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1 Introduction

There are two important fields of application for ordinary differential equations,
namely, gene networks and neuronal networks. The evolution of these networks
can be modeled by systems of ODE. These systems have much similarity but
are not identical. The main goal of this article is to compare both systems. We
consider first two-dimensional ones and then define four-dimensional systems.
We are interested in attractors of both types systems.

Attractors of these systems are subsets of the phase space that attract the
trajectories of the system. The simplest attractors are stable critical points (in
other words, equilibrium states). More complex attractors are stable periodic
solutions - limit cycles. In addition to those indicated, chaotic attractors are
encountered more and more often, as real objects are studied. These attractors
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are attracting more and more attention and are a popular object of study both
for specialists in the natural sciences and for mathematicians, economists, and
sociologists.

In this article, the authors focus on two somewhat similar, and in some ways
significantly different objects, namely, genes and neural networks. The former
are present in the cells of living organisms and participate in the processes of
vital activity, response to the influence of the external environment and in the
processes of formation of the organism. We will use the abbreviation GRN for
gene networks. Second, neural networks are present in the brain of humans and
higher animals and control the functions of living organisms. This management
is extremely effective and is still the subject of study. It is natural to want to
reproduce the processes taking place in the brain with their efficiency and
apply them for management and control in various fields. At the moment, the
solution of this problem is far from complete.

In attempts to study both gene networks and neural networks, mathemat-
ical methods have been used. From the point of view of mathematics, both
types of these networks are a set of some elements, the nature of which is
not so important, and the connections between them. The question is how
these links can be described and whether non-trivial conclusions can be drawn
from mathematical models that will help solve the problems of understanding
the principles of network functioning and applying the knowledge gained in
practical activities.

Let’s focus on gene networks. They can be thought of as some kind of net-
work nodes that interact with other nodes by sending messages (proteins) that
tell other nodes to increase or decrease their activity. As a result, the state of
the network changes as needed, and a collective reaction of the network to what
is happening is developed. There are many unanswered questions here. In a
simplified scheme, the main question is how the state of the system changes
and what this will lead to. Among the mathematical models of gene networks,
there are very simplified ones that use two answers to describe each element,
yes or no, one or zero. And such models are useful and lead to the solution
of some practical problems. Let us mention the tasks of automatic, without
human intervention, solving the problems of managing telecommunication net-
works. Techniques and methods for the optimal allocation of resources in a
given situation in telecommunication networks are described in the works [9].
The main idea of this methodology is to reproduce schemes and principles of
gene network control in telecommunication networks. How successfully this
task is solved can be judged by the publications [10]. Models based on the
representation of gene networks as objects of graph theory, a well-developed
area of discrete mathematics, are very useful.

It seems to be the most effective modeling of gene networks using systems
of ordinary differential equations, where each equation describes a separate
element of the network. These systems are quasi-linear, that is, they consist
of linear and non-linear parts. In the linear part, a description of the network
assumes that there is no communication between the elements. The nonlinear
part contains information about the interaction of elements obtained on the
basis of experimental data. These nonlinearities are limited, which corresponds
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to the real nature of the interaction. The description of the interaction between
the elements is contained in a special matrix built into the non-linear part of the
system. This matrix is usually called a regulatory matrix and is denotedW. The
corresponding system in the case of two, three, and four elements is given in the
following sections. The solutions of the ODE system are vector functions that
depend on time. At each given moment, the state of the simulated network is
associated with the solution vector of the ODE system. By solving this system
(numerically or analytically), one can obtain important information about the
future states of the system, and, consequently, the network. That is why the
study of attracting sets (attractors) in the system of ODEs is an important
task.

All of the above applies to a large extent to neural networks. Artificially
built on the model of real neural networks, networks are called artificial neural
networks and are denoted by ANN.

ANNs can also be modeled by ODE systems according to the previously
described scheme, and both ODE systems are similar. We are going to look
at both types of ODE systems, draw parallels and note the differences. Par-
ticular attention is paid to attractors in systems of both types. Previously
the comparison was made between three-dimensional systems, modeling GRN
and ANN [16]. In this paper we consider first two-dimensional systems of
both kinds, and then we construct four-dimensional GRN and ANN systems,
comparing their characteristics, such as the ability to have periodic attractors,
Lyapunov exponents etc.

