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Abstract. This work implements the standard Homotopy Analysis

Method (HAM) developed by Professor Shijun Liao (1992), and

a new development of the HAM (called ND-HAM) improved by

Z.K. Eshkuvatov (2022) in solving mixed nonlinear multi-term frac-

tional derivative of different orders of Volterra-Fredholm Integro-

differential equations (FracVF-IDEs). Other than that, the exis-

tance and uniqueness of solution as well as the norm convergence

with respect to ND-HAM, were proven in a Hilbert space. In ad-

dition, three numerical examples (including multi-term fractional

IDEs) are presented and compared with the HAM, modified HAM

and ”Generalized block pulse operational differentiation matrices

method” developed in previous works by illustrating the accuracy

as well as validity with respect to ND-HAM. Empirical investiga-

tions reveal that ND-HAM and the modified HAM yields the same

results when control parameter ℏ is chosen as ℏ = −1 and is com-

parable to the standard HAM. The findings discovered that the

ND-HAM is highly convenient, effective, as well as in line with the-

oretical results.

Keywords: homotopy analysis method (HAM); new development of HAM (ND-HAM); integro-differential
equation (IDEs); Caputo fractional derivative; convergence.
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1 Introduction

IDEs are widely recognized, resulting from the mathematical modelling of sci-
entific phenomena. Linear and nonlinear IDEs can be used to model a vari-
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ety of nonlinear phenomena. Numerous numerical method series have been
established throughout the years to solve IDEs, for instance, the successive ap-
proximation method [12, 28], the Adomian decomposition method [3, 20], the
differential transform method [2, 7], the Tau method [18], the wavelet method
[5], least squares-support vector regression method [22] as well as fixed point
method [21].

Numerous applications with regard to fractional differential equations (FDEs)
in the fields of physics, engineering, and medical sciences have sparked a great
deal of interest in them in recent years. FDEs are useful for describing many
significant phenomena in the electromagnetism, materials science, acoustics,
electrochemistry, and viscoelasticity fields (see Milici et al. [19], West et al. [31]
and Podlubny [23]). Using cutting-edge semi-analytical techniques, several
exact solutions to linear FDEs have been discovered. Santra and Mohapa-
tra [25, 26] proposed the classical L1 scheme for solving time fractional initial
boundary value problem of mixed parabolic - elliptic type with a mild singu-
larity at the initial time t = 0 and time fractional partial integro-differential
equation of Volterra type respectively. Unfortunately, only a few methods pro-
duce exact solutions to the nonlinear FDEs.

Among the most well-known non-perturbative available solution techniques
is known as the HAM, which was initially established by Liao [15, 16, 17]. It
is deemed a powerful semi-analytical method for solving nonlinear and linear
differential and integral equations. There exist many HAM as well as homo-
topy perturbation method (HPM) implementations into various problems, for
instance, the nonlinear Riccati differential equation with fractional order [4],
the fractional KdV-Burgers-Kuramoto equation [29], fractional wave equations
[14], the MHD-flow of an Oldroyd 8-constant fluid problems [13], numerous non-
linear and linear fractional IDEs [1,9,11], Sobelov method for singular integral
equations [27], mixed Volterra-Fredholm integral equations [30] and others.

This work considers mixed nonlinear VF-IDEs of multi-term fractional or-
ders with respect to those given by

(
cD

ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)
u(t) = Υ (t) + ω

∫ t

0

∫ T

0

Λ(x, s)⅁(u(s)) ds dx, (1.1)

having initial conditions

u(k)(0) = θk for k = 0, . . . , p− 1, (1.2)

or boundary conditions

u(k)(0) = θk for k = 0, . . . , p− 2 and u(T ) = B, (1.3)

in which t ∈ ℧ = [0, T ]; Λ : ℧ × ℧ → R as well as Υ : ℧ → R are known
functions, ⅁ : C(℧,R) → R denotes a nonlinear function, ϑj , ω, B, θk, p ≥ 2

resembles constants integer; j−1 < ℓj ≤ j for j = 1, 2, . . . , p, while cD
ℓj
0+ refers

to the Caputo fractional derivative having order ℓj . Moreover, ℓp is known as
the order of (1.1) while C([0, T ],R) expresses the Banach space of continuous
real valued functions on [0, T ] to R, enabled by the norm ∥u∥ = sup

t∈[0,T ]

|u(t)|.
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This work describes an application of New Development of the Homotopy
Analysis Method (ND-HAM) proposed by Eshkuvatov [10] in 2021 for solv-
ing mixed nonlinear VF-IDEs involving multi-term fractional order. Section 2
recalls several significant fundamental concepts with respect to fractional cal-
culus, while Section 3 describes the ND-HAM, studies its convergence, and
proves the uniqueness of the solution for (1.1)–(1.3). Meanwhile, Section 4
provides two examples in illustrating the performance with regard to the sug-
gested method and for comparison purposes with respect to other methods.
Lastly, the conclusion of the paper is given in Section 5.

2 Preliminaries

This section demonstrates the fundamentals with regard to fractional calcu-
lus, commonly established as the derivatives and integrals theories of arbitrary
order. It generalizes the notions pertaining to the integer-order differentiation
and n-fold integration. Note that many available books are available (for exam-
ple, West et al. [31] as well as Podlubny [23]) studying fractional calculus and
numerous definitions with respect to fractional differentiation and integration.
This includes Caputo’s definition, Riemann-Liouville’s definition, as well as the
generalized function approach.

Definition 1. Let x > 0, µ ∈ R and m ∈ N. A real function ℘(x) is in the
space Cµ provided that there exists a real number p > µ such that ℘(x) =
xp℘1(x), in which ℘1(x) ∈ C[0,∞). Moreover, it is also known to be in the
Cm

µ for ℘(m) ∈ Cµ space. Evidently, Cµ ⊂ Cν provided that µ ≥ ν.

Definition 2. Let ℘ ∈ Cµ for various µ > −1. Here, the Riemann-Liouville
fractional integral operator having order θ ∈ R+ of ℘ is expressed by

Jθ
a+℘(t) =


℘(t), if θ = 0,

1

Γ (θ)

∫ t

a

(t− ς)θ−1℘(ς) dς, if θ > 0 ,

in which Γ refers to the Euler’s Gamma function defined by

Γ (θ) =

∫ +∞

0

tθ−1e−t dt, Γ (n) = (n− 1)!.

