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Institute of Applied Mathematics, Vilnius University, Vilnius, Lithuania

Article History:

■ received October 19, 2023

■ revised December 28, 2023

■ accepted February 12, 2024

Abstract. The initial boundary value problem for the nonstationary

heat equation is studied in a bounded domain with the specific over-

determination condition. This condition is nonlinear and can be

interpreted as the energy functional. In present paper we construct
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1 Introduction

Let us start with the nonstationary boundary value problem to the heat equa-
tion 

ut(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u(x, t)|∂Ω×[0,T ] = 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn, n = 2, 3, is a simply connected bounded domain, the boundary
∂Ω is C2 smooth, f is the internal source that heats or cools the system, u is
the temperature and u0 is the initial temperature. For the case when functions
f, u0 are prescribed and u is the unknown function, we have the classical
initial boundary value problem for heat equation. The unique solvability of
this problem is standard and well-established (see, for example, [8]).

There is an amount of papers where some additional integral condition∫
Ω

u(x, t)dx = F (t), F (0) =

∫
Ω

u0(x)dx (1.2)

is prescribed (see, e.g., [2, 3, 4, 6, 9, 10, 11, 12, 13, 14]). Then, the solution of
problem (1.1)–(1.2) is a pair of functions u and f . In other words, problem
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(1.1), (1.2) can be seen as an inverse problem where we prescribe the time
dependent function F. Inverse problems were studied by many mathematicians,
starting with the works of J. R. Cannon (see [3, 4]) and then by the others
(see [6, 11, 12, 13, 16]). However, in all mentioned papers, problem (1.1)–(1.2)
was considered under assumption that function F (t) is sufficiently smooth,
for example, assuming that the derivative F ′(t) exists. Nevertheless, in recent
papers (see [7,15]) problem (1.1)–(1.2) was studied under the minimal regularity
of function F (t), i.e., assuming that F ∈ L2(0, T ).

In some papers, for example in [3, 4], integral (1.2) is called an energy1.
However, in this paper instead of the linear side condition (1.2) we consider
the nonlinear side condition:∫

Ω

u2(x, t)dx = E2(t), E(0) = ∥u0∥L2(Ω).

It can be interpreted as the energy functional for the heat equation and it
measures the distance (in L2-norm) from the trivial equilibrium solution u = 0.
This expression also reminds the elastic potential energy of a spring.

2 Notation and auxiliary results

In this paper, we will use the following notation. If G is the domain in Rn,
C∞(G) means, as usual, the set of all infinitely differentiable functions in G
and C∞

0 (G) is the subset of functions from C∞(G) with compact supports in
G. The space Cm(G) (m is a nonnegative integer number) consists of m times
continuously differentiable functions in G with the norm

∥u∥Cm(G) =

m∑
|α|=0

sup
x∈G

|Dαu(x)|.

For nonnegative integer l and q > 0 we use the usual notation for Lebesgue
Lq(G) and Sobolev W l,q(G) spaces with the norms

∥u∥Lq(G) =
(∫

G

|u(x)|qdx
)1/q

, ∥u∥W l,q(G) =
( l∑

|α|=0

∫
G

|Dαu(x)|qdx
)1/q

.

W l−1/q,q(∂G) is the trace space on ∂G of functions from W l,q(G). The space
W̊ 1,2(G) is the closure of C∞

0 (G) in the norm of W 1,2(G) (see [1, 8]).
The space W−2,2(G) denotes the dual space of W 2,2(G)∩W̊ 1,2(G) with pairing
< h, ζ >G for any functional h ∈ W−2,2(G) and test function ζ ∈ W 2,2(G) ∩
W̊ 1,2(G). The norm in W−2,2(G) is defined in a usual way:

∥h∥W−2,2(G) = sup
ζ∈W 2,2(G)∩W̊ 1,2(G)

| < h, ζ > |
∥ζ∥W 2,2(G)

.

The space W−1/2,2(∂G) denotes the dual space of W 1/2,2(∂G) with pairing
< g, ξ >∂G for any functional g ∈ W−1/2,2(∂G) and function ξ ∈ W 1/2,2(∂G).

