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neous magnetic field. The mathematical approach is based on studies by J.C.R. Hunt
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of stationary partial differential equations (PDEs) with two unknown functions of
velocity U and induced magnetic field H. The flows are generated as a result of the
interaction of injected electric current in liquid and the applied field using one or
two couples of linear electrodes located on duct walls: three cases are considered. In
dependence on direction of current injection and uniform magnetic field, the flows
between the end walls are realized. Distributions of velocities and induced magnetic
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Fourier series method and Matlab.
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1 Introduction

In many technological applications it is important to mix an electrically con-
ducting liquid by using various magnetic fields. In [8] are used different ex-
ternal magnetic fields (homogeneous, radial, axial, dipolar) for mathematical
modelling of 2-D MHD flow. In [7], distribution of electromagnetic fields, forces
and temperature induced by the system of the alternating electric current in
the conducting cylinder has been calculated.

The work [5] presents the mathematical model of metal electrodes of the
form of bars placed parallel to the finite cylinder axis in the viscous incompress-
ible liquid, these conductors are connected to the alternating current. In [6],
the distributions of electromagnetic fields, forces and temperatures induced by
3-phase axially-symmetric system of electric current has been calculated; the
MHD flow of viscous incompressible liquid is obtained by the finite-difference
method. In [11,17], special monotonous difference schemes and averaging meth-
ods have been developed for solution of MHD problem of viscous incompressible
fluids and for solving problems of mathematical physics.

In [23], a system of stationary partial differential equations with two un-
known functions of velocity and induced magnetic field in the cylindrical coor-
dinates is solved. In [19], a liquid with electrical conductivity and viscosity is in
a cylindrical vessel with isolated walls and at the end wall z = 0 there is a pair
of ideally conducting electrodes supplied with a current I, perpendicular to the
plane z = 0. In [3], the laminar MHD flows with finite electrically conducting
Hartmann walls are investigated using numerical simulations with OpenFOAM
for Hartmann numbers 500− 2000.

In [4], the MHD flow of an incompressible conductive viscous fluid between
two rigid planes (exact solution is obtained) is described. In [16], three types
of flow – general 3-D flow, rotational flow and axi-symmetrix flow of a vis-
cous incompressible conductive liquid in an induction-free approximation with
external magnetic field parallel to z-axis are considered. The viscous elec-
trically conducting incompressible liquid moves between infinite cylinders of
square section placed periodically, the 2-D MHD flow around the cylinders
an external uniform magnetic field are analysed in [14]. Similarly in [13], the
liquid-electrolyte is to move between infinite cylinders placed periodically and
the 2-D MHD convection around the cylinders are obtained.

Relevant simplified MHD equations in cylindrical coordinates in a non-
dimensional form for an electrically driven flow were first used in [9, 10]. The
coincidence of theoretical and experimental results was demonstrated in [9].

A mathematical model of 2-D electrically driven laminar axisymmetric cir-
cular free shear flows in a cylindrical vessel under the action of an applied
axial uniform magnetic field was studied [23] (see Refs. there). The flows are
generated as a result of the interaction of the electric current injected into the
liquid and the applied field using one or two pairs of concentric ring electrodes
located on the end walls. With growing Hartmann number, two lateral free
shear layers and two Hartmann layers on the end walls are arising and between
them a quasi-potential core is enclosed. Depending on the direction of current
inflow, coinciding or two opposite flows are realized between the end walls.

Math. Model. Anal., 29(3):426–441, 2024.
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Experiments with a rotating free shear layer in an axial magnetic field
between two annular electrodes located on the end wall perpendicular to the
magnetic field both for the steady regime in [21] were carried out. In [3],
the transition flow laminar to time dependent MHD duct flows with finite
electrically conducting Hartmann walls and isulating side walls is investigated.
In [26], are provided data on the suppression of free surface instabilities of liquid
metal film flows under the action of strong magnetic fields. In [2], numerical
study of the induced electric current of electrovortex flow in a cuboid vessel is
considered.