Definition 3. Assume ℘(n) ∈ L1[a, b] as well as θ ∈ R+ provided that n− 1 <
θ ≤ n for some n ∈ N. The Riemann-Liouville fractional derivative of order θ
is expressed by

RLDθ
a+℘(t) =

℘(t), if θ = 0,

℘(n)(t), if θ = n,

Dn
a+J

n−θ
a+ ℘(t) =

dn

dtn

(
1

Γ (n− θ)

∫ t

a

(t− ς)n−θ−1℘(ς)dς

)
, if n− 1 < θ < n.
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Definition 4. The Caputo fractional derivative having order θ ∈ R+ with
respect to a function ℘ is expressed by

cDθ
a+℘(t) =
℘(t), if θ = 0,

℘(n)(t), if θ = n,

Jn−θ
a+

(
dn

dtn
℘(t)

)
=

1

Γ (n− θ)

∫ t

a

(t− ς)n−θ−1℘(n)(ς) dς if n− 1 < θ < n,

in which ℘(n) ∈ L1[a, b] and n− 1 < θ ≤ n for some n ∈ N.

Following Caputo’s derivative definition, we now obtain
cDθ

a+c = 0, if c is a constant,
cDθ

a+(t− a)α = Γ (α+1)
Γ (α+1−θ) (t− a)α−θ, if α ≥ θ,

cDθ
a+(t− a)α = 0, if α < θ.

Also, we can see that Caputo’s fractional derivative is a linear operation, which
can be expressed as

cDθ
a+

(
ω℘(t) + µg(t)

)
= ω cDθ

a+℘(t) + µ cDθ
a+g(t),

in which ω as well as µ are constants.
Leibniz rule. From elementary calculus, we know that the product’s deriva-
tive with respect to the two functions ℘(t) as well as g(t) is expressed by

DN [℘(t) g(t)] =

N∑
n=0

(
N

n

)
DN−n℘(t)Dng(t).

A reasonable generalization of this result to fractional derivatives is

cDθ
a+ [℘(t) g(t)] =

∞∑
k=0

(
θ

k

)
cDθ−k

a+ ℘(t)Dkg(t), θ ∈ R+,

provided that ℘(t) is continuous in [a, t] while g(t) possesses n+ 1 continuous
derivatives in [a, t].

Remark 1. Let θ > 0, ℓ > 0, and ℘ ∈ L1[a, b]. Following from here, we have:

Jθ
a+Jℓ

a+℘(t) =Jℓ
a+Jθ

a+℘(t) = Jθ+ℓ
a+ ℘(t), (2.1)

cDθ
a+

[
Jθ
a+℘(t)

]
=℘(t), (2.2)

Jθ
a+

[
cDθ

a+℘(t)
]
=℘(t)−

n−1∑
k=0

℘(k)(a)

k!
(t− a)k for n− 1 < θ ≤ n. (2.3)

Also, the fractional integral acts on a power function according to the following
formula:

Jθ
a+(t− a)µ =

Γ (µ+ 1)

Γ (θ + µ+ 1)
(t− a)θ+µ, (2.4)

where µ > −1.
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3 Basic idea of the standard HAM and ND-HAM

Assume a general nonlinear VF-IDEs with respect to the fractional order given
by

N [u(t)] = Υ (t), (3.1)

for t ∈ ℧. Liao [15] established the zeroth-order deformation equation with
respect to the HAM in the form given by

(1− q)£
[
Π(t; q)− u0(t)

]
= qℏH(t)

[
N [Π(t; q)]− Υ (t)

]
, (3.2)

in which £ is a linear differential operator, q ∈ [0, 1] is an embedding parameter,
H(t) resembles an auxiliary function, ℏ ̸= 0 denotes an auxiliary parameter,
u0(t) refers to an initial guess with respect to the solution u(t) that satisfies
the boundary or initial conditions pertaining to the equation, while Π(t; q)
expresses an unknown function to be determined, relying on the variables q as
well as t, which satisfies equations given by

Π(i)(t; 0) = u
(i)
0 (t),

for i = 0, 1, 2, . . .. Provided that the parameter q rises from 0 to 1, the homotopy
solution Π(t; q) ranges from u0(t) to u(t). By employing the parameter q as
a dummy variable, the function Π(t; q) may be expanded as the Taylor series
given by

Π(t; q) =

+∞∑
m=0

um(t)qm, um(t) =
1

m!

∂mΠ(t; q)

∂qm

∣∣∣∣
q=0

.

Let the auxiliary parameter ℏ be chosen to assure the series given above con-
verges when q = 1. Then, the solution u(t) may now be expressed as

u(t) =

+∞∑
m=0

um(t).

Consequently, approximate solutions of (3.1) can be obtained as

u(t) ≈
n∑

m=0

um(t). (3.3)

Standard procedure (High-order deformation equation). To keep the
following discussion concise, we use the notation

un =
{
u0(t), u1(t), u2(t), . . . , un(t)

}
.

Upon differentiating the zeroth-order deformation (3.2) m times concerning
the embedding parameter q, dividing by m!, as well as setting q = 0, we have
the so-called mth-order deformation equation written as

£[um(t)− χmum−1(t)] = ℏH(t)ℜm(um−1(t)), (3.4)

in which
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ℜm(um−1(t))=
1

(m−1)!

∂m−1
[
N [Π(t; q)]−Υ (t)

]
∂qm−1

∣∣∣∣∣
q=0

, χm=

{
0 if m ≤ 1,

1 if m > 1.

(3.5)

The solution to the approximation method defined by (3.3) and (3.4) is
called standard HAM.

New procedure: In order to derive the ND-HAM, we consider that the
function Υ (t) in Equation (3.1) can be split as the sum of n+ 1 terms:

Υ (t) = s0(t) + s1(t) + . . .+ sn(t). (3.6)

Expanding Υ (t) into powers with regards to the embedding parameter q, yields

g(t; q) = s0(t) + s1(t) + s2(t)(−qℏ) + . . .+ sn(t)(−qℏ)n−1,

where ℏ is the control parameter of (3.2). For ND-HAM, we rewrite (3.4) as

£[u0(t)] = s0(t), (3.7)

£[um(t)− χmum−1(t)] = ℏH(t)ℜm(um−1(t)), (3.8)

in which χm is defined as in (3.4) and

ℜm(um−1(t)) =
1

(m− 1)!