The gene system (2.1) have appeared first in [19] (see also [12]). It was used
in [4,7] and in more recent papers [1,2,3,11,13,14,15]. Periodic solutions were
in a focus in [5, 20]. For neuronal systems consult [6, 8]. Chaos in differential
equations have been studied in [17].

2 GRN and ANN in general

The general system, which is used to model GRN of n elements, is
x′
1 = f1(w11x1 + . . .+ w1nxn − θ1)− v1x1,

x′
2 = f2(w21x1 + . . .+ w2nxn − θ2)− v2x2,

. . . . . . . . . ,
x′
n = fn(wn1x1 + . . .+ wnnxn − θn)− vnxn,

(2.1)

where fi(z) are sigmoidal functions, which are monotonically increasing from
zero to unity and have a single inflection point. They are chosen to be smooth.
In the sequel we use the Gompertz function f(z) = e−e−µz

. The parameter
µ characterizes the incline of the graph in vicinity of the inflection point. If
µ tends to positive infinity, the graph of the function tends to be piece-wise
linear with almost vertical middle segment and two infinite segments almost
zero and almost unity. The parameters vi are for the natural decay of solutions
(exponentially tending to zero) in the absence of a nonlinear part. The matrix
W = wij is for the description of interaction of the elements xi. The positive
wij means activation of xi by xj . Similarly, the negative value of wij means
inhibition (repression) and zero value of wij means no interaction. The system
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(2.1) is used as a (simple) model of interaction of genes in a living organism.
The parameters µ are for the individual characterstics of genes, the parameters
θ are for the thresholds, upon reaching which the gene begins to respond.

The general system, which is used to model ANN of n elements, is

dx1

dt
= tanh (w11x1 + w12x2 + . . .+ w1nxn)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2 + . . .+ w2nxn)− b2x2,

. . . . . . . . . ,
dxn

dt
= tanh (wn1x1 + wn2x2 + . . .+ wnnxn)− bnxn.

(2.2)

The hyperbolic tangent function tanh(z) is sigmoidal, but its range of values
is (−1, 1). This system is understood as a set of neurons (identified as xi),
where each element absorbs signals from other ones, and elaborate its own
single output. More details on systems (2.1) can be found in [4] and [8]. On
application of the system (3.1) in multi-dimensional setting for medica purposes
the reference [18] should be consulted.

Both systems have an invariant set in the phase space. The first system has
an invariant set {0 < xi < 1/vi, i = 1, 2, . . . , n}. The vector field, generated
by (2.1), is directed inward on faces of the invariant set, which can be checked
by direct inspection, taking into account the range of values for the sigmoidal
functions fi, which is (0, 1), and positivity of the coefficients vi. Similarly, the
second system (2.2) has an invariant set {−1/bi < xi < 1/bi, i = 1, 2, . . . , n}.

This is the reason why both systems always have critical points. Moreover,
both systems have attractors, which locate in the invariant sets.

3 2D genetic system

Genetic networks can be modeled by systems of ordinary differential equations.
Consider the two-dimensional system with the Gompertz function

dx1

dt
= e−e−µ(w11x1+w12x2−θ1)

− b1x1,

dx2

dt
= e−e−µ(w21x1+w22x2−θ2)

− b2x2,
(3.1)

where µ, θi and bi are parameters.

Proposition 1. There exists at least one critical point. All critical points (x, y)
are in (0, 1

b1
)× (0, 1

b2
).

Proof. The nullclines of the system (3.1) are given by the relations{
b1x1 = e−e−µ(w11x1+w12x2−θ1)

,

b2x2 = e−e−µ(w21x1+w22x2−θ2)

.
(3.2)

The critical points are solutions of the system (3.2). The first nullcline stretches
in the strip 0 < x1 < 1/b1, since the range of values of the functions on the right
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sides in (3.2) is (0, 1), and the coefficients bi are positive. Similarly, the second
nullcline extends from −∞ to +∞ in the ‘orthogonal’ strip 0 < x2 < 1/b2.
Both strips meet in the rectangle 0 < x1 < 1/b1, 0 < x2 < 1/b2 and intersect
there. ⊓⊔

The number of critical points is finite, and cannot exceed the number nine (for
the two-dimensional case). This (nine points) can happen when both nullclines
have a Z-shaped form, one Z is normal, and the second Z is rotated at the angle
ninety grades.