In the present article, we discuss steady-state laminar plane-parallel free
shear flow of a viscous electrically conducting fluid in rectangular duct. This
work is a continuation of an earlier physical study in MHD journal 1978-1984
[15,18,20] and 2021–2023 [12,22,23], where the flow in the duct was created by
an electromagnetic force caused by the interaction of an electric current with
an external uniform magnetic field. The electrically driven laminar plane free
shear flows in a straight direct under the action of an applied uniform magnetic
field with the angle ϕ0 of inclination of the magnetic field vector B to these
walls for ϕ0 = π/2 in [12] and for ϕ0 = π/4 in [22] are considered. In [18], the
angle ϕ0 = π/2 only is considered. In these studies, the current was supplied
to a pair of infinite linear electrodes on the duct wall perpendicular to the field.

In the present article for the mathematical modelling the flow is generated
by an electromagnetic force associated by an external homogeneous magnetic
field with its induction vector B directed at angles ϕ0 = π/2, ϕ0 = π/4 and
ϕ0 = 0, with current supplied to a pair of infinite line electrodes on lower and
upper wall of the duct.

2 Formulation of the problem

Following [25], the magnetohydrodynamic (MHD) flow is characterized by one
non-dimensional parameter – Hartmann (Ha) number. The Hartmann number
accounts for the strength of the applied magnetic field and, correspondingly,
the value of the induced electric currents.

The MHD process is considered in duct cross section:

Ω = {(x, y, z) : −L ≤ x ≤ L, 0 ≤ y ≤ C,−∞ ≤ z ≤ +∞}

with electrically non conducting walls x= ± L, y=0; y=C. External magnetic
field in the (x, y) plane is applied as B={B0 cos(ϕ0), B0 sin(ϕ0), 0}, where B0

is constant value of the magnetic field induction in the direction under angle
ϕ0.

An electric current is supplied to duct by two couples of linear electrodes
z ∈ (−∞,+∞) at y = 0 and y = C by x = −a, x = a on the duct walls
perpendicular to the walls. At the walls y = 0, y = C in the first electrode
x = −a the electric current densities Jx = 0, Jy = +∞, in the second electrode
x = +a the electric current densities Jx = 0, Jy = −∞.

Therefore, Jy = δ(x+a)−δ(x−a). We will find the symmetric distribution
of azymuthal velocity U = U(x, y) and induced magnetic field H = H(x, y)
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Jx = ∂H

∂y , Jy = −∂H
∂x

)
by solving the following first kind boundary value

problem for two partial differential equations (PDEs) [10]:
∂2U
∂x2 + ∂2U

∂y2 +Ha(cos(ϕ0)
∂H
∂x + sin(ϕ0)

∂H
∂y ) = 0,

∂2H
∂x2 + ∂2H

∂y2 +Ha(cos(ϕ0)
∂U
∂x + sin(ϕ0)

∂U
∂y ) = 0,

x ∈ (−L,L), y ∈ (0, C), U(±L, y) = H(±L, y) = U(x, 0) = 0,

U(x,C) = 0, H(x, 0) = H0(x), H(x,C) = γH0(x),

(2.1)

where γ is the constant, H0(x) is the following function:{
H0(x) = 0, x ∈ [−L,−a), x ∈ (a, L],
H0(x) = −I0, x ∈ [−a, a],

where I0 characterized the value of the electric current, I0 = 1. For Equations
(2.1) we use transformation S± = H ± U,U = S+−S−

2 , H = S++S−
2 . Then,

∂2S+

∂x2 + ∂2S+

∂y2 +Ha(cos(ϕ0)
∂S+

∂x + sin(ϕ0)
∂S+

∂y ) = 0,
∂2S−
∂x2 + ∂2S−

∂y2 −Ha(cos(ϕ0)
∂S−
∂x + sin(ϕ0)

∂S−
∂y ) = 0,

x ∈ (−L,L), y ∈ (0, C), S±(±L, y) = 0,

S±(x, 0) = H0(x), S±(x,C) = γH0(x).