∂m−1
[
N [Π(t; q)]− g(t; q)

]
∂qm−1

∣∣∣∣∣
q=0

. (3.9)

The ND-HAM gives us great freedom in choosing the function s0(t) de-
pending on the given function Υ (t) in (3.6). In some cases, a suitable choice
of the function s0(t) yields directly the exact solution u(t) with respect to the
problem and thus (3.8) resulting in zero for the next iterations, i.e., ui(t) = 0
for i = 1, 2, . . .. On the other hand, if (3.7) does not give us the exact solu-
tion. It will provide an adequate initial guess satisfying the initial or boundary
conditions. Also, it should be noted that the residual term (3.9) of the ND-
HAM requires much simpler computations than the residual term (3.5) of the
standard HAM.

4 Primary findings. Application of the HAM and
ND-HAM

To solve mixed nonlinear VF-IDEs of the form (1.1)–(1.3) using the HAM and
the ND-HAM, we establish the nonlinear operator given below

N
[
Π(t; q)

]
=
(

cD
ℓp
0++

p−1∑
j=0

ϑj
cD

ℓj
0+

)
Π(t; q)−ω

∫ t

0

∫ T

0

Λ(x, s)⅁(Π(s; q)) ds dx,

where Π(t; q) refers to an unknown function that needs to be determined.
Therefore, we may express the problem (1.1)–(1.3) in its operator equation

Math. Model. Anal., 30(1):52–73, 2025.
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form given by:
N
[
Π(t; q)

]
= Υ (t)

with initial conditions Π(k)(0; 1) = u(k)(0) = θk for k = 0, 1, . . . , p− 1, or

mixed boundary conditions Π(k)(0; 1) = u(k)(0) = θk, k = 0, 1, . . . p− 2;

Π(T ; 1) = u(T ) = B.

(4.1)

With these conventions and letting H(t) = 1, the mth-order deformation equa-
tion of the standard HAM for (1.1) with initial conditions (1.2) becomes

ℏ
{
N [Π(t; q)]− Υ (t)

}∣∣∣
q=0

;

£[um(t)− um−1(t)] = ℏℜm(um−1(t)) for m = 2, 3, . . .;

u
(k)
0 (0) = θk for k = 0, . . . , p− 1;

u
(k)
m (0) = 0 for m = 1, 2, . . . and k = 0, 1, . . ..

Alternatively, the standard HAM for (1.1) with boundary conditions (1.3) has
the form 

£[u1(t)] = ℏℜ1(u0(t)) = ℏ
{
N [Π(t; q)]− Υ (t)

}∣∣∣
q=0

;

£[um(t)− um−1(t)] = ℏℜm(um−1(t)) for m = 2, 3, . . .;

u
(k)
0 (0) = θk for k = 0, . . . , p− 2;

u
(k)
m (0) = 0 for m = 1, 2, . . . and k = 0, 1, . . .;

u0(T ) = B; um(T ) = 0 for m = 1, 2, . . ..

Here, the residual term ℜm(um−1(t)) is defined as in (3.5).
In a similar way, the ND-HAM equations for (1.1) with initial conditions (1.2)
have the form

£[u0(t)] = s0(t);

£[u1(t)] = ℏℜ1(u0(t)) =
{
N [Π(t; q)]− g(t; q)

}∣∣∣
q=0

;

£[um(t)− um−1(t)] = ℏℜm(um−1(t)) for m = 2, 3, . . .;

u
(k)
0 (0) = θk for k = 0, . . . , p− 1;

u
(k)
m (0) = 0 for m = 1, 2, . . . and k = 0, 1, . . ..

(4.2)

Alternatively, the ND-HAM for (1.1) with boundary conditions (1.3) is

£[u0(t)] = s0(t);

£[u1(t)] = ℏℜ1(u0(t)) = ℏ
{
N [Π(t; q)]− g(t; q)

}∣∣∣
q=0

;

£[um(t)− um−1(t)] = ℏℜm(um−1(t)) for m = 2, 3, . . .;

u
(k)
0 (0)=θk for k=0, . . . , p−2; u

(k)
m (0)=0 for m=1, 2, . . ., k=0, 1, . . .;

u0(T ) = B; um(T ) = 0 for m = 1, 2, . . .,

(4.3)

where, the residual term ℜm(um−1(t)) is defined as in (3.9).
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We now implement the ND-HAM (4.3) for the boundary value problem
(4.1). Since £ = dp

dtp is linear differential operator of order p, by applying the
inverse operator

£−1(·) = Jp
0+(·) =

1

(p− 1)!

∫ t

0

(t− ς)p−1(·)dς,

on both sides of the equations of (4.3), and taking into account (2.2) and (2.3)

with the conditions u
(k)
m (0) = 0, for m = 1, 2, . . . and k = 0, 1, . . ., we have

u0(t) =
∑p−2

k=0
θk
k! t

k + C
(p−1)! t

p−1 + 1
(p−1)!

∫ t

0
(t− ς)p−1s0(ς)dς,

u1(t) = ℏJp
0+

[(
cD

ℓp
0+ +

∑p−1
j=0 ϑj

cD
ℓj
0+

)
[u0(t)]

−
(
ωG1(t, q)|q=0 + s0(t) + s1(t)

)]
= ℏ

[
J
p−ℓp
0+

(
u0(t)−

∑p−2
k=0

u
(k)
0 (0)
k! tk − C

(p−1)! t
p−1
)

+
∑p−1

j=1 ϑj
cJ

p−ℓj
0+

(
u0(t)−

∑j−1
k=0

u
(k)
0 (0)
k! tk

)]
+ ℏ

Γ (p)

t∫
0

(t− ς)p−1
[
ωG1(ς, q)|q=0 + s0(ς) + s1(ς)

]
dς,

um(t) = um−1(t) + ℏJp
0+

[(
cD

ℓp
0+ +

∑p−1
j=0 ϑj

cD
ℓj
0+

)
[um−1(t)]

−
(
ωGm(t, q)|q=0 + ℏm−1sm(t)

)]
= um−1(t) + ℏ

(
J
p−ℓp
0+ um−1(t) +

∑p−1
j=0 ϑj

cJ
p−ℓj
0+ um−1(t)

)
+ ℏ

Γ (p)

t∫
0

(t−ς)p−1
[
ωGm(ς, q)|q=0+ℏm−1sm(t)

]
dς, 2 ≤ m ≤ n,

um(t) = um−1(t) + ℏ
(
J
p−ℓp
0+ um−1(t) +

∑p−1
j=0 ϑj

cJ
p−ℓj
0+ um−1(t)

)
+ ℏ

Γ (p)

t∫
0

(t− ς)p−1
[
ωGm(ς, q)|q=0

]
dς, m > n,

(4.4)

where C = u
(p−1)
0 (0) unknown parameter to be determined and

Gm(t, q) =
1

(m− 1)!

