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bDepartamento de Matemática Aplicada y Ciencias de la Computación,
Universidad de Cantabria

Av. Los Castros s.n., 39005 Santander, Spain

E-mail(corresp.): meperez@unican.es

E-mail: gomezdel@unican.es

Received October 10, 2023; accepted January 2, 2024

Abstract. We consider a homogenization problem for the elasticity operator posed
in a bounded domain of the half-space, a part of its boundary being in contact with
the plane. This surface is traction-free out of “small regions”, where we impose non-
linear Winkler-Robin boundary conditions containing “large reaction parameters”.
Non-periodical distribution of these regions is allowed provided that they have the
same area. We show the convergence of solutions towards those of the homogenized
problems depending on the relations between the parameters distance, sizes, and
reaction.
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1 Introduction

Linear Winkler-Robin boundary conditions in homogenization frameworks have
been approached recently in the literature, cf. [2, 7, 8, 10, 19]. We also refer
to the homogenization of Winkler-Steklov type boundary conditions in [6, 13].
However, the case of the homogenization of nonlinear Winkler-Robin boundary
conditions remained as an open problem that we address in this paper.
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We study the asymptotic behavior of an elastic body which has very large
surface reaction terms concentrated in small regions. We assume that the
elastic material fills the domain Ω of the upper half space R3+, and a part
Σ of its surface lies on the plane {x3 = 0} and contains small regions T ε of
size O(rε), at a distance O(ε) between them (cf. Figure 1 and (2.3) and (2.5)
for precise definition). The boundary conditions are nonlinear Winkler-Robin
on T ε. These regions can have different shapes but must have the same area
|T ε| ≡ r2ε |T |. Outside, the surface Σ is free of forces while the rest of the
surface ∂Ω \Σ is assumed to be fixed. Here ε and rε are two small parameters
such that ε2 ≪ rε ≤ ε ≪ 1.

As is well known, from the mechanical viewpoint, the small regions behave
as “springs” with a nonlinear elastic behavior represented by a reaction vector
function β(ε)M(x, uε), which depends on the point where the reaction regions
T ε are placed and on the displacement vector uε, while the parameter β(ε),
which is referred to as the reaction parameter, can range from very small to very
large. These regions T ε are assumed to be domains of the plane R2 homothetics
of any prescribed domain within a set of isoperimetric domains with a Lipschitz
boundary (cf. (2.1)). For relatively large sizes of these regions (cf. (2.2)), we
analyze the different relations between the three parameters of the problem,
ε, rε and β(ε), and find three possible homogenized problems, which range
from Dirichlet to Neumann (the so-called extreme cases in the literature) and
the intermediate case where an averaged nonlinear Winkler-Robin boundary
condition is imposed on Σ. The averaged reaction term depends on the unit
area |T | and on a constant β∗ which links the reaction parameter β(ε) and the
total area of the regions T ε, namely,

lim
ε→0

β(ε)r2ε/ε
2 = β∗. (1.1)

In the case where β∗ = 0, either the reaction is small or the total area
of the reaction regions is small and the homogenized boundary condition is
traction-free. In the case where β∗ = +∞ the reaction or areas are so big
that Σ remains, asymptotically, stuck to the plane. The case where β∗ > 0
is referred to as critical relation between the parameters. It occurs when the
total area of the reaction regions O(ε−2r2ε) multiplied by the parameter of
reaction β(ε) is of order 1. In this way, for a given reaction β(ε) we find
a critical size of the reaction regions rε = O(β(ε)1/2ε) in such a way that
the asymptotic behavior is different from the extreme cases. This critical size
obviously differs from the classical one rε = O(ε2) obtained in the literature
with the so-called strange terms: cf. [1,17] for the case where the small regions
are stuck to the plane, [13] for Steklov type conditions on the small regions, [7,8]
for linear Winkler-Robin boundary conditions; see also references in [5, 7, 8]
and [9] for further scalar problems. Also, to each size rε corresponds a critical
reaction parameter β(ε) = O(ε2r−2

ε ). The role of β(ε) is crucial in the problem
under consideration, and, as a particular case, for the elasticity operator, we
provide the averaged nonlinear Winkler-Robin boundary condition when β(ε)
is a constant and rε = O(ε) (cf. [10] for the linear case).

In the periodic case, when rε = O(ε), the geometrical configuration here
considered for the elasticity system is in [6, 8, 10]. The three papers deal with
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the vibrations of an elastic block. [6] addresses the homogenization of Winkler-
Steklov boundary conditions, [8, 10] consider the linear Winkler-Robin ones,
in particular, [8] deals with asymptotic expansions. Let us also mention the
elasticity operator and similar geometrical configurations in [20] for perforated
domains, and [1,12] for different contact laws. Nonlinear restrictions in a scalar
problem are in [23]; in this connection, we mention [3, 4] for further Signorini
type variational inequalities. For non-periodic geometrical configurations in a
scalar problem with nonlinear Robin boundary conditions see [5] and references
therein.

Finally, we emphasize that the results in this paper apply to the linear
function Mi(x, u

ε) ≡ Mij(x)u
ε
j considered in [10] (see Remarks 1 and 3), and

therefore, here we extend the results for the linear case to a non-periodic dis-
tribution of the T ε. Also, they extend and complement those for linear and
nonlinear scalar problems addressed in [9, 24].

Figure 1. Geometrical configuration of the problem and the grill

Now, let us describe the general structure of the paper. Section 2 contains
the setting of the homogenization problem. Section 3 contains the abstract
framework of the problem along with the three homogenized problems, which
depend on the different relations between the parameters. They are obtained
by means of asymptotic expansions in Section 4. Section 5 addresses the con-
vergence of the solutions in (H1(Ω))3-weak for the critical relation when β∗ > 0
(cf. Theorem 3), respectively in (H1(Ω))3 when dealing with the extreme re-
lations β∗ = 0 or β∗ = +∞ (cf. Theorems 4 and 5). In particular, it should be
noticed that proofs rely on a convergence measure result, cf. Theorem 2, which
extends previous ones in the literature (cf. Remark 3). Its proof, along with
the preliminary necessary results, is in Section 6. We gather some concluding
remarks in Section 7.

