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1 Introduction

Significant efforts have been devoted to the study of fractional derivative op-
erators and their applications to numerous scientific fields. There are different
definitions of this form of differentiation. The different types of this opera-
tor have been examined and compared in the book by S. Samko, A.A. Kil-
bas and O. Marichev [29], where applications of fractional calculus to ordi-
nary and partial differential equations are also shown. One can also see the
works [19,20,21,22,23,25] by V. Kyriakova, the work of Gorenflo-Mainardi [17]
as well as Mainardi et al. [24], and the articles [15, 31]. An elementary ap-
proach, based on Euler’s classical definition, which falls under Caputo’s [2] and

■
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makes use of power series with fractional exponent has been considered in re-
cent articles [4,18]. According to that method, it is natural to consider, for the
exponential function, an expansion in fractional powers of a fixed number α,
with 0 < α < 1.

The introduction of such a function, which verifies the invariant property
of the classical exponential in relation to the fractional derivative of the same
order, makes it possible to extend to the fractional field many of the families of
special polynomials. What’s more, the technique of fractional power series ex-
pansions allows solutions to some differential problems of population dynamics.
Several articles in this direction appeared in recent times (see e.g., [6,12,13,30]).
A different approach can be found in [5].

Another possible generalization of the exponential has been considered in
the past in connection with the Laguerre-type derivative DL = DxD and its
iterates as DnL = DxDxDx · · ·DxD, [7, 26,28].

However, the Laguerre-type derivatives are not completely new, since they
can be considered as particular cases of the hyper-Bessel differential operators
when α0 = α1 = · · · = αn = 1 (the special case considered in operational
calculus by Ditkin and Prudnikov [10]). In general, the Bessel-type differential
operators of arbitrary order n were introduced by Dimovski, in 1966 [9] and
later called by Kiryakova hyper-Bessel operators, because are closely related
to their eigenfunctions, called hyper-Bessel by Delerue [8], in 1953. These
operators were studied in 1994 by Kiryakova in her book [25], Ch. 3.

Since the Laguerre-type exponentials, on the positive semi-axis of the abscis-
sas, are convex increasing functions, with a growth lower than the exponential
one, a natural application was made in the context of population dynamics [3].
This topic is combined with the new type of fractional exponential, and a frac-
tional Laguerrian model is presented in the final section.

2 The fractional exponentials

In what follows, we use the Euler definition for the fractional derivative of
powers, which falls as a special case of the fractional derivative introduced by
Caputo,  Dν

t t
n =

Γ (n+ 1)

Γ (n+ 1− ν)
tn−ν , (n ≥ [ν]) ,

Dν
t t

n = 0 , (n < [ν]) ,

where n and ν are rational numbers, and [ν] denotes the integral part of ν. If
c is a constant, then Dν

t c = 0.

We recall that the Caputo derivative is defined as follows [2]

Dν
a+f(t) =

1

Γ (n− ν)

∫ t

a

f (n)(τ)

(t− τ)ν−n+1
dτ , (n ≥ [ν]) ,

and reduces to the preceding equation when a = 0 and f(t) = tn.
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A natural extension of the exponential function in the framework of frac-
tional Taylor expansions is given, for any α, such that 0 < α < 1, by

Expα(t) = 1 +
tα

Γ (α+ 1)
+

t2α

Γ (2α+ 1)
+ · · ·+ tnα

Γ (nα+ 1)
+ . . . .

Note that this function satisfies, for any fixed complex number x,

Dα
t Expα(xt) = xα Expα(xt) . (2.1)

The same happens interchanging t and x in the Equation (2.1).
For any α, such that 0 < α < 1, this expansion is convergent in the whole

complex plane, as the same holds for the classical exponential exp(t). Actu-
ally, this is the classical Mittag-Leffler function Eα(t

α), but as we deal with
populatiton dynamics problems in which exponential functions are involved, it
is convenient to mantain an exponential-type symbol.

