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1 Introduction

Chemotaxis is a biological phenomenon in which microorganisms move in re-
sponse to chemical signals in their environment. All motile organisms exhibit
some form of chemotaxis. This phenomenon is observed across a diverse spec-
trum, from single-celled bacteria to complex multicellular organisms. Chemo-
taxis plays crucial roles in many biological processes, such as immune responses,
embryonic development, wound healing, and the movement of microorganisms
within their environments. Keller and Segel developed a model to describe
chemotaxis [15] as

uy = Au — V- (x(v)uVo),

1.1
evy = Av — v + yu, (1.1)

where u refers to species density, v refers to concentration of signal, x refers to
sensitivity function and e, 3,7 are positive constants. Ishida and Yakota con-
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sidered the quasilinear degenerate Keller-Segel system of parabolic-parabolic
type in [13] and proved the global existence of weak solutions. Sugiyama and
Kunii [26] considered the degenerate Keller—Segel model with a power factor
in drift term and proved the global-in-time existence of weak solutions and
decay properties. Various results on the singularity, local and global existence
of solutions are obtained for a simplified form of (1.1) in [9,11,22] and the
references therein. Mimura and Tsujikawa [21] considered the model as

up = Au— V- (x(v)uVv) + g(u), r

evy = Av + Bu — v, (1.2)
where g(u) denotes the growth rate of species. Winkler [30] considered (1.2)
with specific growth functions and investigated global solvability and its steady
state. Osaki et al. [25] established a non-negative global solution and exponen-
tial attractor for (1.2) in a bounded domain of R2. Tello and Winkler [28]
considered (1.2) with e = 0, § = v = 1 in a bounded domain of R" with
smooth boundary and established global classical and weak solutions under
some assumptions. Kang and Stevens [14] considered (1.2) with the death of
species taken into account, which moves chemotactically and establishes the
existence of global-in-time regular solutions. Results about the blow-up of the
solution, and local and global existence of solutions for various forms of (1.2)
are also studied in [19,24, 29, 31].

In biological processes, the movement of organisms is affected by chemical
stimuli such as attraction and repulsion. Chemoattraction involves organisms
moving towards increasing signal concentrations, known as chemoattractants,
while chemorepulsion involves movement away from increasing signal concen-
trations, known as chemorepellents. Luca et al. developed a model that em-
phasizes the chemotactic response of microglial cells in [20], as

up = Au— V- (x(v)uVv) + V - (§(w)uVw),
Tv = Av + fu — v, (1.3)
Tw; = Aw + du — nw,

where u refers species density, v refers concentration of chemoattractant, and
w refers concentration of chemorepellant. Tao and Wang established global
solvability, the existence of steady states, and blow up of (1.3) in [27] for
7 =0,1. Espejo and Suzuki generalized the above for v, > 0 in [7]. Liu and
Wang [17] proved the global existence of classical solutions and steady states of
(1.3) in one dimension with 7 = 8 = 1. Chiyo et al. [4] established the global
existence of classical solutions and its boundedness for (1.3) with logistic growth
for constant x and £. Tian et al. [10] discussed the large-time behavior of
solutions to (1.3) with logistic source. Various results on boundedness and the
blow-up of solution for the modified form of (1.3) studied in [1,3,12,16,23,32].

In the literature, currently, no study is available on the attraction-repulsion-
chemotaxis system with a nonlinear diffusion exponent of 1+« in an unbounded
domain. Therefore, in this paper, we aim to establish the existence of weak
solutions for the proposed system, assuming « is greater than zero and that
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X'(+) is greater than or equal to a constant yg. Specifically, we focus on (1.3)
with nonlinear diffusion in R3 x [0,7'), where T' > 0 and it is given below:

ug = Au't — V- (x(v)uVo) + V - (¢(w)uVw),
v = Av + Bu — v,
wy = Aw + du — nw,

(u, v, w)(x,0) = (ug,vo,wp)(x),

(1.4)

where wu(z,t) refers species density, v(z,t) refers concentration of attraction
signal, w(z, t) refers concentration of repulsive signal, x and £ are non-negative
sensitivity functions and «, 8,~,d,n are positive constants. In this paper, we
establish the existence of weak solutions of (1.4) with the assumptions on the
nonlinear exponent and boundedness of singular sensitivity functions.

This paper is organized as follows: In Section 2, we define the weak solution
of the proposed system and introduce a suitable approximation system for the
proposed system in R3. Then, we derive local estimates for the approxima-
tion problem and extend it to any given time interval (0,7"). In Section 3, we
establish a weak solution of the proposed system (1.4) in R3.