∫ t

0

∫ T

0

Λ(x, s)

[
∂m−1⅁(Π(s; q))

∂qm−1

]
ds dx. (4.5)

To find parameter C, we impose boundary conditions u0(T ) = B, which leads
to

C =
(p− 1)!

T

[
B −

p−2∑
k=0

θk
k!

tk − 1

(p− 1)!

∫ t

0

(t− ς)p−1s0(ς)dς

]
.

Once we have known constant C, the next iteration of ND-HAM may be ex-
pressed as follows

u0(t) =

p−2∑
k=0

θk
k!

tk +
C

(p− 1)!
tp−1 +

1

(p− 1)!

∫ t

0

(t− ς)p−1s0(ς)dς,

um(t) = um−1(t)−
ℏ

Γ (η − ℓp)

∫ t

0

(t− ς)η−ℓp−1um−1(ς) dς
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+ℏ
p−1∑
j=1

ϑj

Γ (η − ℓj)

∫ t

0

(t− ς)η−ℓj−1um−1(ς) dς

+ ℏ
Γ (p)

t∫
0

(t− ς)p−1
[
ωGm(ς, q)|q=0 + ℏm−1sm(t)

]
dς, 1 ≤ m ≤ n,

um(t) = um−1(t)−
ℏ

Γ (η − ℓp)

∫ t

0

(t− ς)η−ℓp−1um−1(ς) dς

+ℏ
∑p−1

j=1
ϑj

Γ (η−ℓj)

∫ t

0
(t− ς)η−ℓj−1um−1(ς) dς

− ωℏ
Γ (η)

∫ t

0
(t− ς)η−1Gm(ς, q)|q=0 dς, m > n,

(4.6)

where Gm is defined by (4.5).

Special case. Provided that ⅁ denotes a linear function provided that
⅁(u(t)) = u(t), the function Gm defined by (4.5) becomes

Gm(ς, q)|q=0 =

∫ ς

0

∫ T

0

Λ(x, s)um−1(s) ds dx. (4.7)

In this case, for m ≥ 2, (4.6) yields
um(t) = um−1(t)−

ℏ
Γ (η − ℓp)

∫ t

0

(t− ς)η−ℓp−1um−1(ς) dς

+ℏ
∑p−1

j=1
ϑj

Γ (η−ℓj)

∫ t

0
(t− ς)η−ℓj−1um−1(ς) dς

+ ℏ
Γ (p)

t∫
0

(t− ς)p−1
[
ωGm(ς, q)|q=0 + ℏm−1sm(t)

]
dς, 1 ≤ m ≤ n,

where u0(t) and u1(t) are defined in the first and second equation of (4.4) as
well as nonlinear term Gm(ς, q) is computed in (4.7).

5 Uniqueness of the solution and convergence of the
ND-HAM

This section proves the solutions’ uniqueness with respect to the mixed nonlin-
ear VF-IDEs of fractional order (1.1) with boundary conditions (1.3) and the
convergence of the ND-HAM given by (4.3).

5.1 Uniqueness of the solution

For the sake of brevity, let us define the following constant:

ϱ =
(p− 1)!

T p−1

{
B −

p−2∑
k=0

θkT
k

k!
−

p−1∑
j=1

( j−1∑
k=0

ϑjθkT
ℓp−ℓj+p−1

Γ (ℓp − ℓj + k)

)}
. (5.1)



Solving class of mixed nonlinear multi-term FracVF-IDEs 61

Lemma 1. Let Θ ∈ C([0, T ],R) and j − 1 < ℓj ≤ j for j = 1, . . . , p, where
p ≥ 2. Therefore, the FDE’s solution is given by

(
cD

ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)
u(t) = Θ(t), (5.2)

with boundary conditions

u(T ) = B and u(k)(0) = θk for k = 0, . . . , p− 2,

is given by the integral equation

u (t) =
ϱtp−1

(p− 1)!
+

p−2∑
k=0

θkt
k

k!
+

p−1∑
j=1

( j−1∑
k=0

ϑjθkt
ℓp−ℓj+p−1

Γ (ℓp − ℓj + k)

)

+
tp−1

T p−1

p−1∑
j=1

ϑj (J
ℓp−ℓj
0+ u) (T )−

p−1∑
j=1

ϑj J
ℓp−ℓj
0+ u (t)

+
tp−1

T p−1
(J

ℓp
0+Θ)(T )− J

ℓp
0+Θ(t). (5.3)

Proof. Upon implementing the operator J
ℓp
0+ with respect to both sides of

(5.2), properties (2.1) and (2.3) yield

u (t)−
p−1∑
k=0

u(k)(0)tk

k!
+

p−1∑
j=1

ϑj J
ℓp−ℓj
0+

(
u (t)−

j−1∑
k=0

u(k)(0)tk

k!

)
= J

ℓp
0+Θ(t).

Following the boundary conditions u(k)(0) = θk for k = 0, . . . , p − 2, and
by (2.4), we obtain

u (t)− u(p−1)(0)tp−1

(p− 1)!
−

p−2∑
k=0

θkt
k

k!
+

p−1∑
j=1

ϑj J
ℓp−ℓj
0+ u (t)

−
p−1∑
j=1

( j−1∑
k=0

ϑjθkt
ℓp−ℓj+p−1

Γ (ℓp − ℓj + k)

)
= J

ℓp
0+Θ(t).