(2.2)

Using the transformation S±(x, y) = W±(x, y) exp(− ± α(f0(x, y)) we obtain
following boundary value problem for two Poissons’s type PDEs:

∂2W±
∂x2 + ∂2W±

∂y2 − α2W± = 0,

x ∈ (−L,L), y ∈ (0, C), W±(±L, y) = 0,

W±(x, 0) = H0(x) exp(±αx cos(ϕ0)),

W±(x,C) = γH0(x) exp(±αf0(x,C)),

(2.3)

where f0(x, y) = x cos(ϕ0)+ y sin(ϕ0), α = Ha/2, Ha = 2aB0

√
σ
η is Hartmann

number, σ, η are electrical conductivity and dynamic viscosity, B0 magnetic
field induction.

When γ = 0, the electric current is applied only by lower couple of electrodes
at y = 0 and not applied by two upper electrodes at y = C. If γ = −1, then
the electric current injected by upper couple of electrodes at y = C flows in
area between electrodes in the identical direction with current from the lower
couple of electrodes at y = 0. If γ = 1, the electric current injected by upper
couple of electrodes flows in area between electrodes in direction opposite to
the current from lower electrodes (see Figures 1–3).

3 The problem solution

For problem (2.3) solution we use Fourier method.

Math. Model. Anal., 29(3):426–441, 2024.
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Figure 1. Electric current vectors
Jx, Jy by Ha = 1 from γ = 0.
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Figure 2. Electric current vectors
Jx, Jy by Ha = 1 from γ = −1.
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Figure 3. Electric current vectors
Jx, Jy by Ha = 1 from γ = 1.

3.1 Fourier method for Equation 2.3

The Fourier series for function f(x), x ∈ [−L,L], f(−L)=f(L)=0 is in following
form [1,24]:

f(x) =

∞∑
n=1

anXn(x), an =
1

L

∫ L

−L

Xn(x)f(x)dx,

where Xn = sin(λn(x+ L)), λn = nπ
2L ,

d2Xn(x)
dx2 = −λ2

nXn(x). Using Fourier se-
ries for functions W±(x, y) from(2.3) it follows: W±(x, y)=

∑∞
n=1Xn(x)Y

±
n (y),

where Xn(x), Y
±
n (y) are the separated values.

For homogenous PDEs from(2.3) it follows:

0 =

∞∑
n=1

(−β2
nY

±
n (y) +

d2Y ±
n (y)

dy2
)Xn(x), βn =

√
α2 + λ2

n.

The soluton of equation −β2
nY

±
n +

d2Y ±
n (y)
dy2 = 0 is given by

Y ±
n (y) = C±

n sinh(βny) +B±
n cosh(βny),

where C±
n , B±

n are arbitrary constants. From boundary condition by y = 0 it
follows :

H0(x) exp(±a6x) =

∞∑
n=1

Xn(x)B
±
n ,
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and

B±
n =

1

L

∫ L

−L

H0(x) exp(±a6x)Xn(x)dx

=− I0
L(λ2

n + a26)
(exp(±a6a)(±a3,n − a4,n)− exp(−± a6a)(±a1,n − a2,n)),

where

a6 = α cos(ϕ0), a1,n = a6 sin(λn(L− a)), a3,n = a6 sin(λn(L+ a)),

a2,n = λn cos(λn(L− a)), a4,n = λn cos(λn(L+ a)).

We use following formulas [1]:∫
exp(±a6t) sin(λnt)dt=

exp(±a6t)

a26 + λ2
n

(±a6 sin(λnt)−λn cos(λnt)), t∈[−L,L]∫
exp(±a6t) sinh(λnt)dt =

exp(±a6t)

a26 − λ2
n

(±a6 sinh(λnt)− λn cosh(λnt)).