2 Weak solutions and uniform energy estimates

In this section, we define the weak solution for (1.4). Then, we introduce the
suitable approximation problem for the original model (1.4) and obtain uniform
estimates for the approximation problem. Here, we recall some important and
basic notations which are used throughout the paper:

1. LY(R?) denotes the set of all Lebesgue integrable functions in R? and its

norm is denoted by || f[|Ls(rs) = ( fps |f|th)%.
2. WH4(R3) denotes the Sobolev space of order k for 1 < ¢ < cc.

3. The space L1(0,T; LP(R?)), 1 < g < oo, denotes the set of ¢ integrable
functions defined on the interval [0,7] with functions in the Lebesgue
space LP(R3) and its norm is denoted by

T a
I hzsoarisn = [ W1Eucuet)

4. The space L>(0,T; LP(R?)) denotes the set of essentially bounded mea-
surable functions defined on the interval [0,7] with functions in the
Lebesgue space LP(R?) and its norm is denoted by

s

Ilfll Lo 0,750 (3)) = ess sup || f]lLr(ms)-
te[0,7]

DEFINITION 1. Let o > 0 and T > 0 be finite. A triplet (u, v, w) is said to be
a weak solution of the system (1.4) if
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i) u,v,w >0,

i) u(1+ |z| + |logu|) € L=(0,T; L*(R®)), Vu' =" € L*(0,T; L2(R3)),

p+a

iii) w € L>(0,T; LP(R?)), Vu € L%(0,T; L3(R3)) for 1 <p < 1+ a,
iv) v,w € L>®(0,T; HY(R3)) N L?(0,T; H*(R?)), wv,w € L>®(R3, x[0,T)),
v) Vu € L%(0,T; L*(R?)),

vi) For any ¢ € L°°(0,T; L*(R?)), the following holds

T
/ uop(-, 0)dx = / / (—ups + Vult® - Vo — ux(v)Vv - Vo
R3 0o Jr3
+ué(w)Vw - V) dx dt,

T
/ vo(+, 0)dx = / / (—vpe + Vo - Vo — Bup + yop) dz dt,
R3 0o Jrs

T
/ woep(+,0)dz = / / (—wer + Vw - Vo — dup + nwyp) dz dt.
R3 0o Jrs

Now, we introduce an approximation problem for the proposed system (1.4) as
follows to overcome the strong degeneracy of the diffusion terms:

e, = Alue + €)' — V- (x(ve)ueVue) + V - (E(we)uc Vw,),
Vey = Ave + Pue — Ve, (21)
We, = Awe + due — Nwe,

with initial conditions
Up, = Pe * Ug, Vo, = Pe * Vg, and wg, = ¢ * wo,

where ¢, is a usual mollifier with € € (0, 1). The local regularity of the approx-
imation model (2.1) can be derived as shown in [2]. Therefore, the proof is
omitted here.

To prove the existence of weak solutions of (1.4), first, we derive certain
bounds on the solutions of regularized problem (2.1). We deduce some uniform
estimates, independent of €, of the weak solution locally to the system (2.1). In
the subsequent discussion, we use the variables (u,v,w) instead of (u.,ve, w,)
for simplicity in notation. We first define the functional as below:

B(t) = /Rguaogwm ) da+ [, o + Vo3 + [[Ve@]3, (@2)
and
D(t) = [[Vu = Oy + [ Vu = @)l + Ao + [[Aw)];. (23)

where (@) = (1+ [¢[2)?3.
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Lemma 1. Let 8,7,6,n > 0. Suppose that (u,v,w) is a classical solution of
system (2.1) for all € € (0,1) and initial data (ug,,vo,,wo,) satisfies
i) uo, (1 + |z[ + [logu,|) € L' (R?),

ii) ug, € L1T(R3),

iii) vo, and wo, € L= (R3) N H(R?),
independent of €. Furthermore, we assume that
a>1/6, & e L. (2.4)

Then, 0 <t < T, there exists C > 0 independent of € such that

sup E(7 / D(r)dr < C, (2.5)

0<7r<t

where E(t) and D(t) are defined as in (2.2) and (2.3) respectively.

Proof. Upon integrating (2.1),, we derive ||u(t)||1 = ||uol|1, thereby indicating

the conservation of u is preserved. Furthermore, Lo (R3x[0,T)) = HUOH and

HwHLw(Rsx[o,T)) < ||wo||oo can be obtained by applymg the maximal principle
0 (2.1), and (2.1);. The remaining proof of the lemma is splitted into three
cases as follows:
(i) 5 < o <3 (
Case ( ): g < a S
Multlplylng (2.1

i) 2 <a<1,and (i) a > 1.
1
3

), by logu and integrating the resulting terms, we get

d
— | ulogudz + Viogu - V(u+ €)' dx
dt R3 R3

= Vu - (x(v)Vv)de — Vu - (§(w)Vw)de. (2.6)

R3 R3

The second term in LHS of above estimated as follows:

Viogu-V(u+e)'*™ dx > Viegu- (14 a)u*Vu dz

R3 ]R3
1+a 2
= o (2.7)
Using above in (2.6), we get
d 4 14a 12
a/ﬂ{gulogu dx + mHVu 2 ||2
< Vu- (x(v)Vv)de — [ Vu-(§(w)Vw)dz.  (2.8)
R3 R3
From ’Vu(1+°‘)/2|2:((1+a)/2) @=1Vu|?, we have |Vu|——u B ’Vulta .