2 Setting of the problem

Let Ω be an open bounded domain of R3 situated in the upper half-space
R3+ = {x ∈ R3 : x3 > 0}, with a Lipschitz boundary ∂Ω. Let Σ be the part
of the boundary in contact with the plane {x3 = 0} which is assumed to be
non-empty and let ΓΩ be the rest of the boundary of Ω: ∂Ω = ΓΩ ∪ Σ. For
each p = 0, 1, 2, . . . ,M, let T p denote an open bounded domain of the plane
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{x3 = 0} with a Lipschitz boundary, and area |T p| = |T 0| = |T |, where T = T 0.
Let M denote the set of these M+ 1 isoperimetric domains, namely

M := {T p}Mp=0, |T p| = |T |. (2.1)

Without any restriction, we can assume that Σ and T p contain the origin of
coordinates, p = 0, 1, . . . ,M and T p ⊂ B(0,K) the ball of radius K for a
certain K < 1/2.

Let ε be a small parameter ε ≪ 1. Let rε be an order function such that

ε2 ≪ rε ≤ ε. (2.2)

For k = (k1, k2) ∈ Z2, we denote by x̃ε
k the point of the plane {x3 = 0} of

coordinates x̃ε
k = (k1ε, k2ε, 0), and by T p,ε

x̃k
the homothetic domain of a certain

T p of ratio rε after translation to the point x̃ε
k:

T p,ε
x̃k

= x̃ε
k + rεT

p ; (2.3)

x̃ε
k is referred to as the center of T p,ε

x̃k
. If there is no ambiguity, we shall write

x̃k instead of x̃ε
k.

In this way, for any fixed ε, we construct the grid of squares in the plane
{x3 = 0} whose vertices are the centers of the regions T p,ε

x̃k
homothetics after

translation of T p for some p = 0, 1, 2, . . . ,M. We denote by T ε
x̃k

this region

which can in fact be any T p,ε
x̃k

. Let J ε denote J ε = {k ∈ Z2 : T ε
x̃k

⊂ Σ}, while
Nε denotes the number of elements of J ε:

Nε ≊ |Σ|/ε2 = O(ε−2). (2.4)

Similarly, for p = 0, 1, . . . ,M, we consider J ε
p = {k ∈ J ε : T ε

x̃k
= T p,ε

x̃k
⊂ Σ}.

Finally, if no confusion arises, we denote by
⋃
T ε the union of all the T ε

contained in Σ, namely,

⋃
T ε ≡

⋃
k∈J ε

T ε
x̃k

≡
M⋃
p=0

⋃
k∈J ε

p

T p,ε
x̃k

. (2.5)

Also, in what follows x = (x1, x2, x3) denotes the usual cartesian coordinates,
while by x̂ = (x1, x2) we refer to the two first components of x ∈ R3.

Under the basis that the domain Ω is filled by an elastic material, for
i, j, k, l = 1, 2, 3, we denote by aijkl(x) the elastic coefficients of the material,
which are assumed to be continuous functions defined in Ω and satisfy the
standard symmetry and coercivity properties (cf., e.g., [21]): ∀x ∈ Ω,

aijkl(x) = ajikl(x) = aklij(x), i, j, k, l=1, 2, 3, (2.6)

∃α1>0 : aijkl(x)ξijξkl ≥ α1ξijξij , ∀ξ=(ξij)i,j=1,2,3, ξij=ξji, i, j=1, 2, 3. (2.7)

Also, for a given displacement vector u(x) = (u1(x), u2(x), u3(x)) we use the
standard notations for stress and strain tensors σ(u) and e(u); namely, we
denote by (σij(u))i,j=1,2,3 the stress tensor which is related to the strain tensor
(eij(u))i,j=1,2,3 by the Hooke’s law

σij(u) = aijkl(x)ekl(u), where ekl(u) =
1

2

(∂uk

∂xl
+

∂ul

∂xk

)
. (2.8)

Math. Model. Anal., 29(4):694–713, 2024.
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Above, and in what follows, we use the convention of summation over repeated
indexes.

In connection with the reaction terms in the small regions T ε, let us intro-
duce the continuous vectorial functionM(x, u) = (M1(x, u),M2(x, u),M3(x, u)),
Mi(x, u) ≡ Mi(x1, x2, x3, u1, u2, u3), Mi ∈ C(Ω × R3), while i = 1, 2, 3, satis-
fying the following properties (see also Remark 1)

Mi(x, 0) = 0, ∀x ∈ Ω, i = 1, 2, 3, (2.9)

the monotonicity condition

3∑
i=1

(Mi(x, u)−Mi(x, v))(ui − vi) ≥ 0, ∀x ∈ Ω, u, v ∈ R3, (2.10)

and the globally Lipschitz condition

|Mi(x, u)−Mi(x
′, v)| ≤ Li(|x− x′|+ |u− v|+ |u− v|1+δ),

∀x, x′ ∈ Ω, u, v ∈ R3, i = 1, 2, 3, (2.11)

for certain positive constants L1, L2, L3, δ ∈ [0, 2].
For f = (f1, f2, f3) ∈ (L2(Ω))3 let us consider the problem

−
∂σε

ij

∂xj
= fi in Ω ,

uε = 0 on ΓΩ ,

σε
ijnj = 0 on Σ \

⋃
T ε,

σε
ijnj + β(ε)Mi(x, u

ε) = 0 on
⋃
T ε ,

i = 1, 2, 3. (2.12)

Above, uε = (uε
1, u

ε
2, u

ε
3) denotes the displacement vector, σε

ij ≡ σij(u
ε) =

aijklekl(u
ε) (cf. (2.8)), while n stands for the unit outer normal to Ω along

Σ, namely, n = (0, 0,−1). The boundary conditions on T ε linking stresses
and displacements are referred to as Winkler-Robin boundary conditions. The
parameter β(ε) can range from very large to very small or it can be of order 1.

Remark 1. Note that condition (2.11) follows in the case where Mi are smooth
functions Mi ∈ C1(Ω × R3), satisfying:∣∣∣∂Mi

∂uj
(x, u)

∣∣∣ ≤ Dij(1 + |u|δ), ∀(x, u) ∈ Ω × R3, i, j=1, 2, 3,

for certain positive constants Dij , i, j = 1, 2, 3. Also they follow in the sim-
plified case where Mi(x, u) ≡ Mi(x, ui), with Mi monotonic and Lipschitz
function in the ui variable (see, e.g., Section 3.3.1 in [22]). In addition, in the
linear case, the functions Mi read: Mi(x, u) ≡ Mij(x)uj , where (Mij)i,j=1,2,3

is a symmetric and positive definite 3× 3-matrix, Mij ∈ C(Ω) (see [7, 8, 10]).
Also, it should be emphasized that hypotheses (2.9)–(2.11) on Mi can be

weakened to be defined in Σ × R3 such that Mi(x, ϕ(x))ui ∈ H1(Ω) for all
ϕ ∈ (C1(Ω))3 and u ∈ (H1(Ω))3 (cf. (3.19) and (6.13)).
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3 The abstract framework and the limit problems

Let us denote by V the space obtained by completion of {v ∈ (C1(Ω))3 : v =
0 on ΓΩ} with the norm generated by the scalar product:

(u, v)V =

∫
Ω

eij(u)eij(v) dx . (3.1)

For fixed ε > 0, the weak formulation of problem (2.12) reads: find uε ∈ V,
satisfying∫

Ω

σij(u
ε)eij(v) dx+ β(ε)

∫
⋃

T ε

Mi(x̂, u
ε)vi dx̂ =

∫
Ω

fivi dx, ∀v ∈ V. (3.2)

Above, and if no confusion arises, we have identified the point x̂ = (x1, x2) in
the plane with (x1, x2, 0) ∈ Σ.