In particular, for α = 1/2, we find

Exp1/2(t) = E1/2(t
1/2) = 1 +

t1/2

Γ (3/2)
+

t

Γ (2)
+ · · ·+ tn/2

Γ (n/2 + 1)
+ . . . .

D
1/2
t Exp1/2(xt) = x1/2 Exp1/2(xt) .

Remark 1. The Mittag-Leffler function writes, in general

Eα,β(x) =

∞∑
n=0

xn

Γ (αn+ β)
, ∀x ∈ C,∀α, β ∈ R+ ,

and for β = 1

Eα(x) =

∞∑
n=0

xn

Γ (αn+ 1)
, ∀x ∈ C .

It results Eα(x
α) = Expα(x) and Dα

xEα(x
α) = Eα(x

α) , so that the fractional
exponentials reduce to particular cases of the Mittag-Leffler function. In par-
ticular, we have:

E1/2(x
1/2) =

∞∑
n=0

xn/2

Γ (n/2 + 1)
= Exp1/2(x) .

Asymptotics for a variant of the Mittag-Leffler function are contained in [16],
and extensions of the same function to the multi-index case can be found in [27].

3 The fractional Malthus model

Consider the fractional Cauchy’s initial value problem{
Dα

t P (t) = γαP (t),
P (0) = P0 ,
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where 0 < α < 1, and γ is a positive constant. The solution is given by
P (t) = Expα(γt)P0. In fact,

Dα
t Expα(γt)P0 = γαExpα(t)P0 = γαP (t) .

As the parameter α is less than 1, the population number P (t) growth is less
than exponential growth.

This classical topic was recently considered in the fractional framework [1],
where an application to modelling World population growth was examined. See
also [30] and the references therein.

4 The fractional-order logistic equation

We consider the fractional-order logistic initial value problem [14]{
Dα

t P (t) = r P (t)
[
1− 1

K P (t)
]
, (0 < α < 1) ,

P (0) = p0 .
(4.1)

The expansion in fractional powers, introduced in the preceding sections, is
exploited to derive the following result.

Theorem 1. Putting

P (t) =

∞∑
n=0

an
tαn

Γ (αn+ 1)
, (4.2)

the solution of the fractional-order logistic initial value problem in Equation
(4.1) is obtained by computing the an coefficients through the following recursion

a0 = p0,

an+1 = r

[
an − 1

K

n∑
k=0

,
ak an−k Γ (nα+ 1)

Γ (α(n− k) + 1)Γ (αk + 1)

]
.

(4.3)

Proof. As it results

Dα
t P (t) =

∞∑
n=1

an
t(n−1)α

Γ ((n− 1)α+ 1)
=

∞∑
n=0

an+1
tnα

Γ (nα+ 1)
,

P (t) · 1

K
P (t) =

1

K

∞∑
n=0

n∑
k=0

ak an−k
tnα

Γ (α(n− k) + 1)Γ (αk + 1)
,

substituting into Equation (4.1) we find

∞∑
n=0

an+1
tnα

Γ (nα+ 1)

=r

[ ∞∑
n=0

an
tαn

Γ (αn+ 1)
− 1

K

∞∑
n=0

n∑
k=0

ak an−k
tnα

Γ (α(n− k) + 1)Γ (αk + 1)

]

=r

∞∑
n=0

[
an

Γ (nα+ 1)
− 1

K

n∑
k=0

ak an−k

Γ (α(n− k) + 1)Γ (αk + 1)

]
tnα ,

so that the recursion (4.3) for the an coefficients follows. ⊓⊔

Math. Model. Anal., 29(3):480–492, 2024.
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Example 1. Assuming α = 0.75, r = 1,K = 1.5, and putting y0 = 0.5, we find
the an (0 ≤ n ≤ 20) coefficients reported in Table 1.

Table 1. The an coefficients for 0 ≤ n ≤ 20.