Math. Model. Anal., 30(2):203-223, 2025.
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Now, we estimate the first term in RHS of (2.8) using the above equality
along with Young’s inequality to get

2x
Vu-(x(v)Vov)dx < ﬁ <61HVU z ||2—|—C'(61)/ u1°‘|V02da:>, (2.9)
]R3

R3
where X := supgs [x(v)|. From |Vu!'~ a{ (1-a)®u _2a|Vu|2 and
|Vul? = ﬁul’ﬂVU 521 we have |Vu1 o = Cou™= |Vu“5 |, where

Cy = 2((11;;)). We evaluate the last term in RHS of (2.9) using the above
equality and Young’s inequality as

/ u' ¥ Vol? dr = / ul TV - Vo dz
R3 R3
< Cl(/ |Vul =% | V| dx—i—/ ul % Av| dm)
R3 R3

< Cl(/ Cou 2" |VUHTQ|\VU| dz+/ u' ™Y Av| dx)
R3 R3

< 0102/ 62’VuHTa‘2+C(62)u1_3“|Vv|2 dm+Cl/u1_“|Av\ dz. (2.10)
R3 R3

Using (2.10) in (2.9), we get

/, Vu- (x(v)Vv) dz
Rd

<oy

R+ o /R w3 V|2 do + C /R u' =% Av| dz, (2.11)

where C; = QEFC | = €1 + CoChea, Cy = C2C3C (e3) and
C:; = C1C(€1). Following similar procedure as above, we get

Vu - (§(w)Vw)dx
R3

< Cy|| Va2 + c;/ w3 |\ Vw|? da + cg/ u' | Aw|dz, (2.12)
R3 R3

where C},i € {4,5,6} are positive constants. Using (2.7), (2.11) and (2.12) in
(2.6), we get

d ’ 14+ "
—/ ulogudx + C HVU%HQSCQ/ ur 3|Vl ?dx
dt Jus 2 s
+C’3/ 1- "‘|Av|da:+05/ 1_3a|Vw|2dx+Cé/ u' = Aw|dz, (2.13)
R3 RR3

where " = 4/(1 + o) — O] — C};. Multiplying (2.1), by (z) and using Young’s
inequality along with simple algebraic calculations (see (3.6) of [18] and (2.13)
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of [5]), leads to

%/RS@W der = /Rs(u—i- e)1+aA(x) dx + . V{z) - ux(v)Vv da
e V{z) - u(w)Vw dx

< (14 Vol3 + IVwl3) + (Cse) + e[V 2*|[2). (2.14)

Multiplying (2.1), by u® and then integrating, we get

1 d 1+a o o
m&”’u”lia—‘r/k3 Vu -V(U"‘e)l-‘r dx

= [ v () Ve~ | V- u(e)Vujr. (2.15)
Using
Ve = a?u| Va2, |vu#|2:@ 25 |2,
we get
Vs V(u+ )+ de MHV S22 (21)

R3 - (1+42a)

Now, we estimate the first term in RHS of (2.16) using Young’s inequality along

with [Vu| = = }VUHZM‘ as

2
1+2au

Vu® - u(xVv) dx
R3
< Cl(x / VU2 |(u? | Vo) de

142«

< 0 (Va3 + ) [ v ae)
R3
6(63)09(/ [Vul[Vo| der/ u| Av| dx) +63HVUH2QQHE>
3 R3

1+2cx

<C(x)

||2+C(63)Cg/ u|Av| dx

2C 120 1420
+C(eg) —=2 / |Vu™2 E ||Vl da:)

R3
Li2o 2Cy 1+2a 12
< 00 (all Ve [} + Cle 2L e v
20y 1-2a|,,2
+C(e3) Cles) [ u |Vo|© de + C(e3)Co | u|Av| dx
1—1—20{ R3 R3
SC;OHVuHm’b C’il/ ul 2| Vo2 dx—i—Cﬁ/ u|Av| dzx,  (2.17)
R3 R3

Math. Model. Anal., 30(2):203—-223, 2025.
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where X := supgs [x(v)], C(x) = 25X, Co = C(x) (€3 + Cles) 255 €a),
C1, = C(x) 124_6;9620(64)0(63) and C}y = C(x)CoC (e3). Following the same pro-
cedure as similar as above, we get