1 Notice that integral (1.2) does not actually describe ”energy” in the physical sense.
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The norm of an element u in the function space V is denoted by ∥u∥V . Then,
L2(0, T ;V ) is the space of functions u, depending on the space variable x and
time variable t, such that u(·, t) ∈ V for almost all t ∈ [0, T ] and the norm

∥u∥L2(0,T ;V ) =
(∫ T

0

∥u(·, t)∥2V dt
)1/2

is finite.

Lemma 1. Let G is a bounded domain in Rn and ∂G is C2-smooth. Let
vk(x) ∈ W 2,2(G) ∩ W̊ 1,2(G) and numbers λk are eigenfunctions and eigen-
values of the Laplace operator:{

−∆vk(x) = λkvk(x), x ∈ G,

vk(x)
∣∣
∂G

= 0.

Then, λk > 0 and lim
k→∞

λk = ∞. The eigenfunctions vk(x) are orthogonal in

L2(G) and we assume that vk(x) are normalized in L2(G), i.e.,∫
G

vk(x)vl(x)dx = δlk =

{
1, l = k,

0, l ̸= k.

Moreover, ∫
G

∇vk(x) · ∇vl(x)dx = λkδlk =

{
λk, l = k,

0, l ̸= k.

For the details see [8].

Lemma 2. Let G be a bounded domain in Rn, n ≥ 1, {vk(x)} be a basis in

Hilbert space W̊ 1,2(G) and h(x) =
∞∑
k=1

hkvk(x).

1. If
∞∑
k=1

h2
k

1 + λ2
k

< ∞, where λk is an eigenvalue corresponding eigenfunction

vk(x), then

∫
G

h(x)η(x) dx is a bounded functional in W 2,2(G).

2. If H(η) be a bounded functional in W 2,2(G), i.e. H(η) ∈ W−2,2(G), then

H(η) =
∫
G
h(x)η(x) dx and

∞∑
k=1

h2
k

1 + λ2
k

< ∞ for any η ∈ W 2,2(G).

Proof.

1. Using the properties of the eigenfunctions and the Cauchy–Schwarz in-
equality we get∫

G

h(x)η(x) dx = lim
N→∞

∫
G

N∑
k=1

hkvk(x)

N∑
k=1

ηkvk(x) dx = lim
N→∞

N∑
k=1

hkηk

≤ lim
N→∞

( N∑
k=1

h2
k

1 + λ2
k

)1/2( N∑
k=1

η2k(1 + λ2
k)
)1/2

≤ c
( ∞∑

k=1

η2k(1 + λ2
k)
)1/2

= c∥η(x)∥W 2,2(G).

Math. Model. Anal., 30(1):109–119, 2025.
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2. Let us denote hk = H(vk(x)). Then,

H(η(x)) = lim
N→∞

H
( N∑

k=1

ηkvk(x)
)
= lim

N→∞

N∑
k=1

ηkH(vk(x)) = lim
N→∞

N∑
k=1

ηkhk

=

∞∑
k=1

ηkhk =

∫
G

h(x)η(x) dx,

where h(x) =
∞∑
k=1

hkvk(x).

Next, we prove that
∞∑
k=1

h2
k

1 + λ2
k

< ∞. Since H(η) is a functional in

W 2,2(G), we have that

|H(η)| ≤ c∥η∥W 2,2(G),

i.e.,
∞∑
k=1

hkηk ≤ c∥η∥W 2,2(G) ≤ c
( ∞∑

k=1

η2k(1 + λ2
k)
)1/2

. (2.1)

Let us take

ηk =

{
hk/(1 + λ2

k), k ≤ N,

0, k > N.
(2.2)

Substituting (2.2) into (2.1) we obtain

∣∣∣ ∞∑
k=1

hkηk

∣∣∣ = ∣∣∣ N∑
k=1

h2
k

1 + λ2
k

∣∣∣ ≤ c
( N∑

k=1

h2
k

(1 + λ2
k)

2
(1 + λ2

k)
)1/2

≤ c
( N∑

k=1

h2
k

1 + λ2
k

)1/2
,

i.e.,
∣∣∣ N∑
k=1

h2
k

1 + λ2
k

∣∣∣ ≤ c
( N∑

k=1

h2
k

1 + λ2
k

)1/2
.

