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Abstract. In this paper, we construct explicit second derivative general linear meth-
ods (SGLMs) with quadratic stability and a large region of absolute stability for the
numerical solution of non-stiff ODEs. The methods are constructed in two different
cases: SGLMs with p = q = r = s and SGLMs with p = q and r = s = 2 in which
p, q, r and s are respectively the order, stage order, the number of external stages
and the number of internal stages. Examples of the methods up to order five are
given. The efficiency of the constructed methods is illustrated by applying them to
some well-known non-stiff problems and comparing the obtained results with those
of general linear methods of the same order and stage order.
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1 Introduction

Explicit numerical integrators are usually utilized in dealing with non-stiff or
mildly stiff systems of ordinary differential equations (ODEs) such as Hamil-
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tonian problems and the systems resulting from discretization of the equations
coming from systems of hyperbolic conservation laws. These integrators are
straightforward to implement and sufficiently accurate if the stepsizes are small
enough.

One of the directions to construct methods with high order and extensive
absolute stability region is using the higher derivatives of the solution into the
integration formulas. Many efficient methods incorporating the second deriva-
tive and even higher derivatives terms of the solution have been already intro-
duced in different classes; for instance, second derivative of extended backward
differentiation formulas (SDEBDFs) by Cash [9], second derivative of multistep
methods (SDMMs) by Chakravarti and Kamel [10], Enright [12] and Gupta [16],
two-derivative Runge-Kutta (TDRK) methods by Chan and Tsai [11, 26] and
Fang et al. [14], three-derivative Runge-Kutta (ThDRK) methods by Turaci
and Öziş [27] and high order multiderivative methods by Gottlieb et al. [15],
Schütz et al. [23] and Seal et al. [24].

In this paper, we are going to construct the explicit second derivative gen-
eral linear methods (SGLMs) up to order five with a large region of absolute
stability. The class of SGLMs for the numerical solution of the autonomous
system of ODEs with initial values{

y′(t) = f
(
y(t)

)
, t ∈ [t0, t],

y(t0) = y0,
(1.1)

in which f : Rm → Rm, y : R → Rm, with m as the dimension of the system,
is an extension of the class of general linear methods (GLMs) [5,6,19] incorpo-
rating the second derivative of the solution g(y(t)) := y′′(t) = fy(y)f(y) into
the formula. SGLMs which have been first introduced by Butcher and Hojjati
in [7] and studied more by Abdi and Hojjati, for instance, in [1,2,25], are char-
acterized by four integers (p, q, r, s) where p is the order, q is the stage order,
r is the number of external stages, and s is the number of internal stages. Let

c = [c1 c2 · · · cs]
T be the abscissa vector and

[
Y

[n]
i

]s
i=1

be an approximation

of order q to the vector y(xn−1 + ch) :=
[
y(xn−1 + cih)

]s
i=1

, and the vectors

F (Y [n]) :=
[
f
(
Y

[n]
i

)]s
i=1

and G(Y [n]) :=
[
g
(
Y

[n]
i

)]s
i=1

indicate the stage first
and second derivative values. An s-stage/r-value SGLM, with the stepsize h
and the rm-dimensional vectors y[n−1] and y[n] as the input and output vectors,
for the numerical solution of (1.1) is given by

Y [n] = h(A⊗ Im)F
(
Y [n]

)
+ h2(A⊗ Im)G

(
Y [n]

)
+ (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)F
(
Y [n]

)
+ h2(B ⊗ Im)G

(
Y [n]

)
+ (V ⊗ Im)y[n−1],

(1.2)

where n = 1, 2, . . . , N , Nh = t− t0, Im is the identity matrix of dimension m,
and ⊗ is the Kronecker product of two matrices. The coefficients matrices of
the method (1.2) given by

A, A ∈ Rs×s, U ∈ Rs×r, B, B ∈ Rr×s, V ∈ Rr×r,
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are usually represented as a partitioned (s+ r)× (2s+ r) matrix[
A A U

B B V

]
.

An SGLM with the input vector satisfying

y[n−1] = (W ⊗ Im) z(xn−1, h) +O(hp+1),

where z(t, h) is the Nordsieck vector given by

z(t, h) :=


y(t)

hy′(t)
...

hpy(p)(t)

 ,

and W := [αij ] ∈ Rr×(p+1) is a real matrix containing the parameters of the
method, has order p and stage order q when its internal and external stage
values satisfy

Y [n] = y(xn−1 + ch) +O(hq+1),

and
y[n] = (W ⊗ Im) z(xn, h) +O(hp+1).