— [ Vu® - u((w)Vw) dx §013||Vu1+22a ||; + C;4/ u! 72| Vw|?da
R3 R3

+ 015/ u| Awldz, (2.18)
R3
where C},i € {13,14, 15} are positive constants. Using (2.16), (2.17) and (2.18)
in (2.15), we have

14+a 142«

d / ,
Zillullie + Cus|[Vu™ ||2301143u1*2“|Vv\2 dw+cu/Rsu|Av| dz

+Ci4/ ut 2| V| dx+C;5/ u|Aw| dz, (2.19)
RS RS

where C15 = 4(0{(_:;5)22 — O} — Cpo. Multiplying (2.1),, (2.1), by —Av, —Aw

respectively and then integrating and adding the resulting equations, we get

d
a1 (190l 19wl ) + 210 + 4wl
Sﬂ/ u|Av|dzf’y/ U|Av|dz+5/ u\Aw\da:—n/ w|Aw|dz, (2.20)
R3 R3 R3 R3

Adding (2.13), (2.14), (2.19) and (2.20), we get

d (03
([ utog st ao+ a1+ 9ol + 9l

oo
< C'(,)</ ur 3| Vol? dx—|—/ ul 3| Vawl|? da:—|—/ u' 2| Vol? dx
RS RS RS
—|—/ ut 2| V| dx—l—/ ut ™| Av| dx—i—/ u' % Aw| da
RS RS RS

—|—/ u|Av|dw—|—/ u\Aw\dx—/ U|Av|da:—/ w|Aw|daj). (2.21)
RS RS RS RS

In order to deduce (2.5) from above, we estimate the integrals in RHS as follows:
As0<1-3a< %, using the Holder inequality and Sobolev embedding, we
get

1+o

|Vu 2

1+2a

2 2 2 2
A O R P Y P

2 2 .
/ W13 Ty 2 < /R3 (Cleq) + €4u)|Vo? dz, if § <a< i,
Vol ita =

)

Wl

2.22
IVol3. fo—1 (22

2 .
C(ea)[V0ll3 + ealluoll 3 Av]3, if § <a <3,
= 1
g.
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Following the same procedure as similar as above, we get

2 2 2 el 1
[ i < Cles) Vw3 + esluoll ¥ Awll3, if § < o< 5,
R3

Vw3, if o = %

[, w219l do <Cle) Vol + coluol | 4v]:

_ 2
/ u! 7| Vwl? de <C(er)|[Vwl3 + erlluol® || Aw]3.
R3

Next, we estimate the integral / u' "% Av| dz. Using the Holder, Young and
R3
Gagliardo-Nierenberg inequality in the integral, we get

/RBU17Q|AW| dr < Cles)|ull3-5 + esl Av|3
1ta
< 0(68)016||U0||2+3a||vu 2 H;Ha + es]| Av|3
<

Cles)Cho (c<e9>|uo||”“ +eQHVu”2”Hz) +es|Avll3

017+C18||VU H2+€8HAUH27

1+4a
where C17 = C16C(e5)C(e9)Jup||s " and Cig = C16C(eg)eg. Here, we are
using the fact that 4 < g +g°‘ < 2. Following the same procedure as similar as
above, we get

14+«

/ u' | Aw| dx < Chg + CQOHVuT 2
R3

|5 + €10l Aw|[3.

Next, we estimate the integral f]Rg u|Av| dz. Using the Young and Gagliardo-
Nierenberg inequality in the integral, we get

[ ulaelde < el +enfav)?
R

1+2a

IN

0(611)021||u0||“6“ Vu

H2+Ga + enn[|Avlf3

IN

Clen)Con (c<eu>uo|2+3 +eu|>w”f“l>§> + el Avl3

142a (2

= Cy + Coo|| Va2 || + €11 Av]3, (2.23)

, 1+6a
where Cy = 0210(611>C(612)||U0||2+3a and Cog = Ca1€12C(€11). Here, we are
using the fact that 3 < 2. Following the same procedure as similar as
above, we get

2—2+6

1+2a 12

/3u|Aw| dz < s + Coa |V 25 |2 + 15| Aw 2.
R

Math. Model. Anal., 30(2):203-223, 2025.
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Next we estimate the integrals [y, v|Av| dz, [, w|Aw| dz. Using the Young
and Gagliardo-Nierenberg inequality in the integrals, we get

8 I
/ vdv] de < Clera)lvl3 + eall Avll3 < Cosllvoll{ [|Av]l5 + erallAv]3.
R3
Similarly, we get
8 6
/ wl|Aw| dz < Cogllwoll{ [|Aw]3 + e1s]| Aw]3. (2.24)
R3

Substituting (2.22)—(2.24) in (2.21), we have

d (0%
dt(/R w(logu +2(z)) da + |[u]| 52 + || Vo2 + ||w||§>

142

+HVu 2

14a 12
[

+ o7 [+ a0l+] 20l ) T @+IvelHITuld).