On account of (2.6) and (2.7), the first integral on the left hand side of (3.2)
defines a bilinear, symmetric continuous and coercive form on V ⊂ (L2(Ω))3.
As for the second integral, on account of (2.9)–(2.11), we can write

0 ≤ β(ε)

∫
⋃

T ε

Mi(x̂, u
ε)uε

i dx̂, and (3.3)∣∣∣β(ε)∫⋃
T ε

Mi(x̂, u
ε)vi dx̂

∣∣∣ ≤ Cβ(ε)

∫
⋃

T ε

(|uε|+ |uε|1+δ)|v| dx̂, (3.4)

for certain positive constant C independent of ε. Note that the last integral in
(3.4) is well defined for δ ∈ [0, 2] because of the Hölder’s inequality, namely,∫

⋃
T ε

(|uε
i |+ |uε

i |1+δ)|vj | dx̂ ≤Cε

(
∥uε

i∥L2(
⋃

T ε)∥vj∥L2(
⋃

T ε)

+ ∥uε
i∥1+δ

L(1+δ)4/3(
⋃

T ε)
∥vj∥L4(

⋃
T ε)

)
, (3.5)

and the continuous embedding H1(Ω) ⊂ L4(Σ).
Also, on account of (2.9)–(2.11), we can define a monotonic, hemicontinuous

and coercive operator Aε : V 7−→ V′ as follows

⟨Aεu, v⟩ =
∫
Ω

σij(u)eij(v) dx+ β(ε)

∫
⋃

T ε

Mi(x̂, u)vi dx̂, for u, v ∈ V.

Solving (3.2) leads us to the variational inequality

⟨Aεuε, v − uε⟩ ≥
(
f, v − uε

)
(L2(Ω))3

, ∀v ∈ V, (3.6)

which has a unique solution uε ∈ V that also satisfies∫
Ω

σij(v)eij(v−uε)dx+β(ε)

∫
⋃

T ε

Mi(x̂, v)(vi−uε
i ) dx̂ ≥

∫
Ω

fi(vi−uε
i ) dx, ∀v ∈ V.

(3.7)
These results on variational inequalities are a consequence of Theorems 8.2–8.4
in Sections II.8.2 and II.8.3 of [15] (cf. [9] for further references).

Math. Model. Anal., 29(4):694–713, 2024.
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To show that the solution uε ∈ V of (3.6) is a solution of (3.2) it suffices
to take v = uε ± w in (3.6) for any w ∈ V. In addition, to show that uε is
the unique element of V satisfying (3.2) can be performed by contradiction, on
account of (2.10). Indeed, considering that there are two solutions of (3.2), uε

and ũε, we easily get∫
Ω

σij(u
ε−ũε)eij(u

ε−ũε)dx+β(ε)

∫
⋃

T ε

(
Mi(x̂, u

ε)−Mi(x̂, ũ
ε)
)
(uε

i − ũε
i ) dx̂ = 0,

and the positiveness of the second integral provides uε = ũε.
In addition, on account of the Poincaré and Korn inequalities, and (2.7),

taking v = uε in (3.2), we have∫
Ω

(eij(u
ε))2 dx ≤ C, β(ε)

∫
⋃

T ε

Mi(x̂, u
ε)uε

i dx̂ ≤ C, (3.8)

where C is a constant independent of ε. Therefore, we have proved the following
result on the weak solution of (2.12).

Theorem 1. There is a unique solution uε ∈ V of the Equation (3.2), which
is uniformly bounded

∥uε∥V ≤ C. (3.9)

As a consequence of (3.9), for any sequence, still denoted by ε, we can
extract a subsequence such that

uε −→ u0 in (H1(Ω))3 − weak, as ε → 0, (3.10)

for some u0 ∈ V. The aim of this work is to identify u0 with the unique solution
of certain homogenized problems which depend on the parameter β∗ in (1.1).

3.1 The homogenized problems

In order to make the reading of the paper easier, here we state the three ho-
mogenized problems (3.11),(3.12); (3.11),(3.13) and (3.11),(3.14), which are
obtained depending on the value of β∗ in (1.1). We derive all these problems
in Section 4, by using the technique of matched asymptotic expansions. For
any β∗, u0 verifies

−∂σij(u
0)

∂xj
= fi in Ω, i = 1, 2, 3,

u0 = 0 on ΓΩ .

(3.11)

In addition, if β∗ > 0, the averaged equation on Σ reads

σij(u
0)nj + β∗|T |Mi(x̂, u

0) = 0 on Σ. (3.12)

If β∗ = 0, the boundary condition on Σ reads

σij(u
0)nj = 0 on Σ. (3.13)
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If β∗ = +∞, the boundary condition on Σ reads

u0 = 0 on Σ. (3.14)

We state the weak formulation of each homogenized problem:

� For problem (3.11),(3.12): find u0 ∈ V satisfying∫
Ω

σij(u
0)eij(v) dx+β∗|T |

∫
Σ

Mi(x̂, u
0)vi dx̂=

∫
Ω

fivi dx, ∀v ∈ V. (3.15)

The variational inequality satisfied by u0 is∫
Ω

σij(v)eij(v − u0) dx+ β∗|T |
∫
Σ

Mi(x̂, v)(vi − u0
i ) dx̂

≥
∫
Ω

fi(vi − u0
i ) dx, ∀v ∈ V. (3.16)

� For problem (3.11),(3.13): find u0 ∈ V satisfying∫
Ω

σij(u
0)eij(v) dx =

∫
Ω

fivi dx, ∀v ∈ V. (3.17)

� For problem (3.11),(3.14): find u0 ∈ (H1
0 (Ω))3 satisfying∫

Ω

σij(u
0)eij(v) dx =

∫
Ω

fivi dx, ∀v ∈ (H1
0 (Ω))3. (3.18)

The existence and uniqueness of solution of problems (3.17) and (3.18) is
well known in the literature (cf., for example, Sections I.3.3 and I.3.5 in [21], [1]
and [17]), while that of problems (3.15) and (3.16) follow as that of (3.2) and
(3.7) with minor modifications (cf. the proof in Theorem 1). Note that, using
the same reasoning as in (3.4) and (3.5), we get∫

Σ

Mi(x̂, u
0)vi dx̂ ≤ C

3∑
i,j=1

(
∥u0

i ∥L2(Σ)∥vj∥L2(Σ)+∥u0
i ∥1+δ

L(1+δ)4/3(Σ)
∥vj∥L4(Σ)

)
.