0.5, 0.333333, 0.111111, -0.0795398, -0.129554, 0.019401, 0.237329, 0.141486,
-0.548324, -1.00183, 1.21113, 6.08445, 0.512067, -37.0785, -52.3417, 215.583,
763.847, -874.775, -9288.89, -5554.9, 103580.0

The corresponding graph is shown in Figure 1.

Figure 1. Graph of the solution, using the an coefficients, vs the approximation using
the predictor-corrector method.

5 The minimum threshold fractional logistics model

We consider the fractional-order logistic initial value problem{
Dα

t P (t) = r P (t) [1− P (t)/K] [1−m/P (t)] , (0 < α < 1) ,
P (0) = p0 ,

where m denotes the minimum population threshold that guarantees the pop-
ulation survival. Since

Dα
t P (t) = r

[
P (t) +mP (t)/K − P 2(t)/K −m

]
, (5.1)

considering the expansion of P (t) (equation (4.2) in Theorem 4.1), we can state
the theorem

Theorem 2. The solution of the minimum threshold fractional logistics model
is obtained by computing the an coefficients through the following recursion

a0 = p0, a1 = r

[(
1 +

m

K

)
p0 −

1

K
p20 −m

]
,

an+1 = r

[(
1 +

m

K

)
an − 1

K

n∑
k=0

ak an−k Γ (nα+ 1)

Γ (α(n− k) + 1)Γ (αk + 1)

]
, (n ≥ 1) .
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Proof. Substituting the fractional expansion (4.2) of P (t) into Equation (5.1),
we find

∞∑
n=0

an+1
tnα

Γ (nα+ 1)
= r

[(
1 +

m

K

) ∞∑
n=0

an
tnα

Γ (αn+ 1)

− 1

K

∞∑
n=0

n∑
k=0

ak an−k
tnα

Γ (α(n− k) + 1)Γ (αk + 1)

]
− rm ,

that is
∞∑

n=0

an+1
tnα

Γ (nα+ 1)
− r

(
1 +

m

K

) ∞∑
n=0

an
tnα

Γ (αn+ 1)

+
r

K

∞∑
n=0

n∑
k=0

ak an−k
tnα

Γ (α(n− k) + 1)Γ (αk + 1)
= −rm ,

By considering first the monomial when n = 0, and then equating the mono-
mials with the same fractional exponent, we find the result. ⊓⊔

Example 2. Assuming α = 0.5, µ = 0.1, r = 0.2,K = 1.0, and putting y0 = 0.5,
we find the an (0 ≤ n ≤ 40) coefficients reported in Table 2.

Table 2. The an coefficients for 0 ≤ n ≤ 40.

0.5, 0.04, 0.0008, -0.000391437, -0.0000270287, 9.8358×10−6, 1.32073×10−6,
-3.72283×10−7, -8.32023×10−8, 1.8003×10−8, 6.36674×10−9, -1.0045×10−9,
-5.69914×10−10, 5.7712×10−11, 5.8111×10−11, -2.53961×10−12,
-6.61331×10−12, -1.16546×10−13, 8.26082×10−13, 7.07962×10−14,
-1.11595×10−13, -1.83611×10−14, 1.60719×10−14, 4.18353×10−15,
-2.42948×10−15, -9.32435×10−16, 3.77902×10−16, 2.10285×10−16,
-5.86548×10−17, -4.86023×10−17, 8.53499×10−18, 1.15645×10−17,
-9.57398×10−19, -2.83428×10−18, -2.00953×10−20, 7.14197×10−19,
7.13301×10−20, -1.8436×10−19, -3.71495×10−20, 4.84798×10−20,
1.54998×10−20

The corresponding graph is shown in Figure 2.