Integrating above with respect to ¢, we get (2.5).
Case (ii): 1/3<a<1.
Multiplying (2.1), by logu and then integrating, we get

d
— | wulogudx + Viogu - V(u+ €)' *dx
dt R3 R3

= Vu- (x(v)Vv)de — Vu- ((w)Vw)de. (2.25)

R3 R3
Now, we evaluate the first term in RHS of (2.25) as follows:
Vu - (x(v)Vov) dx < CstVuHTa H; + ng/ ur | Vo|? da, (2.26)
R3 R3

where Cas = 2Xe1/(1 + a) and Ca9 = 2XC(€1)/(1 + ). Following the same
procedure as similar as above, we get

= | Vu-({(w)Vw) dz < C30HVU 2 H2 +031/ u' Y Vw|? de. (2.27)
R3 R3

Using (2.7), (2.26) and (2.27) in (2.25), we have

9 wlogu de + Cra| V5|
R3

dt
< ng/ ur | Vol? do + 031/ ur ™| Vw|? de, (2.28)
R3 R3
where Csy = — Cas — C'39. Multiplying (2.1); by u® and then integrating,
we get

14+ 40é 1—|—a 1+2a
1+adt” It Tramy UL gy 2

< / Vu® - u(x(v)Vo) de — | Vu® - u(f(w)Vw) dz.  (2.29)
R3

R3

2
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Now, we estimate the first term in RHS of above using Young’s inequality along

with |Vu| = H_%UPTQ |VUHTQ} as

142«

Vu® - u(x(v)Vo) de < C(x) /RS |Vu™2 ’(u%\VvD dx

R3

142

SC(X)(QSHVU 2 ||§+C(€18)/ u|Vol? dx)
R3

142a

=C(x)es||Vu 2 H;+C(X)C(€18)/3 u|Vo|? dx
-

142

<C()ers || Vu's H§+c<x>c<as>e;g( [ 1vuivel de+ [ a dx)
R3 R3

1+2a

:C(X)618||Vu 2 ||§ + C’(X)C’(elg)ell8 /3 u|Av| dx
-

e

+ C(X)C(Elg)ﬁlls /3 ukTu|Vu p
R

V| dz

142a

<C()ers|| Vs |‘§+C(X)C(618)6/18/R3u|Av| do

+ C(x)C(els)e;S(ngVul?‘H§ + Clero) / u o |Vol? da:) (2.30)
R3
:C33||Vu71+22a||;+Cg4||vu1§a ;+Cg5/u1*a|Vv\2 dx+036/u|Av| dx,
R3 R3

where C(X) = f_o;%’ 033 = C(X)€1S, 034 = 0336118619, 035 = 0336;80(619) and

/ . . .
Cs6 = Cs3¢€5. Following the same procedure as similar as above, we get

142« 14a 2
I

— [ Vu® u(E(w)Vw) dx < egOHVu 2 H; + 037HVU 2
R3
+ ng/ ut |\ Vw|? dz + C39/ u|Aw| dz. (2.31)
R3 R3
Using (2.30) and (2.31) in (2.29), we have
14+«

d
AW
< 035/ ul Vol da:—|—036/ u|Av| dx
R3 R3

142 14+

+ Caol |V 5 + O [ V= |

—|—C'38/ u17°‘|Vw|2dx—|—C'39/ u|Awldz, (2.32)
RS RS

where 040 = 4(0{(+1;a03)22 —033 — €90 and 041 = —034 — 037. It is clear that (2.1)2,

and (2.1), are independent of a and therefore, adding (2.20) with (2.28), (2.14),

Math. Model. Anal., 30(2):203—-223, 2025.
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(2.32), we get

d

i ([ o+ ao s 22+ 9 + 7]
12 4 | A|lf + HAwHi)

§C43</ ul | Vol? dx+/ ul =V |? dm+/ u|Av| dx
R3 R3 R3

—|—/ u| Aw| daz—/ v| Av| d:c—/ w| Aw| d1:>. (2.33)
R3 R3 R3

As 0 <1— < 2/3, using the Holder and Sobolev inequality, we get

+c42(|;wlé“ P+ |[Vu

1
Cle21) + equd |Vol? dz, if —<a<l,
/ul_“|Vv|2dx < /]R?’( ) 3
R3

IVol3, if =1,
2 .
Cle2)[IVoll3 + exnlluol[3[|Av]l3, if 3 <a <1, (2.34)
[Vol]3,if a = 1.
Following the same procedure as similar as above, we get
C(e22)|| V|| 342 ]u %AwQ, iff<a<l,
/ul‘“\Vw\Qdm - (€22) | Vwl[3+eaal|uol| 3 || Awl|3 3 (2.35)
As0 < 576> <2and 1 < < 3+ 6a, following the same procedure as we did

in (2. 23) and from the prev1ous case, we have

1+2a

/U|AU| e < Cua+ Cus|Vu 2| + easl| Av2,
R3

I;