From boundary condition by y = C follows:

γH0(x) exp(±αf0(x,C)) =

∞∑
n=1

Xn(x)Y
±
n (C)

and C±
n sinh(βnC) +B±

n cosh(βnC) = γ exp(±a5)B
±
n , C±

n = B±
n (γ exp(±a5)−

cosh(βnC))/ sinh(βnC), a5 = αC sin(ϕ0). Thus we have

Y ±
n (y) =

B±
n

sinh(βnC)
F±
n (y),

where F±
n (y) = sinh(βn(C − y)) + γ exp(±a5) sinh(βny).

3.2 The solution of azymuthal velocity U = U(x, y) and induced
magnetic field H = H(x, y)

From Equations (2.1)–(2.2) it follows

U(x, y) =
1

2
(W+(x, y) exp(−α(f0(x, y))−W−(x, y) exp(α(f0(x, y))),

H(x, y) =
1

2
(W+(x, y) exp(−α(f0(x, y)) +W−(x, y) exp(α(f0(x, y))).

Using Fourier series for functions W±(x, y) we obtain

U(x, y)=− I0
2L

∞∑
n=1

Xn

sinh(βnC)(λ2
n+a26)

(
F+
n (y)(exp(−A2,n(x, y))(a3,n−a4,n)

− exp(−A1,n(x, y))(a1,n − a2,n))

− F−
n (y)(exp(A2,n(x, y))(−a3,n − a4,n)− exp(A1,n(x, y))(−a1,n − a2,n))

)
,

Math. Model. Anal., 29(3):426–441, 2024.
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where A1,n(x, y)=a6(x+a)+b1y,A2,n(x, y)=a6(x−a)+b1y, b1=α sin(ϕ0).
Therefore,

U(x, y) =
I0
L

∞∑
n=1

s2,n(x)

s1,n
(c1,n(y)c0,n(x, y) + γc2,n(y)c3,n(x, y)),

where

c0,n(x, y) = −a3,n cosh(A2,n(x, y))− a4,n sinh(A2,n(x, y))

+ a1,n cosh(A1,n(x, y)) + a2,n sinh(A1,n(x, y)),

c3,n(x, y) = −a3,n cosh(A2,n(x, y)− a5)− a4,n sinh(A2,n(x, y)− a5)

+ a1,n cosh(A1,n(x, y)− a5) + a2,n sinh(A1,n(x, y)− a5),

c1,n(y) = sinh(βn(C − y)), c2,n(y) = sinh(βny),

s1,n = sin(βnC)(λ2
n + a26), s2,n(x) = sin(λn(x+ L)).

Similarly, we obtain

H(x, y) =
I0
L

∞∑
n=1

s2,n(x)

s1,n
(c1,n(y)c4,n(x, y) + γc2,n(y)c5,n(x, y)),

where

c4,n(x, y) = a3,n sinh(A2,n(x, y)) + a4,n cosh(A2,n(x, y))

− a1,n sinh(A1,n(x, y))− a2,n cosh(A1,n(x, y)),

c5,n(x, y) = a3,n sinh(A2,n(x, y)− a5) + a4,n cosh(A2,n(x, y)− a5)

− a1,n sinh(A1,n(x, y)− a5)− a2,n cosh(A1,n(x, y)− a5).

3.3 The solution of hydrodynamic flow rate Uq and magnetic flow
rate Hq

Similarly, we can obtain the analytical expressions for hydrodynamic flow rate

Uq =
∫ L

−L

∫ C

0
U(x, y)dxdy, magnetic flow rate Hq =

∫ L

−L

∫ C

0
H(x, y)dxdy. For

hydrodynamic flow rate Uq we use the expression:

Uq =
4

L
(

N∑
i=1

(−1)i(L4,i − L5,i)(1− γ)),

where

L4,i = L1,i b3,i b4,i(a6 sin(aL1,i) cosh(a a6)− L1,i cos(L1,ia) sinh(a a6));

L5,i = L2,i b8,i b9,i(a6 cos(aL2,i) sinh(a6 a) + L2,i sin(L2,ia) cosh(a6 a));

b3,i = b1 − b2,i sinh(a5)/ sinh(Cb2,i); b4,i =
sinh(La6)