6 The fractional Volterra-Lotka model

Let us consider the fractional Volterra-Lotka model{
Dα

t X(t) = X(t)[s− γY (t)],
Dα

t Y (t) = Y (t)[βX(t)− r].
(6.1)

The orbits are given by the parametric equations X = X(t), Y = Y (t) with
X(0) = x0, Y (0) = y0, respectively. The equilibrium point is the same as the
classical mode, that is:

X0 = r/β, Y0 = s/γ.

Math. Model. Anal., 29(3):480–492, 2024.
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Figure 2. Graph of the solution, using the an coefficients, vs the approximation using
the predictor-corrector method.

The following theorem holds true.

Theorem 3. Upon putting

X(t) =

∞∑
n=0

an
tαn

Γ (αn+ 1)
, Y (t) =

∞∑
n=0

bn
tαn

Γ (αn+ 1)
,

the solution of the fractional Volterra-Lotka model (6.1) under the initial con-
ditions X(0) = x0 and Y (0) = y0 is obtained by computing the coefficients an
and bn through the following recursive formulas

a0 = x0, b0 = y0,

an+1 = s an − γ Γ (nα+ 1)

n∑
k=0

ak bn−k

Γ (αk + 1)Γ (α(n− k) + 1)
,

bn+1 = −r bn + β Γ (nα+ 1)

n∑
k=0

ak bn−k

Γ (αk + 1)Γ (α(n− k) + 1)
.

(6.2)

Proof. As it results

Dα
t X(t) =

∞∑
n=0

an+1
tnα

Γ (nα+ 1)
, Dα

t Y (t) =

∞∑
n=0

bn+1
tnα

Γ (nα+ 1)
,

X(t) · Y (t) =

∞∑
n=0

n∑
k=0

ak bn−k
tnα

Γ (αk + 1)Γ (α(n− k) + 1)
,

upon substituting into Equation (6.1) we find

∞∑
n=0

an+1
tnα

Γ (nα+ 1)

= s

∞∑
n=0

an
tαn

Γ (αn+ 1)
− γ

∞∑
n=0

n∑
k=0

ak bn−k
tnα

Γ (αk + 1)Γ (α(n− k) + 1)

=

∞∑
n=0

[
s

an
Γ (nα+ 1)

− γ

n∑
k=0

ak bn−k

Γ (αk + 1)Γ (α(n− k) + 1)

]
tnα ,
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∞∑
n=0

bn+1
tnα

Γ (nα+ 1)

= −r

∞∑
n=0

bn
tαn

Γ (αn+ 1)
+ β

∞∑
n=0

n∑
k=0

ak bn−k
tnα

Γ (αk + 1)Γ (α(n− k) + 1)

=

∞∑
n=0

[
−r

bn
Γ (nα+ 1)

+ β

n∑
k=0

ak bn−k

Γ (αk + 1)Γ (α(n− k) + 1)

]
tnα ,

so that the recursion (6.2) for the coefficients an and bn follows. ⊓⊔

6.1 Numerical results

Assuming α = 0.75, r = 1.0, s = 1.0, β = 2.0, γ = 2.0, and putting x0 =
0.5, y0 = 0.75, we find the an and bn coefficients reported in Tables 3 and 4.

Table 3. The an coefficients for 0 ≤ n ≤ 100.

0.5, -0.25, 0.125, 0.3125, -0.90625, 0.359375, 6.57031, -22.668, -28.4629, 543.257,
-1380.2, -10538.3, 97130.2, -22377.8, -4.70768×106, 2.73618×107, 1.47377×108,
-2.95171×109, 7.12904×109, 2.2628×1011, -2.39001×1012, -7.69477×1012,
3.63224×1014, -1.96953×1015, -3.76386×1016, 6.63894×1017, 4.34674×1017,
-1.31595×1020, 1.24262×1021, 1.61746×1022, -4.70681×1023, 1.15781×1024,
1.14212×1026, -1.69378×1027, -1.42465×1028, 7.30506×1029, -4.57342×1030,
-2.04896×1032, 4.56169×1033, 1.88959×1034, -2.21651×1036, 2.42486×1037,
6.76272×1038, -2.24302×1040, 5.53085×1039, 1.20445×1043, -2.02428×1044,
-3.6925×1045, 1.88509×1047, -9.48764×1047, -1.09122×1050

Table 4. The bn coefficients for 0 ≤ n ≤ 100.