The paper is organized as follows. A brief review of SGLMs is presented in
Section 2. Construction of quadratically stable explicit SGLMs are discussed
in Sections 3 and 4 in two different classes: methods with p = q = r = s and
two-stage/two-value methods with p = q. Examples of such methods are given
up to order five with small error constants and a large absolute stability region
resulted from minimizing the objective function for the negative area of the
intersection of the absolute stability region with the negative half plane. By
giving a suitable starting procedures for the proposed methods, some numerical
experiments are given in Section 5 illustrating the efficiency of the methods
and verifying the theoretical order of convergence. Moreover, the results are
compared with those of quadratically stable explicit GLMs presented in [4].
Finally, the paper is closed in Section 6 by concluding remarks and giving
ideas for future work.

2 A brief review of SGLMs

In this section, we review some results on SGLMs that have been already
studied and developed in previous works.

Abdi and Hojjati investigated the main features of these methods, such as
consistency, stability, and convergency. For more details, we refer the reader
to review the references in the papers [1, 2, 25]. Some types of these methods
depending on the problems to be solved have been successfully constructed
and implemented in a variety of ways. The order and stage order conditions
for SGLMs with the input and output vectors approximating the Nordsieck
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vector, methods with the matrix W = Ir, and RKS property were obtained by
Butcher and Hojjati [7] for the case p = q. The order and stage order conditions
of SGLMs of order p and stage order q in general form, rather than Nordsieck
form, for the case q = p are given by (cf. [2, 25])

exp(cz) = zA exp(cz) + z2A exp(cz) + UWZ +O(zp+1), (2.1)

exp(z)WZ = zB exp(cz) + z2B exp(cz) + VWZ +O(zp+1), (2.2)

in which exp(cz) =
[
exp(c1z) exp(c2z) · · · exp(csz)

]
and Z =

[
1 z · · · zp

]
. In

the case of r = s and U = Is, the matrix W is uniquely determined by (2.1) in
terms of the coefficients of the method as (cf. [2, 25])

W = C −ACK −ACK2, (2.3)

where C =
(
Cij

)
∈ Rs×(p+1) is the scaled Vandermonde matrix with compo-

nents
Cij = cj−1

i /(j − 1)!, 1 ≤ i ≤ s, 1 ≤ j ≤ p+ 1,

and K ∈ R(p+1)×(p+1) is the shifting matrix defined by K =
[
0 e1 · · · ep

]
with ej as the jth unit vector.

The stability behavior of SGLMs with respect to Dahlquist linear test prob-
lem y′ = ξy, with ξ ∈ C, is governed by the stability matrix [7]

M(z) = V + z(B + zB)(Is − zA− z2A)−1U, (2.4)

with z = hξ, and therefore the stability function p(w, z) defined by

p(w, z)/det(Is − zA− z2A) = det
(
wIr −M(z)

)
,

which is a polynomial of degree r with respect to w whose coefficients are
polynomials of degree at most 2s with respect to z. Moreover, the region A of
absolute stability (1.2) is defined by

A = {z ∈ C : |wi(z)| < 1, i = 1, 2, . . . , r},

where wi(z), i = 1, 2, . . . , r are the roots of p(w, z). As the complexity of
the stability function p(w, z) dramatically increases as the order is increased,
it would be desirable to construct methods with the stability function in the
form

p(w, z) = wr−1
(
pr(z)w − pr−1(z)

)
, (2.5)

or in the form

p(w, z) = wr−2
(
pr(z)w

2 − pr−1(z)w + pr−2(z)
)
, (2.6)

with pr(z) := det(Is − zA − z2A). An SGLM is said to possess Runge–Kutta
stability (RKS) or quadratic stability (QS) property if its stability function is
respectively in the form (2.5) or (2.6). Indeed, the conditions for methods to
have RKS or QS property respectively are

p0(z) ≡ p1(z) ≡ · · · ≡ pr−2(z) ≡ 0, p0(z) ≡ p1(z) ≡ · · · ≡ pr−3(z) ≡ 0. (2.7)
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Abdi and Hojjati introduced second derivative diagonally implicit multi-
stage integration methods (SDIMSIMs) as a new subclass of SGLMs and di-
vided them into four types together with two order barriers for two types of
parallel methods with RKS property. For more details, the reader can track the
references in the papers [2,25]. Also, the order barriers for two types of sequen-
tial SGLMs with RKS properties were studied and obtained by these authors;
more details can be found by reviewing the references in the papers [1, 2, 25].
The order conditions for SDIMSIMs were obtained for the case of p = q = r = s,
U = Is and V e = e with e as the all-ones s-dimensional vector, as [2]