We will construct an example of a two-dimensional system of the form (3.1),
which defines rotating vector field. Let the coefficient matrix in (3.1) be

W =

(
1 2
−2 1

)
, (3.3)

and µ = 4, b1 = b2 = 1, θ1 = 1.2, θ2 = −0.5. There is one critical point and a
limit cycle exists.

It is depicted in Figure 1 together with the nullclines and the vector field.
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Figure 1. The closed trajectory of
the system (3.1) with the regulatory
matrix (3.3), b1 = b2 = 1, µ = 4,

θ1 = 1.2, θ2 = −0.5.
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Figure 2. The attractors in system
(3.1), with matrix (3.4), b1 = b2 = 1,

µ = 4, θ1 = −0.5, θ2 = 1.2.

Now we construct the second two-dimensional system. Let the coefficient
matrix in (3.1) be

W =

(
1.7 −2
2 1.7

)
, (3.4)

and µ = 4, b1 = b2 = 1, θ1 = −0.5, θ2 = 1.2. There is one critical point and
limit cycle exists.

It is depicted in Figure 2 together with the nullclines and the vector field.

The vector field, defined by the system (3.1), is directed inward on the
border of the box. The rotation of the vector field is counter-clock wise.
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4 Example for 4D GRN-system

Consider the system

dx1

dt
= e−e−µ(w11x1+w12x2+w13x3+w14x4−θ1)

− b1x1,

dx2

dt
= e−e−µ(w21x1+w22x2+w23x3+w24x4−θ2)

− b2x2,

dx3

dt
= e−e−µ(w31x1+w32x2+w33x3+w34x4−θ3)

− b3x3,

dx4

dt
= e−e−µ(w41x1+w42x2+w43x3+w44x4−θ4)

− b4x4

(4.1)

with the parameters b1 = b2 = b3 = b4 = 1, µ = 4, θ1 = θ4 = 1.2, θ2 = θ3 =
−0.5 and regulatory matrix

W =


1 2 0 0
−2 1 0 0
0 0 1.7 −2
0 0 2 1.7

 .

It consists of two independent 2D systems. The first 2D system has the stable
periodic solution with the period T1 ≈ 3.19. The second one has the periodic
solution with the period T2 ≈ 7.68. Therefore the period attractor exists for
the 4D system (4.1). This system has been studied numerically (Wolfram
Mathematica), provided a description of the phase space and images of 3D
projections.

The oscillatory solutions are shown in Figure 3 and the attractor is shown
in Figure 4.
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Figure 3. Solution (x1, x2, x3, x4) of
system (4.1).
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Figure 4. The projection of the
attractor on 3D (x1, x2, x4)-subspace

of the system (4.1).

5 2D neuronal system

Consider the system, arising in the theory of neuronal networks. The hyperbolic
tangent sigmoid function is used in the model.
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
dx1

dt
= tanh (w11x1 + w12x2)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2)− b2x2,

(5.1)

where bi are parameters.

Proposition 2. There exists at least one critical point. All critical points (x, y)
are in (− 1

b1
, 1
b1
)× (− 1

b2
, 1
b2
).

Let the coefficient matrix in (5.1) be

W =

(
2 2
−2 2

)
, (5.2)

and b1 = b2 = 1. There is one critical point and limit cycle exists.
It is depicted in Figure 5 together with the nullclines and the vector field.
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Figure 5. The attractors in
system (5.1), with matrix

(5.2), b1 = b2 = 1.
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Figure 6. The attractors in
system (5.1), with matrix

(5.3), b1 = b2 = 1.

Let the coefficient matrix in (5.1) be

W =

(
1.2 −2
2 1.2

)
, (5.3)

and b1 = b2 = 1. There is one critical point and limit cycle exists. It is depicted
in Figure 6 together with the nullclines and the vector field. The vector field,
defined by the system (5.1), is directed inward on the border of the box.