Thus,

u (t) =
c

(p− 1)!
tp−1 +

p−2∑
k=0

θk
k!

tk +

p−1∑
j=1

( j−1∑
k=0

ϑjθk
Γ (ℓp − ℓj + k)

)
tℓp−ℓj+p−1

−
p−1∑
j=1

ϑj J
ℓp−ℓj
0+ u (t)− J

ℓp
0+Θ(t), (5.4)

where c = u(p−1)(0) can be determined using condition u(T ) = B, which yields

c = ϱ+
(p− 1)!

T p−1

p−1∑
j=1

ϑj (J
ℓp−ℓj
0+ u) (T ) +

(p− 1)!

T p−1
(J

ℓp
0+Θ)(T ),

with ϱ given by (5.1). Substituting this value into (5.4) yields (5.3). ⊓⊔
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We now prove the solution’s uniqueness to problem (1.1)–(1.3) employing the
Banach contraction principle. Here, we can see that from Lemma 1, the VF-
IDE provided is equivalent to the fractional integral equation given by

u (t) =
ϱtp−1

(p− 1)!
+

p−2∑
k=0

θkt
k

k!
+

p−1∑
j=1

( j−1∑
k=0

ϑjθkt
ℓp−ℓj+p−1

Γ (ℓp − ℓj + k)

)

+
tp−1

T p−1

p−1∑
j=1

ϑj (J
ℓp−ℓj
0+ u) (T )−

p−1∑
j=1

ϑj J
ℓp−ℓj
0+ u (t)

+
tp−1

T p−1
(J

ℓp
0+ [ωĜ(·) + Υ (·)])(T )− J

ℓp
0+ [ωĜ(·) + Υ (·)])(t),

where

Ĝ(·) =
∫ ·

0

(∫ T

0

Λ(x, s)⅁(u(s)) ds
)
dx.

The operator Ξ : X → X may now be defined as

Ξu (t) =
ϱtp−1

(p− 1)!
+

p−2∑
k=0

θkt
k

k!
+

p−1∑
j=1

j−1∑
k=0

ϑjθkt
ℓp−ℓj+p−1

Γ (ℓp − ℓj + k)


+

tp−1

T p−1

p−1∑
j=1

ϑj

∫ T

0

(T−ς)ℓp−ℓj−1

Γ (ℓp − ℓj)
u(ς) dς −

p−1∑
j=1

ϑj

∫ t

0

(t− ς)ℓp−ℓj−1

Γ (ℓp − ℓj)
u(ς) dς

+
tp−1

T p−1

∫ T

0

(T − ς)ℓp−1

Γ (ℓp)

[
ω

∫ ς

0

(∫ T

0

Λ(x, s)⅁(u(s)) ds
)
dx+ Υ (ς)

]
dς

−
∫ t

0

(t− ς)ℓp−1

Γ (ℓp)

[
ω

∫ ς

0

(∫ T

0

Λ(x, s)⅁(u(s)) ds
)
dx+ Υ (ς)

]
dς.

It is essential to highlight that u refers to a fixed point with respect to the
operator Ξ if and only if u is a solution to problem (1.1)–(1.3).

Theorem 1. Let ⅁ : R → R such that ∥⅁(x1)−⅁(x2)∥ ≤ L∥x1 − x2∥ for some
L > 0 and all (x1, x2) ∈ R2. Then, problem (1.1)–(1.3) has a unique solution
if

∆ =

p−1∑
j=1

|ϑj |T ℓp−ℓj

Γ (ℓp − ℓj + 1)
+ |ω|L ∥Λ∥ T ℓp+2

Γ (ℓp + 2)
<

1

2
, (5.5)

with ∥Λ∥ = sup
t,s∈[0,T ]

∣∣Λ(t, s)∣∣.
Proof. We now prove that Ξ is a contraction mapping. Hence, for every
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u, v ∈ X as well as t ∈ [0, T ], we now obtain

∣∣Ξu (t)−Ξv (t)
∣∣ = ∣∣∣∣ tp−1

T p−1

p−1∑
j=1

ϑj

∫ T

0

(T − ς)ℓp−ℓj−1

Γ (ℓp − ℓj)

[
u(ς)− v(ς)

]
dς

−
p−1∑
j=1

ϑj

∫ t

0

(t− ς)ℓp−ℓj−1

Γ (ℓp − ℓj)

[
u(ς)− v(ς)

]
dς

+
tp−1

T p−1

∫ T

0

(T−ς)ℓp−1

Γ (ℓp)

[
ω

∫ ς

0

(∫ T

0

Λ(x, s)
[
⅁(u(s))−⅁(v(s))

]
ds

)
dx

]
dς

+

∫ t

0

(t−ς)ℓp−1

Γ (ℓp)

[
ω

∫ ς

0

(∫ T

0

Λ(x, s)
[
⅁(u(s))− ⅁(v(s))

]
ds

)
dx

]
dς

∣∣∣∣
≤ ∥u−v∥

{ p−1∑
j=1

|ϑj |
∫ T

0

(T−ς)ℓp−ℓj−1

Γ (ℓp − ℓj)
dς+

p−1∑
j=1

|ϑj |
t∫

0

(t− ς)ℓp−ℓj−1

Γ (ℓp − ℓj)
dς

+ |ω|L ∥Λ∥
∫ T

0

(T − ς)ℓp−1

Γ (ℓp)

[ ∫ ς

0

(∫ T

0

ds

)
dx

]
dς

+ |ω|L ∥Λ∥
∫ t

0

(t− ς)ℓp−1

Γ (ℓp)

[ ∫ ς

0

(∫ T

0

ds

)
dx

]
dς

}
=

{ p−1∑
j=1

|ϑj |T ℓp−ℓj

Γ (ℓp−ℓj+1)
+

p−1∑
j=1

|ϑj |tℓp−ℓj

Γ (ℓp−ℓj+1)
+ |ω|L ∥Λ∥

∫ T

0

(T−ς)ℓp−1

Γ (ℓp)
[Tς] dς

+ |ω|L ∥Λ∥
∫ t

0

(t− ς)ℓp−1

Γ (ℓp)
[Tς] dς

}
∥u− v∥ .

Upon implementing the change of variable ς = t−z with respect to the integral
in the previous expression, we can see that∫ t

0

Tς(t− ς)ℓp−1

Γ (ℓp)
dς =

T

Γ (ℓp)

t∫
0

(
tzℓp−1 − zℓp

)
dz =

Ttℓp+1

Γ (ℓp)

[
1

ℓp
− 1

ℓp + 1

]

=
Ttℓp+1

ℓp
(
ℓp + 1

)
Γ (ℓp)

≤ T ℓp+2

Γ (ℓp + 2)
.