(3.19)

4 Asymptotic expansions

In this section, we use the technique on matched asymptotic expansions (cf.,
e.g., [8] and references therein) to derive the homogenized problems
(3.11),(3.12); (3.11),(3.13) and (3.11),(3.14).

For simplicity, throughout the section, we consider the technical restriction
that the T ε are homothetics of T , and that the parameters satisfy rε ≪ ε (cf.
(1.1), (2.1), (2.2) and Remark 2 in this connection).

Taking into account (3.9) we consider the asymptotic expansions for the
displacement vector uε of (2.12) as follows. Assume an outer expansion

uε(x) = u0(x) + rεu
1(x) + . . . , in Ω ∩ {x3 > d} ∀d > 0, (4.1)

Math. Model. Anal., 29(4):694–713, 2024.
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which in fact, is supposed to be valid for x “far” from the regions T ε
x̃k
, namely,

at a distance ρ ≫ rε from the center x̃k. In addition, we assume a local
expansion in a neighborhood of each reaction region T ε

x̃k

uε(x) = V 0(y) + rεV
1(y) + . . . for y ∈ R3+. (4.2)

Above, and in what follows, we denote by

y = (x− x̃k)/rε (4.3)

the local variable in a neighborhood of each center x̃k, k ∈ J ε, and by u1, V 1,
and dots we denote further terms in the asympotic series containing lower order
functions that we are not using in our analysis.

By matching the local and outer expansions for uε, at the first order, we
can write

lim
|y|→∞

V 0(y) = lim
x→x̃k

u0(x). (4.4)

By replacing (4.1) in (2.12) we obtain Equations (3.11) for u0 plus some
boundary condition on Σ to be determined. In order to do this, we first de-
termine V 0(y) in the local expansion (4.2). On account of (2.11), let us first
obtain formal asymptotics expansions for Mi(x, u

ε(x)), while i = 1, 2, 3, in a
neighborhood of each region T ε

x̃k
:

Mi(x, u
ε(x)) = Mi(rεy + x̃k, u

ε(x)) = Mi(x̃k, V
0(y)) + . . . . (4.5)

Taking derivatives in (2.12) with respect to y, cf. (4.3), we replace (4.2) and
(4.5) in (2.12), and take into account the continuity of the elastic coefficients
aijkl(x) and (4.4). Then, for V 0 we have the equations:

−
∂σk

ij,y(V
0)

∂yj
= 0 in R3+ ,

σk
ij,y(V

0)nj = 0 on {y3 = 0} \ T ,

σk
ij,y(V

0)nj + rεβ(ε)Mi(x̃k, V
0) = 0 on T ,

V 0(y) −→ u0(x̃k) as |y| → ∞, y3 > 0 ,

i = 1, 2, 3.

(4.6)
Above, and in what follows, for simplicity, we write the upper index k in

the strain tensor to denote:

σk
ij,y(V ) = aijkl(x̃k)ekl,y(V ) where ekl,y(V ) =

1

2

(∂Vk

∂yl
+

∂Vl

∂yk

)
. (4.7)

We also observe a dependence of V 0 on ε and on the center of the reaction
region x̃k.

4.1 The boundary condition on Σ

Considering (3.11), in order to obtain the boundary condition on Σ for u0,
we perform an integration by parts over the equilibrium equations in coin-
like domains, neglecting the stresses across the lateral surface. We define one
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of these domains as follows. Let us consider Σ1 an open domain contained
in Σ such that ∂Σ1 does not touch any region T ε

x̃k
. Let δ̃(ε) be positive,

rε ≪ δ̃(ε) ≪ 1. We consider the coin-like domain

Ω
δ̃(ε)
Σ1

= Ω ∩ (Σ1 × (0, δ̃(ε))). (4.8)

Let Γδ̃(ε) denote the lateral boundary of Ω
δ̃(ε)
Σ1

in such a way that

∂Ω
δ̃(ε)
Σ1

= Γδ̃(ε) ∪Σ
δ̃(ε)
1 ∪Σ1, (4.9)

where Σ
δ̃(ε)
1 denotes the set {x : (x1, x2, 0) ∈ Σ1, x3 = δ̃(ε)}. On Σ

δ̃(ε)
1 , we are

“far” from the reaction regions T ε
x̃k

and (4.1) holds. “Near” each region T ε,
we need to use the local expansion (4.2). In particular, on each reaction region
T ε
x̃k

we have (cf. (4.3) and (4.7))

σi3(u
ε) = σi3(V

0(y)) ≈ ai3kh(x̃k)
1

rε
ekh,y(V

0(y)) + . . . =
1

rε
σk
i3,y(V

0(y)) + . . . .

(4.10)
Now, we multiply the divergence vector in (2.12) by ei with eij = δij , and

apply the Green formula over Ω
δ̃(ε)
Σ1

(cf. (4.8) and (4.9)) to obtain∫
Σ1∩

⋃
T ε
x̃k

σi3(u
ε)dx̂ =

∫
Ω

δ̃(ε)
Σ1

fidx+

∫
Γδ̃(ε)

σij(u
ε)njdΓδ̃ +

∫
Σ

δ̃(ε)
1

σi3(u
ε)dx̂.

(4.11)
We observe that, by construction (cf. (3.9)), the two first integrals on the right-
hand side of (4.11) converge towards zero as ε → 0. For the other integral, we
use the approximation (4.1), namely

σi3(u
ε)
∣∣∣
x3=δ̃(ε)

= σi3(u
0)
∣∣∣
x3=0

+ . . . .

Therefore, introducing this and (4.10) in (4.11), and performing the change of
variable (4.3), we write∫

Σ1

σi3(u
0)dx̂= lim

ε→0

∑
x̃k∈Σ1

∫
T ε
x̃k

σi3

(
V 0

(x−x̃k

rε

))
dx̂= lim

ε→0

∑
x̃k∈Σ1

∫
T

rεσ
k
i3,y(V

0(y))dŷ.