6 Example for 4D ANN-system

Consider the system

dx1

dt
= tanh (w11x1 + w12x2 + w13x3 + w14x4)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2 + w23x3 + w24x4)− b2x2,

dx3

dt
= tanh (w31x1 + w32x2 + w33x3 + w34x4)− b3x3,

dx4

dt
= tanh (w41x1 + w42x2 + w43x3 + w44x4)− b4x4

(6.1)

Math. Model. Anal., 29(2):277–287, 2024.
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with the parameters b1 = b2 = b3 = b4 = 1 and regulatory matrix

W =


2 2 0 0
−2 2 0 0
0 0 1.2 −2
0 0 2 1.2

 .

It also consists of two independent 2D systems. The first 2D system has the
stable periodic solution with the period T1 ≈ 6.85. The second one has the
periodic solution with the period T2 ≈ 3.76. Therefore the period attractor
exists for the 4D system (6.1). The oscillatory solutions are shown in Figure 7.

The attractor is shown in Figure 8.
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Figure 7. Solution
(x1, x2, x3, x4) of system (6.1).
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Figure 8. The projection
of the attractor on 3D

subspace on (x1, x2, x4) of
system (6.1).

7 Conclusions

Both GRN and ANN systems have similar behavior. The results, obtained for
gene networks, can in many cases be transferred to neuronal systems, and vice
versa. Depending on the matrix W, the genetic system can have attractors
such as stable equilibria, limit cycles, and, for higher dimensions, also chaotic
attractors. The critical points and nullclines can be shifted and moved by
manipulating of the parameters θ. One critical point always can be placed into
the center of the invariant set by the appropriate choice of θ.

The ANN system is comparatively easier to study since it has not param-
eters µ and θ. It also can have attractors in the form of stable equilibria and
limit cycles. Higher order samples of neuronal systems can be constructed by
composing several two dimensional systems with known behavior into larger
ones. In this way systems of any dimension can be constructed possessing at-
tractors. The chaotic behavior of solutions can be observed for 4D systems and
higher, as shown in the Appendix.
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Appendix

If we change a little bit the regulatory matrix, the behavior of solutions tends
to be chaotic. We provide the matrix W, solutions with given initial data,
the projection of an attractor and Lyapunov curves. For both gene system
(4.1) and neuronal system (6.1). Consider first the system (4.1), where the
regulatory matrix is

W =


1 2 0 −0.6
−2 1 0 0
0 0 1.7 −2
0.5 0 2 1.7

 . (7.1)

Let us recall that the elements added to the matrix, have the following mean-
ing. The added element at the upper right corner describes inhibition of the
first element x1 by the last one x4. Conversely, the element at the lower left
corner is for the activation of the element x4 by the first one x1. Without these
elements the system has a periodic attractor. So adding inhibition and activa-
tion appropriately brings the disbalance in the system, and this leads to chaotic
behavior.
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Figure 9. Solutions
for system(4.1) with
perturbed regulatory

matrix (7.1) and
θ1 = θ4 = 1.2, θ2 =
θ3 = −0.5, µ = 4.
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(4.1) with perturbed
regulatory matrix
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Some solutions are depicted in Figure 9. The respective trajectory tends to
an attractor. The 3D projection of this trajectory is shown in Figure 10.

The Lyapunov curves are constructed with the aim to detect the sensi-
tive dependence of solutions to the initial data. The Lyapunov curves for our
example are depicted in Figure 11.

t

X

Figure 12.
Solutions for system
(6.1) with perturbed
regulatory matrix

(7.2).
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Figure 13. The
projection of the
attractor on 3D
subspace on

(x2, x3, x4) of system
(6.1) with perturbed
regulatory matrix

(7.2).
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Figure 14. The
dynamics of Lyapunov
exponents for system
(6.1) with perturbed
regulatory matrix

(7.2).

Following the same scheme, consider the neuronal system (6.1) with the
matrix (7.2)

W =


2 2 0 −0.6
−2 2 0 0
0 0 1.2 −2
0.4 0 2 1.2

 . (7.2)

Some solutions are depicted in Figure 12.
The trajectory tends to an attractor, formed by two two-dimensional limit

cycles. The 3D projection of this trajectory is shown in Figure 13. The Lya-
punov curves in Figure 14 provide indications to the chaotic behavior of solu-
tions.
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