(L2
1,i + a26)

3
; L1,i =

iπ

L
;

b2,i =
√
α2 + L2

1,i; L2,i = (2i− 1)π/(2L); lb7,i =
√
α2 + L2

2,i;

b8,i = b1 − b7,i sinh(b1C)/ sinh(Cb7,i); b9,i =
cosh(a6L)

(L2
2,i + a26)

3
.
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For magnetic flow rate Hq we obtain:

Hq =
4

L
(

N∑
i=1

(−1)i (−L4,i + L5,i)(1 + γ)).

We use following formulas [1]:∫
sinh(at+ b) sinh(ct+ d)dt =

0.5

a+ c
sinh((a+ c)t+ b+ d)

− 0.5

a− c
sinh((a− c)t+ b− d),

∫
sinh(at+ b) cosh(ct+ d)dt

=
0.5

a+ c
cosh((a+ c)t+ b+ d) +

0.5

a− c
cosh((a− c)t+ b− d),∫

cosh(at+ b) cosh(ct+ d)dt =
0.5

a+ c
sinh((a+ c)t+ b+ d)

+
0.5

a− c
sinh((a− c)t+ b− d),

∫
cosh(at+ b) sin(ct+ d)dt

=
1

a2 + c2
(a sin(ct+ d) sinh(at+ b)− c cosh(at+ b) cos(ct+ b)),∫

sinh(at+ b) sin(ct+ d)dt =
1

a2 + c2
(a sin(ct+ d) cosh(at+ b)

− c sinh(at+ b) cos(ct+ b)).

3.4 The solution of electric current densities Jx, Jy

Using the electric current densities Jx = ∂H
∂y , Jy = −∂H

∂x , we obtain(∂A1(x,y)
∂x = ∂A2(x,y)

∂x = a6,
∂A1(x,y)

∂y = ∂A2(x,y)
∂y = b1

)
:

Jy(x, y) = −I0
L

∞∑
n=1

(s3,n(x)
s1,n

(
c1,n(y)c4,n(x, y) + γc2,n(y)c5,n(x, y)

)
+

s2,n(x)

s1,n
(c1,n(y)c6,n(x, y) + γc2,n(y)c7,n(x, y))

)
,

where

s3,n(x)=λn cos(λn(x+ L)), c6,n(x, y)=
∂c4,n(x, y)

∂x
=a6(a3,n cosh(A2,n(x, y))

+ a4,n sinh(A2,n(x, y))− a1,n cosh(A1,n(x, y))− a2,n sinh(A1,n(x, y))),

c7,n(x, y)=
∂c5,n(x, y)

∂x
=a6(a3,n cosh(A2,n(x, y)−a5)+a4,n sinh(A2,n(x, y)−a5)

− a1,n cosh(A1,n(x, y)− a5)− a2,n sinh(A1,n(x, y)− a5)).

Similarly,

Jx(x, y) =
I0
L

∞∑
n=1

s2,n(x)

s1,n
(d1,n(y)c4,n(x, y) + γd2,n(y)c5,n(x, y)

+ c1,n(y)c8,n(x, y) + γc2,n(y)c9,n(x, y)),

Math. Model. Anal., 29(3):426–441, 2024.
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where

d1,n(y) = −βncosh(βn(C − y)), d2,n(y) = βncosh(βny),

c8,n(x, y)=
∂c4,n(x, y)

∂y
=b1(a3,n cosh(A2,n(x, y)) + a4,n sinh(A2,n(x, y))

− a1,n cosh(A1,n(x, y))− a2,n sinh(A1,n(x, y))),

c9,n(x, y)=
∂c5,n(x, y)

∂y
=b1(a3,n cosh(A2,n(x, y)−a5)+a4,n sinh(A2,n(x, y)

− a5)− a1,n cosh(A1,n(x, y)− a5)− a2,n sinh(A1,n(x, y)− a5)).