Dividing both sides by
( N∑

k=1

h2
k

1 + λ2
k

)1/2
we get

( N∑
k=1

h2
k

1 + λ2
k

)1/2
≤ c.

Since constant c in the last estimate does not depend on N, we can pass
to a limit as N → ∞ and we obtain:

∞∑
k=1

h2
k

1 + λ2
k

< ∞.

⊓⊔

Remark 1. If function h depends on time variable t and space variable x,
Lemma2 remains valid with only difference that hk depends on t.

Remark 2. Notice that ∥H∥W−2,2(G) ∼
∞∑
k=1

h2
k

1 + λ2
k

.
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3 Formulation of problem and main result

In a bounded simply connected domain Ω ⊂ Rn, n = 2, 3, with C2 smooth
boundary ∂Ω we consider

ut(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u(x, t)|∂Ω×[0,T ] = 0,

u(x, 0) = u0(x),

(3.1)

with additionally prescribed nonlinear side condition∫
Ω

u2(x, t)dx = E2(t), E(0) = ∥u0∥L2(Ω), (3.2)

where u and f are unknown functions while E and u0 are given functions.

Definition 1. The pair (u(x, t), f(x, t)) with functions u ∈ L2(0, T ;L2(Ω)),
ut ∈ L2(0, T ;L2(Ω)) and f ∈ L2(0, T ;W−2,2(Ω)) is called a very weak so-
lution of problem (3.1)–(3.2) if the function u satisfies the initial condition
u(x, 0) = u0(x), the pair (u(x, t), f(x, t)) satisfies the integral identity for any
η ∈ L2(0, T ;W 2,2(Ω) ∩ W̊ 1,2(Ω))∫ T

0

∫
Ω

ut(x, t)η(x, t)dx−
∫ T

0

∫
Ω

u(x, t)∆η(x, t)dx =

∫ T

0

∫
Ω

f(x, t)η(x, t)dx

and u satisfies the nonlinear side condition (3.2).

Deriving the definition of a very weak solution, we multiplied the heat
equation (3.1)1 by the test function η ∈ L2(0, T ;W 2,2(Ω)∩ W̊ 1,2(Ω)) and then
we integrated twice by parts over Ω the second term on the left-hand side.
Doing this we got two integrals over the boundary ∂Ω :∫

∂Ω

(∇u · n)η dS,
∫
∂Ω

u(∇η · n) dS,

where n is a unit vector of the outward normal to ∂Ω.
Since η∈L2(0, T ;W 2,2(Ω)∩W̊ 1,2(Ω)), i.e., η=0 on the boundary ∂Ω in the trace
sense, the integral

∫
∂Ω

(∇u·n)η dS is equal to zero. The integral
∫
∂Ω

u(∇η·n) dS
must be understood as the functional u ∈ W−1/2,2(∂Ω) applied to the test
function ∇η ∈ W 1/2,2(∂Ω). Indeed, since η ∈ W 2,2(Ω) ∩ W̊ 1,2(Ω), we have
∇η ∈ W 1,2(Ω) and ∇η ∈ W 1/2,2(∂Ω) (see [1]). This implies that the boundary
condition (3.1)2 yields

∫
∂Ω

u(∇η · n) dS = 0.

The main result of this paper is formulated in the following theorem.

Theorem 1. Let Ω ⊂ Rn, n = 2, 3, be a bounded simply connected domain,
the boundary ∂Ω is C2 smooth, initial function u0 ∈ L2(Ω)and function E ∈
W 1,2(0, T ), E(0) = ∥u0∥L2(Ω). Then, there exists at least one very weak solu-
tion of problem (3.1)–(3.2).

Math. Model. Anal., 30(1):109–119, 2025.
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4 Proof of the main result

We look for the approximate solution in the form:

u(N)(x, t) =

N∑
k=1

w
(N)
k (t)vk(x), f (N)(x, t) =

N∑
k=1

q
(N)
k (t)vk(x), (4.1)

where vk(x) are eigenfunctions of the Laplace operator.