B = B0 −AB1 −AB2 − V B3 − (B − V A)B4 + V A, (2.8)

where the (i, j) elements of B0, B1, B2, B3, and B4 are respectively given by∫ 1+ci
0

Φj(x)dx

Φj(cj)
,

Φj(1 + ci)dx

Φj(cj)
,

Φ′
j(1 + ci)dx

Φj(cj)
,

∫ ci
0

Φj(x)dx

Φj(cj)
,

Φ′
j(ci)dx

Φj(cj)
,

with

Φi(x) =

s∏
j=1,j ̸=i

(x− cj), i = 1, 2, . . . , s.

Some examples of such methods with RKS property for all four types with
p = q = r = s ≤ 4 were constructed in [2]. Due to impossibility of solving RKS
property conditions in the construction of SDIMSIMs of high orders by symbolic
manipulation packages, some variants of the Fourier series approach were used
to construct SDIMSIMs with RKS property with p = q = r = s ≥ 5 [25].

Although, it is desirable to construct SGLMs with RKS property, due to
requiring to solve large systems of polynomial-equations of high degree for
large values of r and s parameters, it is complicated task. To made easier to
achieve RKS property, in [13], the authors introduced a special case of SGLMs
as A − A − V methods. One approach to construct the methods with high
order is to relax the concept of RKS property to the concept of QS property.
Such implicit methods have been discussed by Abdi [1] and Movahedinejad et
al. [21].

The implementation issues of SGLMs including the starting procedures,
stage predictors, local error estimation, and changing stepsize are studied in
[22]. Moreover, practical implementation of SGLMs in a VS environment were
studied (see reference no. 5 in the paper [25]) by developing the Matlab
code, SGLM4, which outperforms the code ode15s from Matlab ODE suite on
systems whose Jacobian has eigenvalues which are close to the imaginary axis.

3 Construction of explicit SGLMs with p = q = r = s
and QS property

In this section, we construct explicit SGLMs with p = q = r = s up to order
five with QS property. In these methods A = [aij ]

s
i,j=1 and A = [aij ]

s
i,j=1 are

strictly lower triangular matrices. Here, we consider U = Ir, B = V A, and
V = evT , with vT = [1− ν v1 v2 · · · vr−1] and ν =

∑r−1
i=1 vi. This form

Math. Model. Anal., 29(4):621–640, 2024.
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for the matrix V guarantees the zero-stability of the methods. The matrix B
is computed by (2.8) as an equivalence relation for the order conditions. In
the construction of the methods, we use “C–condition” meaning that the error
constant of the proposed methods are less than or equal to a specific value.
To do this, we need to derive a formula for the error constant of the methods.
Following is a theorem and a remark that can lead to such a formula. To state
the theorem, let us introduce the vector ŷ[n] := (W ⊗ Im) z(xn, h).

Theorem 1. For the SGLM (1.2) of order p and stage order q = p with V =
evT , we have

ŷ[n] = M(z)ŷ[n−1] + φpz
p+1 +O(zp+2), (3.1)

where M(z) is defined by (2.4) and φp is given by

φp =
Bcp

p!
+

Bcp−1

(p− 1)!
−WEp+1,

with Ep+1 = [1/(p+ 1)! 1/p! · · · 1/1!]T .

Proof. For the method (1.2) of order p and stage order q = p applied to the
test problem y′ = ξy, with ξ ∈ C, we have

y(xn−1 + ch) = (Is − zA− z2A)−1Uŷ[n−1] +O(zp+1),

and also using of Taylor series we get

ŷ[n] =(zB + z2B)y(xn−1 + ch) + V ŷ[n−1]

+
(Bcp

p!
+

Bcp−1

(p− 1)!
−WEp+1

)
zp+1 +O(zp+2),

with cj as the component-wise powers of abscissa vector c. Substituting the
relation for y(xn−1 + ch) into the last one, we find

ŷ[n] = M(z)ŷ[n−1] +
(Bcp

p!
+

Bcp−1

(p− 1)!
−WEp+1

)
zp+1 +O(zp+2),

which completes the proof. ⊓⊔

Remark 1. The error in the performing the steps of the method (1.2) with a
rank–one matrix V in the form V = evT is principally propagated through the
quantity (vT ⊗ Im)y[n−1]. Therefore, it is more important to find a relation for
(vT ⊗ Im)ŷ[n] instead of ŷ[n]. Multiplying (3.1) on the left by vT gives

vT ŷ[n] = vTM(z)ŷ[n−1] + vTφpz
p+1 +O(zp+2).