0.75, 0.0, -0.375, 0.1875, 1.03125, -2.29688, -3.91406, 33.1523, -27.3574, -544.362,
2467.82, 6690.27, -114359.0, 233867.0, 4.45144×106, -3.65209×107, -8.34939×107,
3.18258×109, -1.32633×1010, -2.05887×1011, 2.82218×1012, 2.48258×1012,
-3.73401×1014, 2.70615×1015, 3.29629×1016, -7.34496×1017, 9.63715×1017,
1.31066×1020, -1.50528×1021, -1.34267×1022, 5.00282×1023, -2.12877×1024,
-1.10925×1026, 1.91891×1027, 1.06338×1028, -7.55386×1029, 6.05931×1030,
1.94263×1032, -4.96085×1033, -9.37331×1033, 2.24478×1036, -2.87099×1037,
-6.23313×1038, 2.37298×1040, -5.16908×1040, -1.19872×1043, 2.26459×1044,
3.26361×1045, -1.95465×1047, 1.33274×1048, 1.06841×1050

The corresponding graph is shown in Figure 3.

7 The fractional Laguerre-type exponentials

In this section, we consider the fractional Laguerre-type exponential

L1Exp1/2 := E(1/2,1/2),(1,1)(
√
t) ,

Math. Model. Anal., 29(3):480–492, 2024.
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Figure 3. Graph of the solution, using the an and bn coefficients, vs the approximation
using the predictor-corrector method.

where E(α1,α2),(β1,β2)(t) denotes the 2×2 Mittag-Leffler function by M.M. Dzr-
bashjan [11]. Since

L1
Exp1/2(t) =1 +

1

[Γ (3/2)]2
t1/2 +

1

[Γ (2)]2
t

+
1

[Γ (5/2)]2
t3/2 + · · ·+ 1

[Γ (n/2 + 1)]2
tn/2 + . . . , (7.1)

introducing the fractional order hyper-Bessel differential operator
D1/2x1/2D1/2 [25], it results

D1/2 x1/2 D1/2
L1
Exp1/2(t) = L1

Exp1/2(t) .

More generally, putting

Ln
Exp1/2 := En

( 1
2 ,

1
2 ),(1,1)

(
√
t) ,

where

En
(αi),(βi)

(t) =

∞∑
k=0

tk∏n
i=1 Γ (αik + βi)

, t ∈ C, αi > 0, βi ∈ R,

we find

Ln
Exp1/2(t) =1 +

1

[Γ (3/2)]n+1
t1/2 +

1

[Γ (2)]n+1
t

+
1

[Γ (5/2)]n+1
t3/2 + · · ·+ 1

[Γ (n/2 + 1)]n+1
tn/2 + . . . ,

and considering the hyper-Bessel differential operator, containing n + 1 frac-
tional derivatives, it results

D1/2 x1/2 D1/2 x1/2 D1/2 · · · x1/2 D1/2
Ln

Exp1/2(t) = Ln
Exp1/2(t) .

In what follows, we use the typographical more simple notation considered in
Equation (7.1).
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8 The Laguerre-type fractional-order logistic equation

We consider the Laguerre-type fractional-order logistic initial value problem{
D

1/2
t t1/2D

1/2
t P (t) = r P (t)

[
1− 1

K P (t)
]
,

P (0) = p0 .