(4.12)
Owing to the relation on T in (4.6), we rewrite (4.12) as follows∫

Σ1

σi3(u
0)dx̂ = lim

ε→0
β(ε)r2ε

∑
x̃k∈Σ1

∫
T

Mi(x̃k, V
0(ŷ, 0))dŷ. (4.13)

Now, using that β(ε)rε → 0, in (4.6), in a first approach we can take
V 0(y) ≈ u0(x̃k), ∀y ∈ R3+, and therefore,∫

Σ1

σi3(u
0)dx̂ = lim

ε→0
β(ε)r2εε

−2
∑

x̃k∈Σ1

ε2Mi(x̃k, u
0(x̃k))

∫
T

dŷ. (4.14)
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Under assumptions of smoothness for Mi and u0, when β∗ > 0, (4.14) gives∫
Σ1

σi3(u
0)dx̂ = β∗|T |

∫
Σ1

Mi(x̂, 0, u
0(x̂, 0))dx̂ ,

while, when β∗ = 0, (4.14) gives
∫
Σ1

σi3(u
0) dx̂ = 0.

Then, using the somewhat arbitrary choice of Σ1 ⊂ Σ, we deduce the
following boundary conditions to be added to (3.11) in order to determine the
first term of the asymptotic expansion (4.1), namely u0:

σij(u
0)nj + β∗|T |Mi(x̂, u

0) = 0 on Σ, when β∗ > 0,

σij(u
0)nj = 0 on Σ, when β∗ = 0.

It should be noted that in both cases β(ε)rε → 0 is satisfied to somehow
compensate rεε

−2 → +∞ and β∗ ≥ 0 in (1.1).
Also, when β∗ = +∞, we multiply by the factor ε2(β(ε)r2ε)

−1 in both sides
of the equality (4.11). Then, taking limits as ε → 0, since ε2(β(ε)r2ε)

−1 → 0
as ε → 0, using the equation on T in (4.6), and the reasoning in (4.12), (4.13)
and (4.14), under the basis that β(ε)rε → 0 (cf. Remark 2), we get

0 = lim
ε→0

1

β(ε)rε

∑
x̃k∈Σ1

ε2
∫
T ε
x̃k

σk
i3,y(V

0(y))dŷ = lim
ε→0

∑
x̃k∈Σ1

ε2Mi(x̃k, u
0(x̃k))

∫
T

dŷ,

and therefore,

|T |
∫
Σ1

Mi(x̂, 0, u
0(x̂, 0))dx̂ = 0.

Under the new hypothesis

L|u| ≤ |M(x, u)|, ∀x ∈ Ω, u ∈ R3, (4.15)

for a certain positive constant L, we get
∫
Σ1

|u0|dx̂ = 0, and, as above, we

have the boundary condition on Σ to be added to (3.11) when β∗ = +∞:
u0 = 0 on Σ.

All of this gives the homogenized problems stated in Section 3.1.

Remark 2. Let us notice that, in the case where rε = O(ε), the ansatz (4.1)–
(4.2) should be replaced by two-scale asymptotic expansions (cf., e.g, [20] for
the technique). Similarly, in the case where β∗ = +∞ and limε→0 β(ε)rε ̸= 0,
the reasoning in (4.11)–(4.14) should be suitably modified in order to get u0 =
0 on Σ (cf. [8] for the linear case). We avoid introducing here these formal
procedures since the technique used in Sections 5–6 covers these two cases as
well as the case of the isoperimetric T p, p = 0, 1, . . .M (cf. (2.1)).

5 Convergence for solutions

This section is devoted to justifying the asymptotics in Section 4. First, we con-
sider the critical case where β∗ > 0 and show that the limit of uε in (H1(Ω))3-
weak given by (3.10) is the solution of the homogenized problem (3.15); see
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Theorem 3. Then, we consider the extreme cases β∗ = 0 and β∗ = +∞, and
show that the limit of uε in (H1(Ω))3 is the solution of the homogenized prob-
lems (3.17) and (3.18) respectively (see Theorem 4 and 5, respect.). The proofs
rely on a result of convergence of measures that we state below and prove in
Section 6.

Theorem 2. Assume (2.2) and (2.9)–(2.11). For ϕ ∈ (C1(Ω))3 and v ∈
(H1(Ω))3,∣∣∣ε2

r2ε

∫
⋃

T ε

Mi(x, ϕ)vi dx̂−|T |
∫
Σ

Mi(x, ϕ)vi dx̂
∣∣∣ ≤ C

(
ε1/2+

ε

r
1/2
ε

)
∥v∥(H1(Ω))3 , (5.1)

where C is a constant independent of ε and v.

Theorem 3. For β∗ > 0 in (1.1), the solution of (3.2) converges in (H1(Ω))3-
weak towards the solution of (3.15) as ε → 0.

Proof. In order to prove that the weak limit of uε given by (3.10) satisfies
(3.15), we take v = ϕ ∈ (C1(Ω))3 such that ϕ = 0 on ΓΩ in (3.7) and pass to
the limit as ε → 0. Because of (3.10), we have

lim
ε→0

∫
Ω

σij(ϕ)eij(ϕ− uε) dx =

∫
Ω

σij(ϕ)eij(ϕ− u0) dx and (5.2)

lim
ε→0

∫
Ω

fi(ϕi − uε
i ) dx =

∫
Ω

fi(ϕi − u0
i ) dx. (5.3)

Besides, by Theorem 2, (2.2) and β∗ > 0 in (1.1), (3.9) and (3.10), we get

lim
ε→0

β(ε)

∫
⋃

T ε

Mi(x̂, ϕ)(ϕi − uε
i ) dx̂− β∗ |T |

∫
Σ

Mi(x̂, ϕ)(ϕi − u0
i ) dx̂

= lim
ε→0

(β(ε)r2ε
ε2

− β∗
)ε2
r2ε

∫
⋃

T ε

Mi(x̂, ϕ)(ϕi − uε
i ) dx̂

+β∗ lim
ε→0

(ε2
r2ε

∫
⋃

T ε

Mi(x̂, ϕ)(ϕi − uε
i ) dx̂− |T |

∫
Σ

Mi(x̂, ϕ)(ϕi − uε
i ) dx̂

)
+β∗ |T | lim

ε→0

∫
Σ

Mi(x̂, ϕ)(u
0
i − uε

i ) dx̂ = 0 , (5.4)

where we have applied inequality (5.1) to v = ϕ − uε. Then, gathering (5.2),
(5.3) and (5.4) yields∫