Here, the quantity vTφp is called the error constant of the method.

After solving the C–condition and the conditions for QS property for some
parameters in the matrices A, A, and V , a number of coefficients of the method
remain as the free parameters which are used to construct methods with large
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absolute stability regions. To do this, defining an objective function for the neg-
ative area of the intersection of the absolute stability region with C− denoted
by −area, we solve the minimization problem

min − area, (3.2)

using the subroutines fminsearch or fmincon in Matlab. Since every method
has a symmetric region of absolute stability with respect to the real axis, the
integral in polar coordinates can be used to calculate the area of its intersection
with the negative half plane, as

area :=

∫ π/2

0

r2(θ)dθ,

where r = r(θ) stands for the ray that extends from the coordinate origin to
the boundary ∂A of the region of absolute stability A, and θ denotes the angle
formed by the ray and the negative real axis. Following [3], here we use the
composite trapezoidal rule to compute an approximation of this area in the
form

area ≈ ∆θ

(
1

2
r2(θ0) +

N−1∑
k=1

r2(θk) +
1

2
r2(θN )

)
,

where N is a large enough positive integer and θk = k∆θ, k = 0, 1, . . . , N ,
N∆θ = π

2 . Also, to compute the rays rk := r(θk) corresponds to the point
on the boundary of absolute stability region A, we use the bisection method
applied to the equation

p(w,−rke
iθk) = 0,

where |w| = 1 and i is the imaginary unit. In the case of using fmincon

command, we use the nonlinear inequality constraint Cp+1 ≤ C⋆
p+1 in which

C⋆
p+1 is the error constant of GLM with inherent QS (IQS) property of order

p = q = s = r − 1, denoted by GLMp, constructed in [4]. The constructed
methods of order p in this section are denoted by SGLMp.

3.1 Construction of order two methods

In this subsection, we construct methods of order p = q = 2 and the abscissa

vector c =
[
0 1

]T
with the error constant C3 = 10−2. Imposing the C–

condition for the parameter v1, yields v1 = 14
75(1−a21)

and we obtain a two–

parameter family of the methods with QS property depending on a21 and a21.
By (2.8) and B = V A, we get

B =

[ 7−14a21

75(a21−1) +
1
2

7
75(a21−1) +

1
2

7−14a21

75(a21−1)+a21
7

75(a21−1)−a21−a21+2

]
, B =

[
− 14a21

75(a21−1) 0

− 14a21

75(a21−1) 0

]
.

To derive a method with a large absolute stability region, solving the minimiza-
tion problem (3.2) by using fminsearch command for two free parameters leads

Math. Model. Anal., 29(4):621–640, 2024.
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to a21 = 0.30322602 and a21 = 0.73766292. The coefficients matrices of this
method are given by

0 0 0 0 1 0
0.30322602 0 0.73766292 0 0 1

0.35998493 0.14422363 0.52488608 0 0.28844725 0.71155275
0.59764786 0.60333469 0.52488608 0 0.28844725 0.71155275

 ,

where the coefficients are rounded to eight decimal places. The area of the
absolute stability region for the constructed SGLM2 is larger than that for
GLM2 (12.39 vs. 9.10) with smaller error constant (0.01 vs. 0.0159). The
absolute stability regions for SGLM2 and GLM2 have been plotted in Figure 1.
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2

GLM
2

Figure 1. The absolute stability regions for SGLM2 and GLM2.

3.2 Construction of order three methods

In this subsection, we construct methods of order p = q = 3 and the abscissa

vector c =
[
0 1

2 1
]T

. Imposing stage order and order conditions (2.3) and
(2.8) and solving the QS conditions (2.7), we obtain a six-parameter family of
the methods of order and stage order three depending on a31, a32, a31, a32, v1,
and v2. Now, solving the minimization problem (3.2) for these free parameters
by using fmincon command with the nonlinear inequality constraint C4 ≤ C⋆

4 ,
we get

a31 =− 0.16271773, a32 = 0.96977667, a31 = −0.11707611,

a32 =0.14104315, v1 = 0.39504596, v2 = 0.63733893.