Then, for all t ∈ [0, T ], we have that

∣∣Ξu (t)−Ξv (t)
∣∣ ≤

2

p−1∑
j=1

|ϑj |T ℓp−ℓj

Γ (ℓp − ℓj + 1)
+ 2 |ω|L ∥Λ∥ T ℓp+2

Γ (ℓp + 2)

 ∥u−v∥ ,

which, by definition of the norm, implies

∥Ξu−Ξv∥ ≤ 2∆ ∥u− v∥ .

With regards to the Banach contraction principle, the operator Ξ possesses a
unique fixed point. Thus, we may state a conclusion that problem (1.1)–(1.3)
possesses a unique solution on the interval given by [0, T ]. ⊓⊔
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5.2 ND-HAM convergence

We now initially prove the ND-HAM convergence expressed by (4.3) with re-
spect to the solution of (1.1) with boundary conditions (1.3).

Theorem 2 [Convergence theorem]. Suppose the series
∑∞

m=0 um(t) con-
verges to a function u(t), in which the functions um ∈ C(℧,R) are governed by
the high-order deformation equation (4.3) of the ND-HAM. Then, u(t) defined
by (4.3) approaches to the exact solution of the problem (1.1) with boundary
conditions (1.3).

Proof. Let us define Hm(t) = 1
m!

[
∂m⅁[Π(t;q)]

∂qm

]
q=0

. It is illustrated in Cherru-

ault [8] that, provided that the series
∑∞

m=0 um(t) approaches u(t), then it is
a must for the series

∑∞
k=0 Hk(t) to converge to ⅁[u(t)].

Let every um(t) satisfies boundary conditions (1.3) i.e., u
(k)
0 (0) = θk, k =

0, . . . , p − 2 and u0(T ) = B with u
(k)
m (0) = 0, m = 1, 2, . . . , k = 0, 1, . . ..

Therefore, from the convergence with respect to
∑∞

m=0 um(t), it holds that

lim
m→∞

um(t) = 0, t ∈ [0, T ]. (5.6)

Summing on the left side with respect to (4.3) without the action operator £
as well as considering (5.6), we now obtain

∞∑
m=1

[
um(t)−χmum−1(t)

]
= lim

n→+∞

n∑
m=1

[
um(t)−χmum−1(t)

]
= lim

n→+∞
un(t)=0.

Following the differential operator £ = cDη
0+ , then (4.3) linearity implies

ℏ
+∞∑
m=1

ℜm(um−1(t)) =

+∞∑
m=1

cDη
0+

[
um(t)− χmum−1(t)

]
= lim

n→∞

n∑
m=1

cDη
0+

[
um(t)− χmum−1(t)

]
= lim

n→∞
cDη

0+ [un(t)] =
cDη

0+

[
lim

n→∞
un(t)

]
= cDη

0+(0) = 0.

Since ℏ ̸= 0, we must have

+∞∑
m−1

ℜm(um−1(t)) = 0.

Apart from that,

ℜm(um−1(t)) =
(

cD
ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)
[um−1(t)]− (1− χm)Υ (t)

− ω

(m− 1)!

∫ t

0

∫ T

0

Λ(x, s)

[
∂m−1⅁[Π(s; q)]

∂qm−1

]
q=0

ds dx.
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Therefore, we have

0 =

+∞∑
m=1

ℜm(um−1(t)) =

+∞∑
m=1

{(
cD

ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)[
um−1(t)

]

− (1− χm(t))Υ (t)− ω

(m−1)!

∫ t

0

∫ T

0

Λ(x, s)

[
∂m−1⅁[Π(s; q)]

∂qm−1

]
q=0

ds dx

}

=

+∞∑
m=1

(
cD

ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)
[um−1(t)]− Υ (t)

− ω

∫ t

0

(∫ T

0

Λ(s, x)

∞∑
m=1

Hm−1(s) ds

)
dx

=
(

cD
ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)[ ∞∑
m=1

um−1(t)

]
− Υ (t)

− ω

∫ t

0

(∫ T

0

Λ(s, x)

∞∑
m=1

Hm−1(s) ds

)
dx

=
(

cD
ℓp
0++

p−1∑
j=0

ϑj
cD

ℓj
0+

)
u(t)−Υ (t)−ω

∫ t

0

(∫ T

0

Λ(s, x)⅁[u(s)] ds
)
dx,

which implies(
cD

ℓp
0+ +

p−1∑
j=0

ϑj
cD

ℓj
0+

)
u(t) = Υ (t) + ω

∫ t

0

∫ T

0

Λ(s, x)⅁[u(s)] ds dx.

It shows that if nonlinear FracIEs (1.1) with boundary conditions (1.3) has a
unique solution, i.e., satisfies conditions of Theorem 3 (5.5), then ND-HAM
defined by (4.3) convergence to exact solution. Theorem 4 is proved. ⊓⊔

6 Numerical experiments

Example 1. We now take into consideration the following nonlinear fractional
IDEs given below:

cDℓ
0+u(t) = Υ (t) + ω

∫ t

0

∫ 1

0

(x− s)⅁(u(s)) ds dx,

u(0) = 1, u′(0) = 0, 1 < ℓ ≤ 2, t ∈ [0, 1],

(6.1)

in which ω = 1, Υ (t) = − 25

504
t2 +

749

360
t as well as ⅁(u(t)) = u2(t) − u(t). It

may be easily proven that u(t) = 1
3 t

3 + 1 is a solution of (6.1) for ℓ = 2.

Solution. Let us approximate the solution of Equation (6.1) using the ND-
HAM given by (4.2) and (3.9). We can rewrite (6.1) in the operator form{

N(Π(t; q)) = Υ (t),
Π(0, 1) = u(0) = 1, Π ′(0, 1) = u′(0) = 0,

(6.2)
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where

N(Π(t; q)) = cDℓ
0+Π(t; q)−

∫ t

0

∫ 1

0

(x− s)⅁(Π(s; q)) ds dx,

for 1 < ℓ ≤ 2 and t ∈ [0, 1].
Uniqueness solution of the Example 1 can be checked easily. From (5.5)

and given problem (6.1), we have

∆ = |w|L ∥Λ∥T ℓ2+2/Γ (ℓ2 + 2),

where ∥Λ∥ = sup
t,s∈[0,T ]

∣∣Λ(t, s)∣∣ = sup
t,s∈[0,T ]

|x− s| = 1, and T = 1, Γ (ℓ2 + 2) =

Γ (4) = 3! = 6 and Lipschitz constant L = 5
3 , then 2∆ = 10

18 < 1, thus, satisfies
the condition of Theorem 4.