Ω

σij(ϕ)eij(ϕ− u0) dx+ β∗|T |
∫
Σ

Mi(x̂, ϕ)(ϕi − u0
i ) dx̂ ≥

∫
Ω

fi(ϕi − u0
i ) dx,

∀ϕ ∈ (C1(Ω))3 such that ϕ = 0 on ΓΩ , and, using (3.19), by density it holds for
all ϕ ∈ V. Namely, u0 is the solution of (3.16). By the uniqueness of solution,
the whole sequence uε → u0 as ε → 0 in the weak topology of (H1(Ω))3 and
taking ϕ = u0 ± v for any v ∈ V we get that u0 is also the unique solution of
(3.15). Thus, the theorem is proved. ⊓⊔
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Theorem 4. For β∗ = 0 in (1.1), the solution of (3.2) converges in (H1(Ω))3

towards the solution of (3.17) as ε → 0.

Proof. Rewriting the proof of Theorem 3 with minor modifications we get the
weak convergence of the solutions in (H1(Ω))3, the limit u0 being the solution
of (3.17). To obtain the convergence in the strong topology, we consider v = uε

in (3.2) and take limits as ε → 0, we have:

lim
ε→0

(∫
Ω

σij(u
ε)eij(u

ε) dx+ β(ε)

∫
⋃

T ε

Mi(x̂, u
ε)uε

i dx̂
)

= lim
ε→0

∫
Ω

fiu
ε
i dx =

∫
Ω

fiu
0
i dx =

∫
Ω

σij(u
0)eij(u

0) dx,

where we have used (3.17).
Now taking into account that (3.1) defines a norm in V, the lower semi-

continuity of the norm for the weak topology and (3.3), we write∫
Ω

σij(u
0)eij(u

0)dx ≤ lim
ε→0

inf

∫
Ω

σij(u
ε)eij(u

ε)dx

≤ lim
ε→0

sup

∫
Ω

σij(u
ε)eij(u

ε)dx ≤
∫
Ω

σij(u
0)eij(u

0)dx.

Consequently,

lim
ε→0

∫
Ω

σij(u
ε)eij(u

ε) dx =

∫
Ω

σij(u
0)eij(u

0) dx,

and the convergence of uε in (H1(Ω))3 holds. The theorem is proved. ⊓⊔

Now, we consider the case where β∗ = +∞ and we show that the limit of uε

in (H1(Ω))3-weak given by (3.10) is the solution of the Dirichlet homogenized
problem (3.18); see Theorem 5.

In addition to the properties of Mi (2.9)–(2.11), in order to obtain the limit
we add the hypothesis (4.15). This new assumption gives (see (3.3) and (3.8)
to compare)

Lβ(ε)

∫
⋃

T ε

3∑
i=1

(uε
i )

2 dx̂ ≤ β(ε)

∫
⋃

T ε

Mi(x̂, u
ε)uε

i dx̂ ≤ C. (5.5)

Theorem 5. For β∗ = +∞ in (1.1) and (4.15), the solution of (3.2) converges
in (H1(Ω))3 towards the solution of (3.18) as ε → 0.

Proof. Taking v ∈ (C∞
0 (Ω))3 in the variational formulation (3.2), the integral

over
⋃
T ε vanishes, and passing to the limit in the other terms, it is easy to

check that the limit u0 satisfies

−∂σij(u
0)

∂xj
= fi in Ω , i = 1, 2, 3.
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In order to prove that u0 = 0 on Σ, we first show the following equality∫
Σ

Mi(x̂, ϕ)u
0
i dx̂ = 0 ∀ϕ ∈ (C1(Ω))3, ϕ = 0 on ΓΩ . (5.6)

Indeed, by Theorem 2, it follows that

lim
ε→0

ε2

r2ε

∫
⋃

T ε

Mi(x̂, ϕ)u
ε
i dx̂ = |T |

∫
Σ

Mi(x̂, ϕ)u
0
i dx̂ . (5.7)

On the other hand, using (2.9), (2.11), (5.5) and the area of |
⋃
T ε|, we get∣∣∣∣∣∣∣

ε2

r2ε

∫
⋃

T ε

Mi(x̂, ϕ)u
ε
i dx̂

∣∣∣∣∣∣∣≤C
ε2

r2ε(β(ε))
1
2

(β(ε))
1
2 ∥uε∥(L2(

⋃
T ε))3 |∪T ε|12 ≤C

( ε2

r2εβ(ε)

)1
2

.

Hence, from the hypothesis β∗ = +∞, we obtain

lim
ε→0

ε2

r2ε

∫
⋃

T ε

Mi(x̂, ϕ)u
ε
i dx̂ = 0. (5.8)

Now, gathering (5.7) and (5.8), we obtain (5.6). Then, on account of (3.19),
we use a density argument to derive that∫

Σ

Mi(x̂, v)u
0
i dx̂ = 0 ∀v ∈ V. (5.9)

Finally, (5.9) for v = u0 and (4.15) give
∫
Σ
(u0)2dx̂ = 0 and consequently,

u0= 0 on Σ. Thus, by the uniqueness of solution, the convergence of the whole
sequence uε towards u0 in the weak topology of (H1(Ω))3 holds true, as ε →0.

To obtain the strong convergence, we rewrite the proof of Theorem 4 with
minor modifications: here, we use again the lower semi-continuity of the norm
and consider that u0 is the solution of (3.18). The theorem is proved. ⊓⊔

6 Proof of Theorem 2

In this section, for the sake of completeness, we introduce some auxiliary results
that prove to be useful for the proof of Theorem 2. We refer to Lemma 2.4 in
Section II.3 of [18] for the proof of Lemma 1. We use the Poincaré inequality
(cf. Section I.1 in [21]) and a change of variable to show Lemma 2 and refer
to [10] for the proof of Lemma 3.

