve with an increase of n. For each fixed n, most of Λh belong to the
prolongated clusters, all grouped along a w.r.t. y-axis symmetric circle with a
radius ∝ n = L/h. Since Hh in Equation (5.5) is a complex non-Hermitian
matrix, the spectra themself are not symmetric. The number of clusters and
the number of modes within each cluster grows linearly with n. Eigenvalues
with large −ℜΛh are far away from realistic Λ, which for an uncoupled Φu

and Φv case are represented by densely to each other located orange squares
in panel (a). On the other hand, Λh with small −ℜΛh and small or moderate
|ℑΛh| provide a much better resemblance of realistic Λ: see Figure 7(b) where
only Λh within a small window close to the origin are shown. The closeness of
ℑΛ for the relevant modes to zero (where the numerical mode-circles are “flat”)
is guaranteed by the construction of the model equations, i.e., the choice of the
central frequency (or the central wavelength λ0). We can see four clusters of
(red and light blue) modes with an accumulation of Λh close to four orange
boxes, representing exact eigenvalues Λ1D of Equation (2.3) with the decoupled
cross-propagating fields. Note also that whereas the tips of two lower clusters
of magenta modes (calculated for n = 16) are still well represented by Λ1D, the
remaining clusters are further apart, indicating an insufficient approximation
of the corresponding modes at this low value of n.

Five main modes calculated with n = 48 are indicated by different empty
black-framed symbols in the upper panels of Figure 7. Their intensity distri-
butions |Φh(x, y)|2 = |Φh+

u |2 + |Φh−
u |2 + |Φh+

v |2 + |Φh−
v |2 are presented in the

bottom-row panels. Notably, the total mode intensity |Φ(x, y)|2 incorporates
spatial distributions of four complex components of the vector-eigenfunction
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Φ(x, y), and the spectral problem (2.3) can have four modes with a single-
lobed intensity pattern (fundamental band-edge modes, see, e.g., [7]), as the
1st, 3rd, and 4th modes in Figure 7. While third-to-fifth low-threshold modes
are close to the lowest Λ1D in Figure 7(b), two main modes belong to the
mode group tending towards the filled black triangle, representing one of four
eigenvalues ΛiC of the matrix iC shown in Figure 2(c). It is a strong coupling
of the cross-propagating fields, which implies a significant separation of these
two most important modes from Λ1D. The considered PCSEL configuration
has a well-pronounced threshold gap between these two main modes. More-
over, the evolution of Λh of these modes with an increase of n, see Figure 7(c)
and (d), lets us assume that already small n ∼ 20 can provide pretty good
approximations for several critical eigenvalues Λ of the original problem (2.3).
More details on the convergence of these modes are provided in the following
subsection.

The sufficiency of low n would be a perfect message in practical computa-
tions since calculations of all Λh for n = 20 took about 2 minutes, while the
same task using n = 40 was performed in more than 4 hours. Finally, we note
that in the presented example we still used a moderate value of L suggested
in [6]. However, our algorithms also work well for much larger structures with
L > 1000µm, which will be considered when designing new PCSEL devices.

5.3 Higher order schemes

When calculating the main modes with not so far from origin located ℑΛ, the
schemes introduced above should provide a second-order approximation w.r.t.
the discretization step h. Indeed, magenta curves in Figures 8(b) and (c)
represent errors estimated for two main eigenvalues of the considered system
decaying with the (1/n)2-rate, cf. with the slopes of the magenta dashed lines
in the same panels. When dealing with larger PCSEL devices requiring finer
discretizations and, thus, substantial memory resources and processing time,
it could be helpful to explore higher-order schemes [1]. A reasonable fourth-

order scheme can be realized by replacing pretty simple operators σh
k and σ†h

k

in Equation (5.3) with more elaborated ones, acting differently for inner (1 <
k < n) and boundary (k = 1, n) cells of the discretized domain:

σh
kV

h =


35V h

k−1+140V h
k −70V h

k+1+28V h
k+2−5V h

k+3

128 for k = 1,
9(V h

k +V h
k−1)−(V h

k+1+V h
k−2)

8 for 1 < k < n,
35V h

k +140V h
k−1−70V h

k−2+28V h
k−3−5V h

k−4

128 for k = n,

σ†h
k V h =


−22V h

k−1+17V h
k +9V h

k+1−5V h
k+2+V h

k+3

24h for k = 1,
27(V h

k −V h
k−1)−(V h

k+1−V h
k−2)

24h for 1 < k < n,
22V h

k −17V h
k−1−9V h

k−2+5V h
k−3−V h

k−4

24h for k = n.