Functions w
(N)
k (t) and q

(N)
k (t) can be found from the following system:

∫
Ω

u
(N)
t (x, t) vk(x)dx−

∫
Ω

u(N)(x, t)∆vk(x)dx=

∫
Ω

f (N)(x, t) vk(x)dx,

u(N)(x, 0) =
N∑

k=1

βkvk(x),∫
Ω

|u(N)(x, t)|2dx =
1

∥u0∥2L2(Ω)

N∑
k=1

β2
k E

2(t),

(4.2)

where βk, k = 1, ..., N, are the Fourier coefficients of u0(x).

Equality (4.2)1 and initial condition (4.2)2 yields the following problem:
(
w

(N)
l (t)

)′
t
+λl w

(N)
l (t) = q

(N)
l (t),

w
(N)
l (0) = βl.

(4.3)

For all l = 1, 2, ..., N the solution of (4.3) is:

w
(N)
l (t) =

∫ t

0

e−λl (t−τ) q
(N)
l (τ)dτ + βk. (4.4)

Substituting (4.1) into the nonlinear condition (4.2)3 and using the orthogo-
nality properties of the eigenfunctions vl (see Lemma 1) we get

∫
Ω

|u(N)(x, t)|2dx =

∫
Ω

∣∣∣ N∑
l=1

w
(N)
l (t)vl(x)

∣∣∣2dx
=

N∑
l=1

(
w

(N)
l (t)

)2∫
Ω

v2l (x)dx =

N∑
l=1

(
w

(N)
l (t)

)2
=

N∑
l=1

γ2
l E

2(t),

(4.5)

where
∑∞

l=1 γ
2
l = 1.

In order to satisfy condition (4.5) we choose that(
w

(N)
l (t)

)2
= γ2

l E
2(t), i.e., w

(N)
l (t) = γl E(t), (4.6)

where we take γl = βl/∥u0∥L2(Ω).



Heat equation with nonlinear side condition 115

Let us calculate the norms of u(N) and u
(N)
t in L2(0, T ;L2(Ω)) :

||u(N)||2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

N∑
k=1

|w(N)
k (t)|2v2k(x)dxdt

=

∫ T

0

N∑
k=1

|w(N)
k (t)|2dt =

∫ T

0

N∑
k=1

∣∣∣ βk E(t)

∥u0∥L2(Ω)

∣∣∣2dt
=

1

∥u0∥2L2(Ω)

N∑
k=1

β2
k

∫ T

0

E2(t)dt

(4.7)

and

||u(N)
t ||2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

N∑
k=1

|(w(N)
k (t))

′

t|2v2k(x)dxdt

=

∫ T

0

N∑
k=1

|(w(N)
k (t))

′

t|2dt =
∫ T

0

N∑
k=1

∣∣∣ βk E′(t)

∥u0∥L2(Ω)

∣∣∣2dt
=

1

∥u0∥2L2(Ω)

N∑
k=1

β2
k

∫ T

0

|E′(t)|2dt.

(4.8)

Next, we get the estimate for q
(N)
l which leads to the estimate of the un-

known function f (N). Notice that from (4.3)1 and (4.6) we have

q
(N)
l (t) =

βl

∥u0∥L2(Ω)

(
λl E(t) + E′(t)

)
, ∀l = 1, ..., N. (4.9)

Let us square both sides of (4.9) and then divide by 1 + λ2
k:

|q(N)
k (t)|2

1 + λ2
k

=
β2
k

∥u0∥2L2(Ω)

(
λkE(t) + E′(t)

)2
1 + λ2

k

≤ cβ2
k

∥u0∥2L2(Ω)

(
E2(t) +

|E′(t)|2

1 + λ2
k

)
≤ cβ2

k

∥u0∥L2(Ω)

(
E2(t) + |E′(t)|2

)
.

Summing up from 1 to N , we derive:

N∑
k=1

|q(N)
k (t)|2

1 + λ2
k

≤ c

∥u0∥2L2(Ω)

(
E2(t) + |E′(t)|2

) N∑
k=1

β2
k, (4.10)

i.e., due to Lemma2 we have

||f (N)||2L2(0,T ;W−2,2(Ω)) ≤
N∑

k=1

|q(N)
k (t)|2

1 + λ2
k

≤ c

∥u0∥2L2(Ω)

N∑
k=1

β2
k

∫ T

0

(
|E′(t)|2 + E2(t)

)
dx.