The coefficients matrices of this method are

A =

 0 0 0
0.66029057 0 0
−0.162718 0.96977667 0

 , A =

 0 0 0
0.117643 0 0
−0.117076 0.141043 0

 ,

V = e ·
[
−0.03238489 0.39504596 0.63733893

]
,

where these coefficients are rounded to eight decimal places. The matrix B is
computed by the formula (2.8) and B = V A. The area of the absolute stability
region for the constructed SGLM3 is larger than that for GLM3 (34.02 vs.
14.61) with smaller error constant (0.00166 vs. −0.016). The absolute stability
regions for SGLM3 and GLM3 have been plotted in Figure 2.
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Figure 2. The absolute stability regions for SGLM3 and GLM3.

3.3 Construction of order four methods

In this subsection, we derive methods of order p = q = 4 and the abscissa vector

c =
[
0 1

3
2
3 1

]T
. We first impose stage order and order conditions (2.3) and

(2.8) and solve the QS conditions (2.7) which results a five-parameter family of
the methods of order and stage order four depending on a32, a21, a41, a42, and
a43. Then, solving the minimization problem (3.2) for these free parameters
by using fmincon command with the nonlinear inequality constraint C5 ≤ C⋆

5 ,
gives

a32 = 0.22767727, a21 = 0.08769797, a41 = 0.21933010,

a42 = 0.05744625, a43 = 0.05563617.

The coefficients matrices of the derived method take the form

A =


0 0 0 0

1.53703704 0 0 0
3.06662395 0.22767727 0 0
3.59736627 −0.07066786 0.46830189 0

 ,

A =


0 0 0 0

0.08769797 0 0 0
0.16252472 0.07907716 0 0
0.21933100 0.05744625 0.05563617 0

 ,

V = e ·
[
−0.02564103 0.15576923 − 0.48461538 1.35448718

]
.

The coefficient matrices B and B are respectively computed by (2.8) and the
formula B = V A. The area of the absolute stability region for the derived
SGLM4 is larger than that for GLM4 (32.91 vs. 18.36) with smaller error
constant (0.0034 vs. −0.011). The absolute stability regions for SGLM4 and
GLM4 have been plotted in Figure 3.

3.4 Construction of order five methods

In this subsection, we are going to construct methods of order p = q = 5

and the abscissa vector c =
[
0 1

4
1
2

3
4 1

]T
. We were not able to produce

the QS conditions by using symbolic manipulation tools (MATHEMATICA or
MAPLE) for these methods that is generally the case for the methods of orders

Math. Model. Anal., 29(4):621–640, 2024.
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−7 −6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Re(z)
Im

(z
)

 

 

SGLM
4

GLM
4

Figure 3. The absolute stability regions for SGLM4 and GLM4.

p ≥ 5. Therefore, another approach to construct such methods is required.
Here, we use the Fourier series approach which has been already introduced
in [8] (see also [19,25]). By using this approach, the coefficients matrices of the
derived method with QS property are

A =


0 0 0 0 0

0.44285749 0 0 0 0
0.25502163 0.31699667 0 0 0
0.95070766 −0.02870187 0.38693336 0 0
−0.17734588 −0.00192383 −0.08825992 0.86107843 0

 ,

A =


0 0 0 0 0

0.03843793 0 0 0 0
0.04868241 0.03247894 0 0 0
0.06281438 −0.04443033 0.05682884 0 0
0.02091070 0.33735117 −0.38762185 0.05996707 0

 ,

V = e ·
[
−0.13481821 0.37627890 − 0.16849319 0.55340489 0.37362761

]
,

and the matrices B and B are respectively computed by (2.8) and the formula
B = V A. The area of the absolute stability region for the derived SGLM5

is larger than that for GLM5 (34.56 vs. 24.84) with smaller error constant
(9.54 × 10−4 vs. −0.0031). The absolute stability regions for SGLM5 and
GLM5 have been plotted in Figure 4.
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Figure 4. The absolute stability regions for SGLM5 and GLM5.
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4 Construction of explicit two-stage SGLMs with p = q

In this section, we construct explicit two-value/two-stage SGLMs with p = q
up to order five. These coefficients matrices of the methods are

[
A A U

B B V

]
=


0 0 0 0 1 0
a21 0 a21 0 0 1

b11 b12 b11 b12 1− v1 v1
b21 b22 b21 b22 1− v1 v1

 .