Lemma 1. For w ∈ H1(Ω), we have

∥w∥L2(Ω∩{0<x3<ε}) ≤ Cε1/2∥w∥H1(Ω), (6.1)∣∣∣1
ε

∫
Ω∩{0<x3<ε}

w dx−
∫
Σ

w dx̂
∣∣∣ ≤ Cε1/2

∥∥∥ ∂w

∂x3

∥∥∥
L2(Ω)

. (6.2)

Lemma 2. Let Y ε
0 = (−ε/2, ε/2)2×(0, ε). If w ∈ H1(Y ε

0 ) such that
∫
Y ε
0
w dx =

0, then,
∥w∥L2(Y ε

0 ) ≤ Cε∥∇w∥L2(Y ε
0 ).
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Lemma 3. Let Y ε
0 be the domain defined in Lemma 2. Let K ∈ R+ such

that T ⊂ B(0,K). If rε is a positive constant such that rεT ⊂ B(0,Krε) ⋐
(−ε/2, ε/2)2, then,

∥w∥L2(rεT ) ≤ C
(
r1/2ε ε−1∥w∥L2(Y ε

0 ) + r1/2ε ∥∇w∥L2(Y ε
0 )

)
∀w ∈ H1(Y ε

0 ),

where C is a constant depending on T but independent of w and ε.

We divide the proof of (5.1) into three steps.
First step: The integral over

⋃
T ε on the left-hand side of (5.1) is transformed

into volume integrals (cf. (6.7)).
For each k∈J ε, we denote by Y ε

x̃k
the homothetic domain of Y=(−1/2, 1/2)2

×(0, 1) of ratio ε after translation to the point x̃ε
k, that is

Y ε
x̃k

= x̃ε
k + εY.

For ϕ ∈ (C(Ω))3 fixed, i = 1, 2, 3, p = 0, 1, . . . ,M and k ∈ J ε
p , let us introduce

the following problem
∆θε,ki = µε,k

i in Y ε
x̃k

,

∂νθ
ε,k
i = 0 on ∂Y ε

x̃k
\ T p,ε

x̃k
,

∂νθ
ε,k
i +Mi(x̂, ϕ) = 0 on T p,ε

x̃k
,

(6.3)

where ν denotes the unit outward normal vector to ∂Y ε
x̃k
, in particular, ν = n =

(0, 0,−1) on Σ. We find the constants µε,k
i from the compatibility conditions

for problems in (6.3). Indeed, integrating over Y ε
x̃k

in (6.3), we get∫
Y ε
x̃k

∆θε,ki dx =

∫
Y ε
x̃k

µε,k
i dx = ε3µε,k

i . (6.4)

Now, using the Green formula and the boundary conditions in (6.3), we have
that the left-hand side of (6.4) satisfies∫

Y ε
x̃k

∆θε,ki dx=

∫
∂Y ε

x̃k

∂νθ
ε,k
i ds=−

∫
Tp,ε
x̃k

Mi(x̂, ϕ) dx̂, for k ∈ J ε
p , p = 0, 1 . . . ,M,

and, consequently, we choose

µε,k
i = − 1

ε3

∫
Tp,ε
x̃k

Mi(x̂, ϕ) dx̂ for k ∈ J ε
p , p = 0, 1 . . . ,M, i = 1, 2, 3. (6.5)

Note that above and in what follows, we avoid writing the dependence on p for
θε,ki and µε,k

i .

Therefore, for each k ∈ J ε, i = 1, 2, 3, and µε,k
i defined by (6.5), problem

(6.3) has a unique solution θε,ki ∈ H1(Y ε
x̃k
) that is orthogonal to the constants

in L2(Y ε
x̃k
), namely,∫

Y ε
x̃k

θε,ki dx = 0 for k ∈ J ε, i = 1, 2, 3. (6.6)
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We denote by Y ε =
⋃

k∈J ε Y ε
x̃k

and by θε the function θεi (x) = θε,ki (x) for
i = 1, 2, 3, x ∈ Y ε

x̃k
with k ∈ J ε.

Now, we write∫
⋃

T ε

Mi(x̂, ϕ)vi dx̂ = −
M∑
p=0

∑
k∈J ε

p

∫
Tp,ε
x̃k

∂νθ
ε,k
i vi ds = −

∑
k∈J ε

∫
∂Y ε

x̃k

∂νθ
ε,k
i vi ds

and use the Green formula and the definition of θε,ki to obtain∫
⋃

T ε

Mi(x̂, ϕ)vi dx̂ = −
∑
k∈J ε

∫
Y ε
x̃k

∇θε,ki ∇vi dx−
∑
k∈J ε

∫
Y ε
x̃k

µε,k
i vi dx. (6.7)

Second step: Let us prove∣∣∣ε2
r2ε

∑
k∈J ε

∫
Y ε
x̃k

µε,k
i vi dx+ |T |

∫
Σ

Mi(x̂, ϕ)vi dx̂
∣∣∣ ≤ Cε1/2∥v∥(H1(Ω))3 . (6.8)

To do it, since |T p| = |T | for p = 0, 1 . . . ,M, we write

−ε2

r2ε

∑
k∈J ε

∫
Y ε
x̃k

µε,k
i vi dx− |T |

∫
Σ

Mi(x̂, ϕ)vi dx̂ = Sε
1 + Sε

2 + Sε
3 , (6.9)

where

Sε
1 :=

1

ε

M∑
p=0

∑
k∈J ε

p

∫
Y ε
x̃k

(
− µε,k

i

ε3

r2ε
− |T p|Mi(x̃

ε
k, ϕ(x̃

ε
k))

)
vi dx,

Sε
2 :=

1

ε

∑
k∈J ε

∫
Y ε
x̃k

|T |
(
Mi(x̃

ε
k, ϕ(x̃

ε
k))−Mi(x, ϕ(x))

)
vi dx,

Sε
3 :=|T |

(1
ε

∫
Y ε

Mi(x, ϕ(x))vi dx−
∫
Σ

Mi(x̂, ϕ(x̂))vi dx̂
)
,

and estimate each term Sε
r for r = 1, 2, 3.

For each k ∈ J ε
p , p = 0, 1, . . .M, and i = 1, 2, 3, the definition of µε,k

i (cf.
(6.5)) and the change of variable (4.3) yields

−µε,k
i

ε3

r2ε
=

1

r2ε

∫
Tp,ε
x̃k

Mi(x̂, ϕ) dx̂ =

∫
Tp

Mi(x̃
ε
k + rεŷ, ϕ(x̃

ε
k + rεŷ)) dŷ.