1420

/u|Aw| dr < Cio+ Car||Vu 25| + eaull Aul 2
R3

I;
8 6 )
/ v[Avf dz < Chsllvoll] |40 + eral|Av]z,
R3
8 6
/ wlAw| dz < Coollwoll{ | Awll3 + ers]| Aw]3.
R3
Substituting (2.34), (2.35) and above estimates in (2.33), we get

d 1+ 2 2
([ o+t ao+ 22+ 90 + 9]}

ita 1420

+ O (905 902 |+ 20 + )

I
< Caz (L4 [Vl + [[Valf3).

Integrating above with respect to ¢, we get (2.5).
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Case (iii): a > 1.
Multiplying (2.1); by logu and then integrating, we get

1+a 2
I

d
% ulogu dx—l—iHV

< Vu- (x(v)Vv) dx — Vu- (§(w)Vw) dx. (2.36)

R3 R3

We estimate the RHS terms of above using the assumption X 5 € Ly, as

IN

/RS Vu - (x(v)Vv) dx
7/( Vu- (§(w)Vw) dz
Rd

044/ u|Vol? dx+C44/ u|Av| dx,
R3 R?

IN

045/ u|Vaw|? d:c+C45/ u|Aw| de.
R3 R3

Using above inequalities in (2.36), we get

1+ H

d 4 ) ,
a/Rgulogudm—i-mHVu 2 2§C’44/R3u|Vv| dw+C44/RSu|Av| da

+ 045/ u|Vw|? dz + 045/ u|Aw| dz. (2.37)
R3 R3

Multiplying (2.1), by u® and then integrating, we get

Do 4 2202 0)) g, rage 2
1+adt I4a 1+2a 2

< Vu® - u(x(v)Vo)de — [ Vu® - u(é(w)Vw)dz. (2.38)

RS RS
From (2.17), we get

+2a

Vu® - u(x(v)Vv) do < Cso||Vu 2 H2 + 051/ u|Vol? de, (2.39)
R3 R3
where Csy = C(x)es and Cs1 = C(x)C(e3). Following the same procedure as
n (2.39), we get

— [ Vu® - ul¢(w)Vw) de < C52||Vu#
R3

12+ Css /Rsu|Vw|2 do.  (2.40)

Substituting (2.39) and (2.40) in (2.38), we get

d [e% 142
o [ F2 < Cn [ ulVoP dot oo [ ulVul? da, (241
3 R3
’ 40&(1 + 06)2 .
where 049 = m — 050 — 052. Addlng (237)7 (214)7 (241) and (220),
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we get

d @
([ attogu 2ta)) do+ ull 52+ 90l + vl
R3

1+a 142

+ HVu 2

I;

<C55</ u|Vol? dx—i—/ u|Vw|? dx+/ u|Av| dx
R3 R3 R3

+/ u|Aw| dxf/ v| Av| dx—/ w]Aw| dx>. (2.42)
R3 R3 R3
Ag o

£% > 1, using Young’s inequality, we have u < ez + C(ezg)uHTa. We
estimate the first term in RHS of (2.42) using previous result with Young’s
inequality as

#Csa [0 I+ ol + i)

/ u|Vv\2d:E3626||Vv||§+0(626)/ uHTu|Vv\2 dx
R3 R3
—ex| Vol + Clea) [ ™90 Vo da

R3

§C(626)C56( Va2 Vu4u e Av dx) + e26]| V|13

R3

14a 2 o
<c<e%>056(uw 2|2 4 Vol + ulie + ||Av||3) e VI3 (243)

Now, we estimate the third term of RHS of above. Using the Gagliardo-
Nierenberg and Young inequality, we get

el < Cselluoli ™ 7+

2 < C57C(€e27) +627||V’u, 2 H2

Here,

(2.43), we get

2+3

1+cx

5+ ClollVol3 + CorllAvll3,  (244)

/ u|Vo|? da < C’é4 + Cé5||Vu
]RB

Where Cé4 = 0(626)0(627)056/057, Cé5 = 0(626)056 + 0(626)056627,

Crg = C(€26)Cs6 + €26 and C5; = C(€26)Cs6. Following the same procedure as
previous estimate and from previous case, we get