The stability function of such methods has the form

p(w, z) = w2 − p1(z)w + p0(z),

where p1 and p0 are polynomials of degree at most 4. Indeed, the methods
are automatically quadratically stable. To derive methods, we use the same
approach proposed in Section 3. The constructed methods of order p in this
section are denoted by SGLM2

p.

4.1 Construction of two-stage order two methods

In this subsection, we construct method of order p = q = 2 and the abscissa
vector c = [0 1]T with the error constant C3 = 10−2. Solving stage order and
order conditions (2.1) and (2.2) together with C–condition (3.1), we obtain a
six-parameter family of the methods of order p = q = 2 depending on a21, a21,
b11, b12, b21, and b22. Now, we use these parameters to obtain a method with
a large region of absolute stability which leads to

a21 = 2.16694043, a21 = 0.11179872, b11 = 0.04659473,

b12 = 0.01885751, b21 = −0.34896561, b22 = −0.23192573.

The coefficients of the derived SGLM2
2 are 0 0 0 0 1 0

2.16694043 0 0.11179872 0 0 1

0.95675662 0.33686864 0.04659473 0.0188575 0.748380 0.251620
−0.07778824 0.20447307 −0.34896561 −0.231926 0.748380 0.251620

 .

The area of the absolute stability region of this method is ≈ 19.05 which is
larger than that of SGLM2 and GLM2. The absolute stability regions for these
three methods have been plotted in Figure 5.

4.2 Construction of two-stage order three methods

In this subsection, we construct method of order p = q = 3 and abscissa vector
c = [0 1]T . Solving stage order and order conditions (2.1) and (2.2), we
obtain a five-parameter family of the methods of order p = q = 3 depending
on a21, a21, b12, b22, and v1. Now, solving the minimization problem (3.2) for

Math. Model. Anal., 29(4):621–640, 2024.
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Figure 5. The absolute stability regions for SGLM2, SGLM2
2 and GLM2.

these free parameters by using fmincon command with the nonlinear inequality
constraint C4 ≤ C⋆

4 , we obtain

a21 = 2.10393975, a21 = 0.37764397, b12 = 0.04637007,

b22 = −0.07649131, v1 = 0.15227298.

The coefficients of the constructed SGLM2
3 are 0 0 0 0 1 0

2.1039397 0 0.37764397 0 0 1

0.9782647 0.18983554 0.24516288 0.0463701 0.847727 0.152273
0.1544965 −0.090336 −0.333388 −0.076491 0.847727 0.152273

 ,

The area of the absolute stability region of this method is ≈ 20.68 and its error
constant is C4 = 0.00998. These properties are better than those of GLM3.
The absolute stability regions of the order three methods have been plotted in
Figure 6.
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Figure 6. The absolute stability regions for SGLM3, SGLM2
3 and GLM3.

4.3 Construction of two-stage order four methods

In this subsection, we construct methods of order p = q = 4 and the abscissa
vector c = [0 1]T . Solving stage order and order conditions (2.1) and (2.2), we
obtain a three-parameter family of the methods of order p = q = 4 depending
on a21, a21, and v1. Now, solving the minimization problem (3.2) for these
free parameters by using fmincon command with the nonlinear inequality con-
straint C5 ≤ C⋆

5 , leads to a method with very small absolute stability region;
therefore, we ignore the constraint C5 ≤ C⋆

5 and try to construct method with
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an error constant close to that of GLM4, a large absolute stability region, and
‘nice’ coefficient. By this approach, we get

a21 = −4.65867033, a21 = −0.05147224, v1 = 0.66210402.

The coefficients matrices of the derived SGLM2
4 are 0 0 0 0 1 0

−4.65867033 0 −0.05147224 0 0 1

−2.9155764 0.168948 −0.005922 −0.028157 0.337896 0.6621040
−1.4155764 4.327618 0.5774113 1.4399809 0.337896 0.6621040

 .

The area of the absolute stability region of this method is ≈ 10.77 and its error
constant is C5 = 0.0290. Although the area of the absolute stability region
for this method is smaller than that for GLM4, considering the fact that this
method has only two stages, the scaled-area—computed by dividing the area
by s—corresponding to this method is larger than that of GLM4. The absolute
stability regions of the order four methods have been plotted in Figure 7.
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Figure 7. The absolute stability regions for SGLM4, SGLM2
4 and GLM4.