Let us expand the right hand side function of (6.2) as

Υ (t) = (2t) +

(
29

360
t− 25

504
t2
)

= s0(t) + s1(t) = [g(t; q)]q=0,

where s0(t) = 2t and s1(t) =
29

360
t − 25

504
t2. Since £ =

d2

dt2
and solving the

first equation of (4.2), we have

u0(t) = 1 + t3/3.

Let m = 1 and ℓ = 2, then from the second equation with respect to (4.2), we
may now possess

£[u1(t)] = ℏ[N(Π(t; q))− g(t; q)] |q=0

= ℏ
[
D2

0[u0(t)]−
∫ t

0

∫ 1

0

(x− s)[u2
0(s)− u0(s)] ds dx− Υ (t)

]
= ℏ

[
2t−

(
25

9 · 7 · 4
t2

2
− 29

9 · 8 · 5
t

)
−
(
749

360
t− 25

504
t2
)]

=ℏ[2t−2t] = 0,

which implies u1(t) = 0. By continuing this procedure, we obtain u2(t) =
u3(t) = u4(t) = . . . = 0. Therefore, the solution of (6.2) is

u(t) = Π(t; 1) =

∞∑
m=0

um(t) = u0(t) =
1

3
t3 + 1.

In Eshkuvatov et al. [9], it is shown that the modified HAM developed by
Bataineh et al. [6] cannot coincide with the exact solution provided that the
initial guess is chosen as the exact solution. As an alternative approach to the
HAM, let us consider 1 < ℓ ≤ 2 and write the given function Υ (t) as

Υ (t) = 0 +
749

360
t− 25

504
t2 = s0(t) + s1(t) + s2(t),
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where s0(t) = 0, s1(t) =
749
360 t, s2(t) = − 25

504 t
2. Expanding Υ (t) into powers of

the embedding parameter q yields

g(t; q) = s0(t) + s1(t) + (ℏq)s2(t).

From the first equation of (4.2), we have the initial guess u0(t) = 1. With this
initial guess, the third iteration n = 3 of the proposed ND-HAM [10], standard
HAM [15] and modified HAM (MHAM) [6] at ℏ = −1, are given as follows:

� Exact solution: u(t) = 1 + t3/3,

� ND-HAM: u(t)≈u0(t)+u1(t)+u2(t)=− 0.000521522266313933t4

+ 0.335200617283950616t3 + 1,

� HAM: u(t) ≈ u0(t) + u1(t) + u2(t) = −0.0005559689153439t4

+ 0.33531543944738389t3 + 1,

� MHAM: u(t) ≈ u0(t) + u1(t) + u2(t) = −0.000521522266313933t4

+ 0.335200617283950616t3 + 1.

Table 1 shows a comparison of the approximation errors for the different
methods for n = 3 iterations. As we can observe, the error of the ND-HAM is
very close to the error of HAM.

Table 1. Numerical solution of Example 1 for HAM, MHAM, ND-HAM.

t Exact Err. HAM Err. MHAM Err. ND-HAM

n = 3 n = 3 n = 3 n = 3

0.0 1.0000 0 0 0
0.2 1.0027 1.4967 · 10−5 1.7460 · 10−5 1.7460 · 10−5

0.4 1.0213 1.1262 · 10−4 1.3121 · 10−4 1.3121 · 10−4

0.6 1.0720 3.5608 · 10−4 4.1428 · 10−4 4.1428 · 10−4

0.8 1.1707 7.8711 · 10−4 9.1428 · 10−4 9.1428 · 10−4

1.0 1.3333 1.4261 · 10−3 1.6534 · 10−3 1.6534 · 10−3

Table 2. Numerical solution of Example 1 for HAM, MHAM, ND-HAM.

t Exact Err. HAM Err. ND-HAM Err. MHAM

n = 15 n = 15 n = 15 n = 15

0.0 1.0000 0 0 0
0.2 1.0027 1.9390 · 10−16 6.9948 · 10−17 6.9948 · 10−17

0.4 1.0213 1.4551 · 10−15 5.2660 · 10−16 5.2660 · 10−16

0.6 1.0720 4.5869 · 10−15 1.6659 · 10−15 1.6659 · 10−15

0.8 1.1707 1.0104 · 10−11 3.6850 · 10−15 3.6850 · 10−15

1.0 1.3333 1.8233 · 10−14 6.6819 · 10−15 6.6819 · 10−15

Table 2 shows a comparison of the approximation errors for the different
methods for n = 15 iterations. Table 2 reveals that the error of the ND-HAM
is slightly better than HAM for high iterations.
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Remark 2. In Tables 1–2, we have compared methods (HAM, MHAM, ND-
HAM) and chosen initial guess as u0(t) = 1 with same number of iterations.
Note that MHAM cannot give an exact solution provided that we select an
initial guess as the solution with respect to problem (6.1). Providentially,
HAM and ND-HAM provided an exact solution with the condition that if the

initial guess is selected as u0 = 1 + t3

3 , which is identical to the exact solution
of problem (6.1). On the other hand, Table 2 shows that accuracy of ND-HAM
is getting slightly better than HAM when number of iteration is increased.

Table 3 presents the comparison between HAM and ND-HAM for only three
iterations for different value of fraction order of derivatives. From Figure 1, we
can conclude that error of the method is decreasing when value of fractional
derivative increases.