4 Some numerical results

We use following parameters [18]: N = 240, L = 3.2, C = 4.8, a = 1, I0 = 1,
γ = 0; 1;−1, Ha = [1; 10; 30; 100] for ϕ0 = π/2 and Ha = [1; 4; 8; 10] for
ϕ0 = π/4, ϕ0 = 0. N is the number of terms of the Fourier series with maximal
absolute errors: 6.10−19 (Ha = 1) 2.10−18 (Ha = 100).

The dimensionless values of U,H, Jy, Jx are represented for fixed x = 0
depend on y and y = 1.2 and y = 3.6 depend on x, all values are depending on
Ha. Maximal value of flow rate Uq for Ha = 100, ϕ0 = π/2: 4.780(γ = 0),
9.560(γ = −1), 0(γ = 1); minimal value of magnetic flow rate:
Hq = −4.760 (γ = 0),−9.560(γ = 1), 0(γ = −1).

The values corresponding for ϕ0 = π/4, Ha = 10 are the following:
Uq = 3.068(γ = 0), 6.136(γ = −1), 0(γ = 1), Hq = −3.068(γ = 0),
−6.136(γ = 1), 0(γ = −1). If ϕ0 = 0, then Uq = Hq = 0.

4.1 A transverse uniform magnetic field ϕ0 = π/2

For γ = 0;−1 the velocity profiles shown in Figures 4–5 and the velocity distri-
bution in Figure 6 demonstrate a flow concentration in area between electrodes
with increasing the Hartmann number.
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Figure 4. Velocity profiles U(0, y)
depends on Ha for γ = −1.
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Figure 5. Velocity profiles U(0, y)
depends on Ha for γ = 0.

With growing Ha, the flow gets narrower and tends to be equal in width to
the distance between the electrodes. For γ = −1, the flow rapidly homogenizes
over the field with an increase in the Hartmann number (Figure 4). In this
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Figure 6. Velocity U distribution for Ha = 100, γ = −1.

case, one can clearly see a decrease in the thickness of the Hartmann layers
(proportional to Ha−1) with increasing the field.
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Figure 7. Isolines of velocity by
Ha = 1 for γ = −1.
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Figure 8. Levels of electric current by
Ha = 10 for γ = 0.
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Figure 9. Levels of electric current by
Ha = 10 for γ = −1.
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Figure 10. Isolines of velocity by
Ha = 10 for γ = −1.

The isolines of velocity and levels of electric current in the cross section
of the duct shown in Figures 7–10 and current density Jx levels (Figure 11)
demonstrate the concentration of the flow in the lower and upper half of the
duct, where the electrodes are located and non-uniform distribution of the
electric current along the field.

For γ = 1, the velocity profiles shown in Figure 12 indicate a decrease
in velocity in the central region of the flow with an increase in Ha. We can
definitely say that at the height y = C/2 and on the channel walls y = 0, y = C
the velocity is equal to zero. However, in the regions 0 < y < C/2 and C/2 <
y < C at Ha = 100, the velocities have a small but non-zero value and are
oppositely directed.
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Figure 11. Levels of electric current
density Jx by Ha = 1 for γ = −1.
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Figure 12. Velocity profiles U(0, y)
depends on Ha for γ = 1.

Velocity surfaces (distribution ) at Ha = 100 in the section (x, y) we can
see in Figure 13, magnetic field distribution in Figure 14 and the isolines of
velocity and levels of electric current for Ha = 10 in Figures 15,16.
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Figure 15. Levels of electric current by
Ha = 10 for γ = 1.
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Figure 16. Isolines of velocity by
Ha = 10 for γ = 1.

The levels of electric current density Jy by Ha = 1 for γ = 1;−1 are shown
in Figures 17–18.