4.4 Construction of two-stage order five methods

In this subsection, we construct method of order p = q = 5 and the abscissa
vector c = [c1 1]T . Solving stage order and order conditions (2.1) and (2.2),
we obtain a two-parameter family of the methods of order p = q = 5 depending
on c1 and a21. Similar to what has been done in the construction of two-
stage order four methods in the previous subsection, we ignore the constraint
C6 ≤ C⋆

6 and try to construct method with an error constant close to that of
GLMp, a large absolute stability region, and ‘nice’ coefficient. This approach
gives

c1 = 0.17410748, a21 = −7.00000000.

The coefficients matrices of the derived SGLM2
5 are 0 0 0 0 1 0

−7.00000000 0 2.57041942 0 0 1

−7.9240789 0.1136010 2.8891227 0.0269051 −0.125811 1.125811
−9.2810997 9.2965144 2.5414193 −1.612969 −0.125811 1.125811

 .
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Figure 8. The absolute stability regions for SGLM5, SGLM2
5 and GLM5.

The area of the absolute stability region of this method is ≈ 5.09 and its error
constant is C6 = 0.00417. The absolute stability regions of the order five
methods have been plotted in Figure 8.

In Table 1, the error constants and the area of the absolute stability regions
of the methods discussed in the previous and the present section have been
compared.

Table 1. Comparison of the error constants and the area of the absolute stability regions
of the methods.

Order Method Error constant Area

SGLM2 1.00× 10−2 12.39
2 GLM2 1.59× 10−2 9.10

SGLM2
2 1.00× 10−2 19.05

SGLM3 1.66× 10−3 34.02
3 GLM3 −1.60× 10−2 14.61

SGLM2
3 9.98× 10−3 20.68

SGLM4 3.40× 10−3 32.91
4 GLM4 −1.10× 10−2 18.36

SGLM2
4 2.90× 10−2 10.77

SGLM5 9.54× 10−4 34.56
5 GLM5 −3.10× 10−3 24.84

SGLM2
5 4.17× 10−3 5.09

5 Numerical experiment

In this section, we present the results of some numerical experiments to confirm
the theoretical order, accuracy and efficiency of constructed methods in Sec-
tions 3 and 4. Also, we give the number of function evaluations, nfe, in terms
of the global error of these methods and compare them with those of GLMp.
To implement the constructed methods in Sections 3 and 4 of order p ≥ 3, a
suitable starting procedure is required to approximate the initial vector y[0].
We carry out one step of explicit Runge–Kutta methods of orders p⋆ = 3, 4, 5 [6]
which give sufficient output information to obtain a reliable approximation to
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the vector y[0] as the starting procedure. For more details see the references in
the paper [25].

Computational experiments are done by applying the proposed methods to
the following problems:

P1. The nonlinear system of ODEs [20]{
y′1(t) = −

(
4 + ε−1

)
y1(t) + ε−1y42(t), y1(0) = 1,

y′2(t) = y1(t)− y2(t)
(
1 + y32(t)

)
, y2(0) = 1,

with ε = 10−1 and the exact solution is

[y1(t) y2(t)]
T
= [exp(−4t) exp(−t))]T , and t ∈ [0, 2].

P2. The system of equations describing the motion of a rigid body without
external forces [17]

y′1(t) = y2(t)y3(t), y1(0) = 0,

y′2(t) = −y1(t)y3(t), y2(0) = 1,

y′3(t) = −0.51y1(t)y2(t), y3(0) = 1,

and t ∈ [0, 10]. To compute the global error of the methods, we use the
reference solution obtained by solving the problem using the ode45 code
from Matlab with the tolerances Atol = Rtol = 2.22045× 10−14.