(4.11)

Math. Model. Anal., 30(1):109–119, 2025.
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Therefore, estimates (4.7), (4.8) and (4.11) show that sequences {u(N)}, {u(N)
t }

are bounded in the space L2(0, T ;L2(Ω)) and the sequence {f (N)} is bounded
in the space L2(0, T ;W−2,2(Ω)). Thus, we can choose subsequences {u(Nj)},
{u(Nj)

t } and {f (Nj)} weakly converging in the spaces L2(0, T ;L2(Ω)) and
L2(0, T ;W−2,2(Ω)), respectively.

Let us take integral identity (4.2)1 for N = Nj :∫
Ω

u
(Nj)
t (x, t) vk(x)dx−

∫
Ω

u(Nj)(x, t)∆vk(x)dx =

∫
Ω

f (Nj)(x, t) vk(x)dx. (4.12)

We multiply (4.12) by dk(t) ∈ L2(0, T ), then sum up from 1 to M, M ≤ Nj

and integrate with respect to t from 0 to T :∫ T

0

∫
Ω

u
(Nj)
t (x, t)

M∑
k=1

vk(x) dk(t)dxdt−
∫ T

0

∫
Ω

u(Nj)(x, t)∆
( M∑
k=1

vk(x) dk(t)
)
dxdt

=

∫ T

0

∫
Ω

f (Nj)(x, t)

M∑
k=1

vk(x) dk(t)dxdt.

Denote
∑M

k=1 vk(x) dk(t) = η(x, t). Then, we have∫ T

0

∫
Ω

u
(Nj)
t (x, t) η(x, t)dxdt−

∫ T

0

∫
Ω

u(Nj)(x, t)∆η(x, t)dxdt

=

∫ T

0

∫
Ω

f (Nj)(x, t) η(x, t)dxdt,

(4.13)

where η(x, t) ∈ L2(0, T ;W 2,2(Ω)∩W̊ 1,2(Ω)). Since {u(Nj)} and {u(Nj)
t } weakly

converge in L2(0, T ;L2(Ω)), and {f (Nj)} weakly converges in
L2(0, T ;W−2,2(Ω)), we can pass to a limit as Nj → ∞ in equality (4.13):∫ T

0

∫
Ω

ut(x, t) η(x, t)dxdt−
∫ T

0

∫
Ω

u(x, t)∆η(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t) η(x, t)dxdt.

(4.14)

Note that (4.14) is now proved for η(x, t)=
∑M

k=1 vk(x) dk(t)∈L2(0, T ;W 2,2(Ω)

∩W̊ 1,2(Ω)), and M is an arbitrary natural number. Since the set of all li-

near combinations
∑M

k=1 vk(x) dk(t) is dense in the space L2(0, T ;W 2,2(Ω) ∩
W̊ 1,2(Ω)), for every η(x, t) ∈ L2(0, T ;W 2,2(Ω) ∩ W̊ 1,2(Ω)) there exists a sub-
sequence {ηl} such that

∥ηl − η∥L2(0,T ;W 2,2(Ω)∩W̊ 1,2(Ω)) → 0 as l → ∞.

So, for every ηl the equality (4.14) is valid, i.e.,∫ T

0

∫
Ω

ut(x, t) ηl(x, t)dxdt−
∫ T

0

∫
Ω

u(x, t)∆ηl(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t) ηl(x, t)dxdt.

(4.15)
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Then, we can pass to a limits as l → ∞ in (4.15):∫ T

0

∫
Ω

ut(x, t) η(x, t)dxdt−
∫ T

0

∫
Ω

u(x, t)∆η(x, t)dxdt=

∫ T

0

∫
Ω

f(x, t) η(x, t)dxdt,

for arbitrary function η(x, t) from the space L2(0, T ;W 2,2(Ω) ∩ W̊ 1,2(Ω)).
Next, we need to prove that∫

Ω

|u(N)(x, t)|2dx → E2(t).