’ ’ 1+a ’ ’
[Vl de < Cla+ ool Vu 5 + Cool Vil + G| Awl,
142 2
U‘A’U| dr < Cyq+ Cys Tz H2—|—623HA’UH2,
R3
1420 (2
/u|Aw| dr < Cig+ Curl| Va2 |2 + eaal) Aw]2,
R3
8 6
/U\Av| d < Cysllvoll] [ Av]l5 + erall Avl]3,
R3
8 6
/w|Aw| de < Cogllwol|{ [|[Awl|] + er5]|Aw]]3.
RS
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Substituting above estimates and (2.44) in (2.42), we have

d 1+« 2 2
([ utos -+ ao+ 25+ [0 + 7}

14+

+ C’54<||Vu||2+ Vs

1+2cx

2 2
2+ 140] + 4w
< Css (L4 [|[Vo]l3 + [[Vwlf3).-
Integrating above with respect to ¢, we get (2.5). O

Lemma 2. Let 8,7,0,7 > 0. Suppose that (u,v,w) is a classical solution of
system (2.1) for all € € (0,1) and initial data (ug,,vo,,wo.) Satisfies (i)-(iii)
of Lemma 1, independent of €. Furthermore, we assume that

a>0and € € Ly, with X (4) > xo0 and £ (1) > & (2.45)

for some constant xg,& > 0. Then, for any 0 <t <T

sup E(r / D(r)dr < C, (2.46)

0<7<t

where E(t) and D(t) are defined as in (2.2) and (2.3) respectively. Here, C >0
a constant independent of € and depends on the given data.

Proof. 1t is sufficient to prove only for 0 < « < s asfora > ¢ result is already
shown in the Lemma 1. Multiplying (2.1); by logu and then integrating, we
get

d 4 1ta
7 IR3ulogud:v+1_i_70é||Vu 3 ||2

< /R3 Vu - (x(v)Vv)dz — /R3 Vu- ({(w)Vw)dz. (2.47)

We estimate the first term in RHS of above using our assumption x (-) > xo
as

Vu- (x(v)Vv)de = — / (X () |Vv]? + x(v) Av)u dz
Rd RJ

< _XO/ u|Vol? dm+C5g/ |Vu||Vo| dx
RS RS

14+

_XO/ u|Vo|? dz + CGOHVuTHZ +061/ ur | Vol? da. (2.48)
R3 R?

IA

Following procedure as same in (2.48), we get

- [ Ve cwvaa < 6 [ uvef ol

R3

2

—|—C’é1/ u' " Vw|? de. (2.49)
R3
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Using (2.48) and (2.49) in (2.47), we get
d Ita 2 2 2
— ulogu da:—l—ngHVu 2 H2+X0 u|Vo|*dz + & u|Vw|“dz
dt R3 R3 R3
< 061/ ut | Vo Adz + Cél/ ur ™| Vw|?dz, (2.50)
RS RS

where Cgo = 1_% — Cgo. Multiplying (2.1); by u* and then integrating, we get

1ta | 4da(l 4+« 1tz0 12
1+adt” e + WHV I,
< Vu® - u(x(v)Vo)de — [ Vu® - u(é(w)Vw)dz. (2.51)
R3 R3

We estimate the first term in RHS of above using Young’s inequality as

/ Vu® - u(x(v)Vo) dx < C(X)/ |Vu1+22a |(u%|VUD dx
RS RS

142

< C(x 627||Vu 2 ||2 C(x )0(627)/ u|Vo|? dz
R3

< C(err (c<ezs>||w|3 L dm) + C(ex|| Va2
R

1+cx

||2 + CgylI V012 + Cps /R u' | Vol? dr, (2.52)

where C(x) = X, Cgz = C()ear, Cgs = C()C(e2r)Cleas) and Cgy =
C(x)C/(ea7)eas. Following the procedure as similar as above, we get

—/ Vu® - u(é(w)Vw) dx
R3

+2a

< il |Vu ™2 ||, + Clrll Vw3 + Co /Sulfﬂv@umx. (2.53)
R

Using (2.52) and (2.53) in (2.51), we get

d (e @ —«
Zllulliio + Cor|[ Va2 | < Coall Vol + Co /R 1|Vl da

- Clal[ V]2 + Cly / WO Tl dr, (2.54)
]R3

where Cg7 = 485:;5)2 — Cs3 — Ce6- As o does not affect (2.1),, and (2.1),,
from previous case calculation, we have

d
a2 (150l 190l ) + 21 40] + 4w

S,B/ u| Av| dx—'y/ v|Av] d:c—|—5/ u| Aw| d:ﬁ—n/ w|Aw| dx.
R3 R3 R3 R3
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Adding (2.50), (2.14), (2.54) and above estimate, we have

d ) 2 2
([ utogu+20a) ao+ ul} 32+ 90 + 9l

1+a 1+2a

- Cor (|94 92+ ol + )

SCes(/ ul_a|Vv|2d$+/ u!' " VwlPde + [Vl + ([ Vw3
R3 RS

+/ u\Av|dm+/ u|Aw|dx—/ U|Av|da:—/ w|Aw|dx>. (2.55)
RS RS RS RS

We estimate the first term in RHS of above using u'=% < C/(eag) + €25u and
choosing sufficiently small €5, we get