4.2 An oblique transverse uniform magnetic field ϕ0 = π/4

At γ = 0, the velocity profiles depend on Ha deformed by an inclined magnetic
field is observed (Figure 19), where with an increase in Ha numbers if in the
lower part of the section the velocity increases monotonically, then in the upper
part of the section the velocity decreases.
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Figure 17. Levels of electric current
density Jy by Ha = 1 for γ = 1.
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depends on Ha for γ = 0.
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Figure 20. Levels of electric current by
Ha = 8 for γ = 1.

For Ha = 8 (different γ) two oblique flows arise, they are shown in Fig-
ures 21–23, the corresponding distribution of electric currents is shown in Fig-
ure 20.
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Figure 21. Isolines of velocity by
Ha = 8 for γ = 0.
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Figure 22. Isolines of velocity by
Ha = 8 for γ = 1.

The velocity isolines shown in Figure 21 for γ = 0 indicate that the flow
tends to orient itself along the magnetic field lines due to the action of the
asymmetric distribution of the Lorentz forces. In this case, a weak reverse flow
is observed on the left.

The velocity isolines shown in Figure 22 for γ = 1 indicate that two fields
of oppositely directed velocities over cross section demonstrate a turn and an
orientation of flows along the magnetic field lines.

A transverse shear layer appears between the flows, stretched along the lines
of the magnetic field in thickness proportional to 1/Ha0.5 [9].

The velocity isolines shown in Figure 23 for γ = −1 demonstrate two max-
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Figure 23. Isolines of velocity by
Ha = 8 for γ = −1.

imal values of velocity in cross section. The distributions of the components
Jx and Jy are fully consistent with behaviour of the induced magnetic fields
along the x− and y− coordinates displayed in Figure 20 since their values are
defined by Jx = ∂H

∂y , Jy = −∂H
∂x .

We observe a structure consisting of two flows deformed by an inclined
magnetic field. With an appropriate levels of electric currents density Jy in
Figures 24–25 for Ha = 1 is observed, tending to be parallel to the magnetic
field.
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Figure 24. Levels of electric current
density Jy by Ha = 1 for γ = 0.
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Figure 25. Levels of electric current
density Jy by Ha = 1 for γ = −1.
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Figure 26. Levels of electric current by
Ha = 4 for γ = 0.
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Figure 27. Isolines of velocity by
Ha = 4 for γ = 0.

4.3 An uniform magnetic field is parallel to the walls ϕ0 = 0

At γ = 0 for Ha = 4 two flows appear on the left and on the right are observed
(Figure 27) (for γ = 1, Ha = 1, see Figure 28).
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The distribution of electric currents, shown in Figure 26, corresponds to
these flows, since the current components Jy, interacting with field, have ac-
cordant direction in the channel section on the left and on the right.
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Figure 28. Isolines of velocity by
Ha = 1 for γ = 1.
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Figure 29. Isolines of velocity by
Ha = 1 for γ = −1.
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Figure 30. Isolines of velocity by
Ha = 4 for γ = −1.
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Figure 31. Levels of electric current by
Ha = 1 for γ = −1.

At γ = −1 four flows are realized (Figures 27, 29, 30) corresponding to the
electric current distribution shown in Figure 31. At γ = 1 in Figure 32 we can
see the levels of electric current density Jx by Ha = 1.
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Figure 32. Levels of electric current
density Jx by Ha = 1 for γ = 1.

5 Conclusions

1. We have obtained analytical solutions and computed the plane free shear
flows of conducting fluid in a rectangular duct.

Math. Model. Anal., 29(3):426–441, 2024.
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2. The differential problem is solved analytically using Fourier method and
numerically using Matlab.

3. We investigated steady flows for three types of the current injection
depending on a parameter γ and on magnetic field directions at an angle ϕ0.

4. In the first case, by one couple of the linear electrodes, γ = 0, in the
second case, by two couples of electrodes with electric currents in areas between
electrodes in the same direction γ = −1 and in the third case, by two couples
of electrodes with currents in areas between electrodes in opposite directions
γ = 1.

5. The results of the numerical experiments can give some new physical
conclusions about the MHD flow, generated as a result of the interaction of the
electric current injected into the liquid.
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