Let us denote

φ(N)(t) = ∥u(N)(·, t)∥L2(Ω) =

(∫
Ω

|u(N)|2dx

)1/2

. (4.16)

Then, (φ(N)(t))′ is:

(φ(N)(t))′ =

((∫
Ω

|u(N)|2dx
)1/2)′

t

=

∫
Ω

u(N)u
(N)
t dx

∥u(N)(·, t)∥L2(Ω)

≤

(∫
Ω

|u(N)|2dx
)1/2(∫

Ω

|u(N)
t |2dx

)1/2
∥u(N)(·, t)∥L2(Ω)

= ∥u(N)
t ∥L2(Ω).

(4.17)

So, applying estimates (4.16) and (4.17) we get∫ T

0

|φ(N)(t)|2dt =
∫ T

0

∥u(N)∥2L2(Ω)dt = ∥u(N)∥2L2(0,T ;L2(Ω)) (4.18)

and ∫ T

0

|(φ(N)(t))′|2dt ≤
∫ T

0

∥u(N)
t ∥2L2(Ω)dt = ∥u(N)

t ∥2L2(0,T ;L2(Ω)). (4.19)

Since the L2(0, T ;L2(Ω)) - norms of functions u(N) and u
(N)
t are finite (see

(4.7) and (4.8)) and the estimates (4.18), (4.19) are valid, we conclude φ(t) ∈
W 1,2(0, T ). The embedding W 1,2(0, T ) ↪→ C([0, T ]) is completely continuous
(see [5]). Therefore, from φ(N) ⇁ φ in W 1,2(0, T ), follows that φ(N) → φ in
C([0, T ]), i.e., ∫

Ω

|u(N)(·, t)|2dx →
∫
Ω

|u(·, t)|2dx. (4.20)

Since 1
∥u0∥2

L2(Ω)

∑N
k=1 β

2
kE

2(t) → E2(t) as N → ∞, we can conclude that∫
Ω
|u(x, t)|2dx = E2(t). Due to the condition E(0) = ∥u0∥L2(Ω), we obtain∫

Ω
|u(x, 0)|2dx =

∫
Ω
|u0(x)|2dx.

In order to prove u(x, 0) = u0(x) we need to get that

lim
t→0

∥u(·, t)− u0∥L2(Ω) = 0. (4.21)
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Let us estimate the norm ∥u(·, t)− u0∥L2(Ω) :

∥u(·, t)− u0∥L2(Ω) ≤ ∥u(·, t)− u(Nl)(·, t)∥L2(Ω)

+ ∥u(Nl)(·, t)− u
(Nl)
0 ∥L2(Ω) + ∥u(Nl)

0 − u0∥L2(Ω).
(4.22)

Let us choose an arbitrary small ε > 0. From the weak convergence u(Nl) to u
and (4.20) we conclude that u(Nl) converges strongly. So, there exists N∗ such
that for every Nl > N∗

∥u(·, t)− u(Nl)(·, t)∥L2(Ω) ≤ ε/3. (4.23)

Since u
(Nl)
0 is the partial sum of the Fourier series of the initial function u0,

the number N∗ can be find such that for every Nl > N∗

∥u(Nl)
0 − u0∥L2(Ω) ≤ ε/3. (4.24)

Let us fix Nl. Then,

∥u(Nl)(·, t)− u
(Nl)
0 ∥L2(Ω) =

(∫
Ω

∣∣∣ Nl∑
k=1

w
(Nl)
k (t) vk(x)−

Nl∑
k=1

βk vk(x)
∣∣∣2dx)1/2

=
( Nl∑

k=1

(w
(Nl)
k (t)−βk)

2
)1/2

=
( Nl∑

k=1

(w
(Nl)
k (t)−w

(Nl)
k (0))2

)1/2
≤ ε/3 (4.25)

for any t ≤ δ(ε). Here we used the fact that functions w
(Nl)
k are continuous.

Substituting (4.23), (4.24) and (4.25) into inequality (4.22) we arrive at (4.21).
This implies that the obtained solution u satisfies the initial condition
u(x, 0) = u0(x).

Remark 3. The constructed solutions of problem (3.1)–(3.2) depend on the
Fourier coefficients βk of the initial function u0. In the case when u0 = 0
the function E(t) has to satisfy condition E(0) = 0. Then instead of the coeffi-
cients γk we can take in (4.6) arbitrary coefficients αk such that

∑∞
k=1 αk = 1.

So, there is no uniqueness of the solution if u0 = 0.
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