These formulas are at least twice longer than those of (5.3), such that the
corresponding matrices Hh and Dh in Equation (5.5) have more non-vanishing
elements now. Shorter expressions within the inner cells can be explained by
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the symmetry of the applied stencil w.r.t. the center of the cell where the
approximation of the continuous functions and their derivatives is performed.
In contrast, this symmetry is lost at the border cells, and the fourth-order
approximations here use five mesh points. Loss of the symmetry also violates
the conservation law (5.4). Similarly, one can also construct even higher 2s-
order schemes (5.1), which are defined by further modifications of operators

σh
k and σ†h

k which exploit 2s+ 1 values of the grid function at s− 1 outer cell
layers, and 2s values of the same grid function within the remaining inner cells.
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Figure 8. Comparison of schemes with different approximation orders used to calculate
the five lowest threshold modes. Calculation time (a) and precision of calculated main (b)
and the second (c) modes as functions of discretization parameter n. Dashed lines in (a):
approximation of time by nρ; in (b) and (c): functions 10−4es/ns and 10−3es/ns with

s = 2, 4, 6, 8, respectively.

The performance of different schemes is represented in Figure 8. Unlike our
prior study shown in Figure 7, where all eigenvalues Λh of the discrete prob-
lem (5.1) were calculated, now we looked only for five major modes but could
exploit fine numerical meshes generated using n ≤ 512 instead. Figure 8(a)
shows the calculation time required to find these main modes using different
approximations and discretization parameters n. In all cases, the simulation
time grows with an increase of n as nρ, with ρ being between 2.3 and 2.9. We
note a large gap between the times required by 2nd-order and 4th-order schemes
compared to those of higher-order schemes. We attribute this difference to the
trivial two-diagonal form of the matrix Dh in the 2nd order scheme (red dots
in Figure 6), which is supplemented by additional diagonals and spoiled by the
border-cell-induced asymmetries in the higher-order schemes.

Panels (b) and (c) of Figure 8 show a decay of the absolute errors |Λh−Λ| of
two major eigenvalues with the up-sweep of n. “Exact” eigenvalues Λ here were
computed using the 8th-order scheme, n = 1000, and spectral shifts, enabling
more accurate calculation of the eigenvalues close to their approximate positions
Λh estimated in the preliminary calculation step on the less fine grid. The
calculations show the expected convergence rate nicely, cf. with the dashed lines
of the same color, indicating the expected error decay slopes for the schemes of
corresponding order. This rate for higher order schemes is degraded once the
error reaches 10−16, the level at which approximations of Λh in the iterative
procedure used by the spectral solver become indistinguishable.
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From a practical perspective, these diagrams clearly demonstrate the ad-
vantages of higher-order schemes, even though they require up to ten times
more calculation time for the same n. For example, the precision of 10−8 for
the main mode, see panel (b), is achieved using n ≈ 390 and 25 in the 2nd
and 4th-order schemes, whereas the calculation time for these cases, see panel
(a), is about 33 and 0.12 seconds, respectively. We have demonstrated, that
for moderate-size PCSELs with L < 1mm, as considered in our example, a
good precision in calculating a few main modes can be achieved by exploring
second- and higher-order schemes on relatively coarse meshes. For large-area
PCSELs with L in the mm-cm range, we can use relatively coarse meshes for
obtaining the aproximate mode landscape, as presented in Figure 7(b), and,
when needed, to refine the precision of a few selected modes using fine (large
n) meshes and/or the higher order schemes.

6 Conclusions

In this work, we addressed the practical problems arising during the construc-
tion of the mathematical model for novel PCSEL devices, which, up to our
knowledge, were not discussed yet in the (mainly engineering) papers on PC-
SELs. Namely, we gave a detailed description of the algorithms to construct the
field cross-coupling matrices C, indicated possible numerical problems related
to the limitations of computer arithmetics when dealing with the huge and
tiny values of the exponential functions, and presented methods for avoiding
these limitations. Our algorithms for constructing C rely on analytic formu-
las. They are precise and much more efficient than fully numerical approaches

and allow us to account for a much larger number of submatrices C
(r,s)
2D in the

infinite series used for the definition of C2D and C. Next, we constructed the
2nd-order finite difference scheme for the spectral problem. After deriving a
discrete analog of the integral conservation law, we demonstrated the perfor-
mance of this scheme in solving the spectral problem for a selected PCSEL
device. We have shown that even the schemes with relatively coarse numerical
meshes can provide decent approximations of several main eigenvalues of the
original problem. Finally, we have also constructed the higher order schemes,
which can be preferable if a better precision of calculated spectra is required,
many similar spectral calculations should be performed in a limited time, or
spectral calculations of PCSELs with a huge emission area (large L) are needed.
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