P3. The BRUSS problem [18]
∂u

∂t
= A+ u2v − (B + 1)u+ α

∂2u

∂x2
,

∂v

∂t
= Bu− u2v + α

∂2v

∂x2
,

with 0 ≤ x ≤ 1 which using the method of lines for the diffusion terms,
the solution u can be approximated as the solution of the system of ODEs

u′
i = A+ u2

i vi − (B + 1)ui +
α

(∆x)
2 (ui−1 − 2ui + ui+1) ,

v′i = Bui − u2
i vi +

α

(∆x)
2 (vi−1 − 2vi + vi+1) ,

for i = 1, 2 . . . , N . We consider N = 50 which leads to a mildly stiff
problem in a higher dimension 2N = 100. Following [18], we take A = 1,
B = 3, α = 1/50, xi = i/(N + 1) (1 ≤ i ≤ N), ∆x = 1/(N + 1), the
initial values

ui(0) = 1 + sin(2πxi), vi(0) = 3, i = 1, 2, . . . , N,

and periodic boundary conditions

u0 = uN+1 = 1, v0 = vN+1 = 3, t = 10.

Math. Model. Anal., 29(4):621–640, 2024.
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Table 2. Numerical results of the orders two and three methods for the problem P1.

h 2−5 2−6 2−7 2−8 2−9

SGLM2

∥∥eh(t)∥∥ 4.74e-6 1.15e-6 2.82e-7 7.00e-8 1.74e-8

p 2.05 2.02 2.01 2.01

SGLM2
2

∥∥eh(t)∥∥ 4.30e-6 1.09e-6 2.76e-7 6.92e-8 1.73e-8

p 2.05 2.02 2.01 2.01

SGLM3

∥∥eh(t)∥∥ 3.46e-8 3.95e-9 4.67e-10 5.66e-11 6.86e-12

p 3.14 3.08 3.04 3.05

SGLM2
3

∥∥eh(t)∥∥ 2.32e-7 2.93e-8 3.68e-9 4.62e-10 5.78e-11

p 2.98 2.99 2.99 3.00
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Figure 9. Numerical results of the orders four and five methods for the problem P1.
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Figure 10. The global error versus the number of function evaluation of the methods of
order 2 (left) and 3 (right) for the problem P1.
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Figure 11. The global error versus the number of function evaluation of the methods of
order 4 (left) and 5 (right) for the problem P1.
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Figure 12. The global error versus the number of function evaluation of the methods of
order 2 (left) and 3 (right) for the problem P2.

10
4

10
6

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

nfe

E
rr

or

 

 

SGLM
4

SGLM2
4

GLM
4

10
4

10
5

10
−10

10
−9

10
−8

nfe

E
rr

or

 

 

SGLM
5

SGLM2
5

GLM
5

Figure 13. The global error versus the number of function evaluation of the methods of
order 4 (left) and 5 (right) for the problem P2.
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Figure 14. The global error versus the number of function evaluation of the methods of
order 2 (left) and 3 (right) for the problem P3.
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Figure 15. The global error versus the number of function evaluation of the methods of
order 4 (left) and 5 (right) for the problem P3.

The results of the numerical experiments for the problems P1, P2, and P3
have been represented in Table 2 and Figures 9–15. These figures together with
Table 2 demonstrate the efficiency of the methods and beautifully verify that
the global error decreases with the theoretical order of the proposed methods.
In Table 2, the numerical estimate to the order of convergence, p, is computed
by the formula

p = log2
(∥∥eh(t)∥∥ / ∥∥eh/2(t)∥∥) ,

in which eh(t) stands for the global error of the method with the stepsize
h. Moreover, in Figures 10–15, the global errors of the SGLMp and SGLM2

p,
p = 2, 3, 4, 5, have been plotted in terms of the required number of function
evaluation, nfe. These results have been compared with those for GLMp which
illustrate the constructed methods are more cost-effective.

6 Conclusions

We described the construction of the quadratically stable explicit SGLMs of
order p and stage order q = p in two classes: methods with r = s = p, and with
r = s = 2. We derived the methods up to order five with a large stability regions
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and small error constants. As it was illustrated by the numerical experiments,
the proposed methods are capable in solving non-stiff and mildly stiff ODEs;
moreover they are more efficient and cost-effective than the quadratically stable
GLMs of the same order. It is natural to extend the research for variable-
stepsize implementation that it could be future work.
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[25] M. Sharifi, A. Abdi, M. Braś and G. Hojjati. High order second derivative diago-
nally implicit multistage integration methods for ODEs. Mathematical Modelling
and Analysis, 28(1):53–70, 2023. https://doi.org/10.3846/mma.2023.16102.

[26] A.Y.J. Tsai, R.P.K. Chan and S. Wang. Two-derivative Runge–Kutta methods
for PDEs using a novel iscretization approach. Numerical Algorithms, 65(3):687–
703, 2014. https://doi.org/10.1007/s11075-014-9823-2.
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