We prove the result

Theorem 4. Putting

P (t) =

∞∑
n=0

an
tn/2

Γ (n/2 + 1)
,

the solution of the considered Laguerre-type fractional-order logistic initial value
problem is obtained computing the an coefficients using the recursion

a0 = p0,

an+1 = r

[
an

Γ (n+2
2 )

Γ (n+3
2 )

− 1

K

n∑
k=0

ak an−k [Γ (n+2
2 )]2

Γ (n+3
2 )Γ (n−k

2 + 1)Γ (k2 + 1)

]
.

Proof. Using the fractional differentiation, we find

D
1/2
t t1/2D

1/2
t P (t) =

∞∑
n=0

an+1

Γ (n+3
2 ) tn/2

[Γ (n+2
2 )]2

,

P (t)
1

K
P (t) =

1

K

∞∑
n=0

n∑
k=0

ak an−k
tn/2

Γ (n−k
2 + 1)Γ (k2 + 1)

.

Substituting into the equation, we find

∞∑
n=0

an+1

Γ (n+3
2 ) tn/2

[Γ (n+2
2 )]2

= r

[ ∞∑
n=0

an
tn/2

Γ (n+2
2 )

− 1

K

∞∑
n=0

n∑
k=0

ak an−k
tn/2

Γ (n−k
2 + 1)Γ (k2 + 1)

]

= r

∞∑
n=0

[
an

Γ (n/2 + 1)
− 1

K

n∑
k=0

ak an−k

Γ (n−k
2 + 1)Γ (k2 + 1)

]
tn/2 ,

so that the recursion for the an coefficients follows. ⊓⊔

8.1 Numerical results

Assuming r = 0.5,K = 2.0, and putting y0 = 1.6, we find the an coefficients
reported in Table 5. The corresponding graph is shown in Figure 4.

Math. Model. Anal., 29(3):480–492, 2024.
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Table 5. The an coefficients for 0 ≤ n ≤ 80.

1.6, 0.324973, -0.04032, -0.0159838, 0.00671283, 0.0011658, -0.0013536,
0.0000165536, 0.000308317, -0.0000683558, -0.0000738482, 0.0000385159,
0.0000163458, -0.0000184599, -1.85623×10−6, 8.464187×10−6, -1.459437×10−6,
-3.73171×10−6, 1.83676×10−6, 1.49532×10−6, -1.51334×10−6, -4.31732×10−7,
1.09636×10−6, -7.18573×10−8, -7.33593×10−7, 3.01059×10−7, 4.44805×10−7,
-3.91019×10−7, -2.18061×10−7, 4.06177×10−7, 3.73562×10−8, -3.76615×10−7,
1.10092×10−7, 3.14918×10−7, -2.32259×10−7, -2.24182×10−7, 3.31876×10−7,
1.02018×10−7, -4.05676×10−7, 5.70566×10−8, 4.42730×10−7, -2.59304×10−7,
-4.21556×10−7, 5.0813×10−7, 3.05864×10−7, -7.97158×10−7, -3.92065×10−8,
1.09682×10−6, -4.59916×10−7, -1.32949×10−6, 1.29790×10−6, 1.32517×10−6,
-2.58925×10−6, -7.4736×10−7, 4.39667×10−6, -1.02107×10−6, -6.57178×10−6,
5.02947×10−6, 8.38448×10−6, -0.0000128957, -7.73228×10−6, 0.000026728,
-4.1954×10−7, -0.0000482524, 0.0000268543, 0.000075668, -0.0000925551,
-0.0000947775, 0.000233987, 0.0000569883, -0.000503748, 0.000170192,
0.000946659, -0.000903899, -0.0014917, 0.00282404, 0.00160145, -0.00720912,
0.000702611, 0.0159745, -0.0112644

Figure 4. Graph of the solution, using the an coefficients.

9 Conclusions

We have shown that the use of expansions in fractional power series and, in
particular, the use of the fractional exponential allows solving the fractional
case of classical population dynamic problems. This approach has proved to
be useful also in the case of the Laguerre-type derivative. Further applications
to the solution of fractional differential equations and to the study of special
fractional polynomials will be considered in subsequent articles.
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