/ ut ™| Vol? dx < Ceol| V3. (2.56)
R3
Following the same procedure as above, we get
/ ur | Vw|? dz < Crol| V3. (2.57)
R3
Substituting (2.56), (2.57) and (2.23)—(2.24) in (2.55), we have
4
dt
+C67</ u|Voldz + || Vu
R3

< Ces(1+ [Voll3 + [Vwl3).

| uttogu+ 20 do+ 5+ 90l + 7))

142a

VU L+ ]+ 4wl

1+a 12
= |
2

Integrating above with respect to ¢, we get (2.46). O

3 Existence of weak solution
In this section, we prove the global weak solution for (1.4) using Lemmas 1-2
proved in the previous section. Furthermore, we extend the same for arbitrary

bounded domain {2 C R™ with a smooth boundary 0f2.

Theorem 1. Let §3,7,0,n be positive constants. Suppose that (2.4) or (2.45)
hold true and initial data (ug,vo,wo) satisfy

i) uo(1 + || + [loguo|) € L (R?),
i) uo € L1 (R3),
iii) vo and wo € L>®(R?) N H(R3).
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Then, for each T > 0, there exists a weak solution (u,v,w) for (1.4) such that

S ( / u(t)(|log u(t)+2(z)) do+|[u(®)|[ 17+ Vo[, + | Vw(®)[}.)

T
+/0 (va“(t)yy; Ve @ + || + HAw@)H;)dt <c

C = C(T, [luollLraprte; [luo log uol L1 [uo (@) | 1, [V vol 1, [Vewol| £1)-

Proof. The uniformity of the estimates obtained in Lemmas 1 and 2, is in-
dependent of ¢, is ensured by the convergence of (ug_,vo,, wo,), for € € (0,1).
That is, the constant C' in (2.5) chosen independent of €. In the similar manner,
there exists constant C' > 0 such that for ¢ < oo

qto
l[tel| o 0,7y xr2) + Hvufqz HL"’((O,T)XH@) <G,

Vel oo (0,310 (m3Y) + [[VellLao,r;w2.am3)) + |[Ve, | Lao, 509 R3)) < C,

lwell Lo 0, 75wra(e)) + l[well Lago,rw2.ame)) + we, | Lao,7500r2)) < C.

Through derived estimates, the obtained local solution extended to any given
time 7' > 0 (as in [6,8,18,26]). Let k > 2+ a be chosen. Then u,, and u? €
LY0,T; W=22(R3))(as in [18]), where W~22(R3) denotes the dual space of
W?22(R?). Then by Aubin-Lions compactness lemma, we have a weak limit
(u,v,w) as € — 0 which is a weak solution. 0O

The above theorem can also be proved to the bounded domain in R™ with the
Neumann boundary conditions for u,v and w. Precisely, let {2 be a bounded
domain with smooth boundary and consider the system (2.1) in 2 x [0,T") with

boundary conditions as

ou Ov Ow

Theorem 2. Let §3,7,0,n be positive constants. Suppose that (2.4) or (2.45)
hold true and initial data (ug,vo,wo) satisfy

i) ug € LY(N2) N L2 (0),
ii) vo and wo € L>(2) N H(N).

Then, for each T > 0, there exists a weak solution (u,v,w) for system (1.4)
with boundary conditions (3.1) and it satisfies

sup (/ﬂu(tﬂ logu(t)| da + |[u(t)|| 1oa + | Vo) 50 + |\vw(t)||§2>

T
+/0 (sz“u)uiz Ve @ + || + HAw@)H;)dK c

where C = C(T, ||uol|p1npi+e, [|uo loguo|| L1, [[Vvoll L1, |Vwol|L1)-
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Proof. As proof of the theorem is similar to the above, therefore, we give a
sketch of the proof. Since, negative part of fQ ulogu is controlled by ||ul[z1(g),
L' estimate of u(z) (2.15) is not needed. Also, the Gagliardo-Nirenberg in-
equality modified slightly for the case of bounded domains, that is, (2.23) can
be replaced by

1+6a 6
24+6a 24+6a

142
HL2(Q) + Cor|lullZ1 (-

[ull3 < Carlluoll FiTe, [ Va2

O

4 Conclusions

We have proposed a new system that models an attraction-repulsion-chemo-
taxis with a nonlinear diffusion exponent of 1 + « in an unbounded domain.
The inclusion of nonlinear diffusion in the system captures the impact of the
adhesive nature of the cell in its movement reacting to chemical signals, mak-
ing it more realistic. The existence of a global-in-time weak solution for the
proposed system is established for any a > 0, and this result is extended to a
bounded domain with a smooth boundary.
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