Table 3. Numerical solution of Example 1 for HAM and ND-HAM for different values of
lp.

t Exact Err. HAM Err. ND-HAM Err. HAM Err. ND-HAM

n = 3 n = 3, lp = 1.5 n = 3, lp = 1.5 n = 3, lp = 1.95 n = 3, lp = 1.95

0.0 1.000000 0 0 0 0
0.2 1.002667 −2.1438 · 10−3 −2.0689 · 10−3 −3.8516 · 10−4 −3.7424 · 10−4

0.4 1.021333 −1.4989 · 10−2 −1.4505 · 10−2 −2.3918 · 10−3 −2.3338 · 10−3

0.6 1.072000 −4.4986 · 10−2 −4.36459 · 10−2 −6.6621 · 10−3 −6.5256 · 10−3

0.8 1.170667 −9.5418 · 10−2 −9.2840 · 10−2 −1.3362 · 10−2 −1.3138 · 10−2

1.0 1.333333 −1.6708 · 10−1 −1.6304 · 10−1 −2.2349 · 10−2 −2.2055 · 10−2

Figure 1. Comparisons the error term of HAM for lp= 1.5 and lp= 1.95.

Example 2. We may now take into consideration the following nonlinear frac-
tional IDE given below:

cDℓ
0+u(t) = Υ (t) + ω

∫ t

0

∫ 1

0

(x− s)⅁(u(s)) ds dx,

u(0) = 1, u′(0) = 0, 1 < ℓ ≤ 2, t ∈ [0, 1],
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in which Υ (t) = 2 − 21683
1848 t − 311

840 t
2 as well as ⅁(u(t)) = u3(t) with ω = 1. It

can be easily verified that u(t) = 1+ t2 − 2t3 resembles a solution with respect
to (6.2) for ℓ = 2.

A summary of the results for Example 2 is tabulated in Table 4. Table 4
presents a comparison of the ND-HAM and standard HAM for n = 3 iterations
and it reveals that the error for the ND-HAM is slightly better than standard
HAM.

Table 4. Numerical solution of Example 2 for HAM, MHAM, ND-HAM.

t Exact Err. HAM Err. MHAM Err. ND-HAM

n = 3 n = 3 n = 3 n = 3

0.0 1.0000 0 0 0
0.2 1.0240 5.4448 · 10−4 5.1886 · 10−4 5.1886 · 10−4

0.4 1.0320 4.0952 · 10−3 3.9031 · 10−3 3.9031 · 10−3

0.6 0.9280 1.2941 · 10−2 1.2336 · 10−2 1.2336 · 10−2

0.8 0.6160 2.8590 · 10−2 2.7260 · 10−2 2.7260 · 10−2

1.0 0.0000 5.1767 · 10−2 4.9372 · 10−2 4.9372 · 10−2

Table 5 presents a comparison of the ND-HAM and standard HAM for
n = 15 iterations. As we can observe, the error for the ND-HAM is comparable
with standard HAM and errors almost zero for both methods.

Table 5. Numerical solution of Example 2 for HAM, MHAM, ND-HAM.

t Exact Err. HAM Err. MHAM Err. ND-HAM

n = 15 n = 15 n = 15 n = 15

0.0 1.0000 0 0 0
0.2 1.0240 3.5644 · 10−14 3.6177 · 10−14 3.6177 · 10−14

0.4 1.0320 4.2456 · 10−13 5.2354 · 10−13 5.2354 · 10−13

0.6 0.9280 2.9985 · 10−12 3.2355 · 10−12 3.2355 · 10−12

0.8 0.6160 4.7657 · 10−11 4.9871 · 10−11 4.9871 · 10−11

1.0 0.0000 5.5492 · 10−10 5.7257 · 10−10 5.7257 · 10−10

Example 3. Let us consider the Bagley-Torvik equation. This equation is a
fractional ordinary differential equations resulting from the movement of a rigid
plate immersed in a Newtonian fluid being modeled. In Roohollahi et al. [24]
article, an integral term is added to the right equation in order to create a
mixed Volterra-Fredholm integro-differential equation of fractional order:aDlu(t) + b cD

3/2
0+ u(t) + cu(t) = Υ (t) + ω

∫ t

0

∫ 1

0

(1− xs)u(s) ds dx,

u(0) = 0, u′(0) = −1, 1 < ℓ ≤ 2, t ∈ [0, 1],

where Υ (t) = 2√
π
t1/2 + 11

24 t
2 − 1

3 t+ 2 with ω = 1. It can be easily verified that

u(t) = t2 − t is the exact solution for a = 1, b = c = 0.5 and ℓ = 2.
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A summary of the results and comparisons with Roohollahi et al. [24] for Ex-
ample 3 is tabulated in Table 6.

Table 6. Numerical solution of Example 2 for HAM, MHAM, ND-HAM.

t Exact Err. HAM Err. NDHAM Err. in [24]

n = 3 n = 3 n = 3 N = 64

0.0 0.0000 0 0 0.00008138
0.2 −0.16 0.000078703443 0.000064875481 0.0018328
0.4 −0.24 0.000641911663 0.0005768473998 0.001228
0.6 −0.24 0.00226061057 0.001907843563 0.001897
0.8 −0.16 0.005671682234 0.004050550334 0.007541
1.0 0.000 0.01183676097 0.006377093824 0.015545

Here, N = 64 is the number of nodes on the [0, 1] for the proposed method
in [24]. Table 4 demonstrates a comparison of the ND-HAM, standard HAM
for n = 3 iterations and proposed in Roohollahi et al. [24] with N = 64 named
”Generalized block pulse operational differentiation matrices method”. It re-
veals that the error for the ND-HAM is slightly better than standard HAM
and ”Generalized block pulse operational differentiation matrices method”.

7 Conclusions

This work develops a novel HAM, called ND-HAM, to solve a class of nonlinear
mixed VF-IDEs of fractional order. We proved the convergence of the HAM
for this kind of equation and the uniqueness of the solution. In the example,
we compared three methods (HAM, MHAM, and ND-HAM) for n = 2 and
n = 15 iterations. From Tables 4 and 5, we can see that HAM, ND-HAM, and
MHAM produce comparable convergence errors. Table 6 shows the domination
of the proposed method over HAM and ”Generalized block pulse operational
differentiation matrices method” for multi-term of fractional Volterra-Fredholm
IDEs. The numerical solutions were gained with the facilitation of the Matlab
R2021b. These experiments show that the convergence is in line with theoreti-
cal results. The advantage of the ND-HAM is that, by choosing an appropriate
u0, the equations directly return the exact solution, as illustrated in both ex-
amples. Note that Examples 1–3 are nonlinear fractional IDEs.
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