Besides, by condition (2.11), the smoothness of the functions ϕj , and the fact
that |T p| = |T | for p = 0, 1 . . . ,M, we get∣∣∣− µε,k

i

ε3

r2ε
− |T p|Mi(x̃

ε
k, ϕ(x̃

ε
k))

∣∣∣
≤

∫
Tp

∣∣(Mi(x̃
ε
k + rεŷ, ϕ(x̃

ε
k + rεŷ))−Mi(x̃

ε
k, ϕ(x̃

ε
k))

)∣∣ dŷ ≤ C1rε. (6.10)
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Thus, (6.10) and (6.1) give

|Sε
1 | ≤

C1rε
ε

|Y ε|1/2∥v∥(L2(Ω∩{0<x3<ε}))3 ≤ C̃1rε∥v∥(H1(Ω))3 . (6.11)

Similarly,

|Sε
2 | ≤ C1|Y ε|1/2∥v∥(L2(Ω∩{0<x3<ε}))3 ≤ C̃1ε∥v∥(H1(Ω))3 . (6.12)

In addition, using (6.2), the smoothness of ϕ and the properties of Mi (cf.
(2.11)) which imply mi(x) := Mi(x, ϕ(x)) ∈ W 1,∞(Ω) (cf. [9], [24] and refer-
ences therein), we deduce

|Sε
3 | ≤ Cε1/2∥v∥(H1(Ω))3 . (6.13)

Therefore, gathering (6.9), (6.11)–(6.13) and (2.2), we obtain (6.8).

Third step: Let us prove∣∣∣ε2
r2ε

∑
k∈J ε

∫
Y ε
x̃k

∇θε,ki ∇vi dx
∣∣∣ ≤ C

ε

r
1/2
ε

∥v∥(H1(Ω))3 . (6.14)

For each k ∈ J ε, we first show∫
Y ε
x̃k

|∇θε,ki |2 dx ≤ Cr3ε , (6.15)

where C is a constant independent of ε and k. From the integral identity for
problem (6.3), and (6.6), we have∫

Y ε
x̃k

|∇θε,ki |2dx=−
∫
Y ε
x̃k

µε,k
i θε,ki dx−

∫
Tp,ε
x̃k

Mi(x̂, ϕ)θ
ε,k
i dx̂ = −

∫
Tp,ε
x̃k

Mi(x̂, ϕ)θ
ε,k
i dx̂,

for k ∈ J ε
p , p = 0, 1 . . . ,M. Besides, (2.9), (2.11), the smoothness of the

functions ϕj , the Cauchy-Schwarz inequality and the fact that |T p| = |T | for
p = 0, 1 . . . ,M, guarantee for each i = 1, 2, 3, and k ∈ J ε

p ,∫
Y ε
x̃k

|∇θε,ki |2 dx ≤ C|T p,ε
x̃k

|1/2∥θε,ki ∥L2(Tp,ε
x̃k

) ≤ Crε∥θε,ki ∥L2(Tp,ε
x̃k

). (6.16)

Now, we apply Lemma 3 for each T p, with p = 0, 1 . . . ,M, to get

∥θε,ki ∥L2(Tp,ε
x̃k

) ≤ Cp

(
r1/2ε ε−1∥θε,ki ∥L2(Y ε

x̃k
) + r1/2ε ∥∇θε,ki ∥L2(Y ε

x̃k
)

)
. (6.17)

Moreover, Lemma 2 (cf. (6.6)) and (6.17) allow us to estimate the functions

θε,ki in L2(T ε
x̃k
) for i = 1, 2, 3 and k ∈ J ε

p , namely,

∥θε,ki ∥L2(Tp,ε
x̃k

) ≤ C̃pr
1/2
ε ∥∇θε,ki ∥L2(Y ε

x̃k
). (6.18)

Thus, since p = 0, 1 . . . ,M, gathering (6.16) and (6.18), we deduce (6.15).
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As a result, by definition of θε, (6.15) and (2.4), we get

∥∇θεi ∥2L2(Y ε) =

M∑
p=0

∑
k∈J ε

p

∫
Y ε
x̃k

|∇θε,ki |2 dx ≤ Cr3εε
−2,

and, consequently, we obtain (6.14).
Gathering (6.7), (6.8) and (6.14), we conclude the proof of (5.1).

Remark 3. It is worth mentioning that Theorem 2 extends the result in Lemma 1
of [16] to the case of arbitrary plane domains instead of volumetric ones, allow-
ing a diameter O(rε) of smaller order of magnitude than the period of the grid
O(ε), and different shapes of these regions (cf. (2.1)). In particular, it allows
to pass to the limit in the integrals

ε2

r2ε

∫
⋃

T ε

m(x̂)vε(x̂) dx̂,

for a globally Lipschitz function m and a sequence of functions vε that converge
weakly H1(Ω). This is why Theorem 2 applies to the scalar problem in [23] for
circular T ε when rε ≫ ε2 allowing a more general geometry and less restrictive
monotonic functions. Also, the results in this paper complement those in [24]
and [9] for the scalar problem, but when rε ≪ ε2. Similarly, we complement
and extend the results in [7, 10] for linear Winkler-Robin boundary conditions
and non-periodic distribution of the regions T ε. In particular, for a periodic
setting and a linear M , Theorem 2 has been announced in [10] without the
proof that we provide here.

7 Conclusions

The problem under consideration (2.12) represents a model associated to the
displacements in a block of inhomogeneous anisotropic elastic material, which
has a part of its boundary ΓΩ clamped to a rigid support, while the part in
contact with the plane {x3 = 0} interacts with the soil via a series of small
springs with a nonlinear Winkler law σε

i3 = β(ε)Mi(x, u
ε) involving a strong

reaction. The properties of function M are somehow optimal (cf. Remarks 1
and 3). Outside these reaction regions,

⋃
T ε, the surface is free of forces. We

provide an averaged reaction of Winkler type, which depends on the relations
for the parameters reaction, size and distances between the small regions, and
on the unit area |T |. As a matter of fact, the results in this paper are new
and extend and complement those in the literature for the Laplacian with
linear and nonlinear Robin boundary conditions and for the elasticity operator
with linear Winkler-Robin boundary conditions. For further relations between
parameters with linear Winkler-Robin boundary conditions, we refer to [7,8,10,
11]. For extreme relations between parameters giving rise to (3.17) and (3.18),
the technique in [11] can likely be applied. When rε = O(ε2) and β∗ > 0,
getting the microscopic problem (cf. (4.3)–(4.7)) remains as an open problem
under considerations by the authors. Due to the complex geometry of the

Math. Model. Anal., 29(4):694–713, 2024.
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domain, it is self-evident that obtaining a first approach to the original problem
via the homogenized problems can be useful for numerical computations cf.,
e.g., [14, 22].
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[7] D. Gómez, S.A Nazarov and M.-E. Pérez-Mart́ınez. Asymptotics for spectral
problems with rapidly alternating boundary conditions on a strainer Winkler
foundation. J. Elast., 142(1):89–120, 2020. https://doi.org/10.1007/s10659-
020-09791-8.
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Linéaires. Dunod, Paris, 1969.
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