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1 Introduction and main results

In this paper, our focus is on a class of critical anisotropic Schrödinger-Kirchhoff-
type equations with variable growth conditions. This type of nonlinear par-
tial differential equation describes the behavior of waves in an anisotropic
(direction-dependent) system by combining the Schrödinger equation [22], which
describes the quantum mechanical behavior of particles, and the Kirchhoff
equation [18], which describes the behavior of waves in a medium. This equa-
tion includes variable exponent terms, which allow for a more flexible and
accurate description of the wave behavior in the anisotropic system. This is
especially important in systems that have complex and dynamic properties,
such as materials with varying levels of anisotropy or systems that are subject
to changes in temperature, pressure, or other external factors. And also the
critical nonlinearities in these equations can have important implications for
the behavior of the wave, such as the formation of singularities, the collapse of
the wave, and the generation of shock waves. These behaviors are important
for understanding the behavior of waves in complex media and for predicting
how these media will interact with light, for more details, we refer the reader
to [1, 20, 21, 23]. More precisely, we show the existence of nontrivial solutions
for the following class of equations,

−M
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi

u|pi(x) +
w(x)

pM (x)
|u|pM (x)dx

)(
∆−→p (x)(u) (1.1)

− w(x)|u|pM (x)−2u
)
= |u|p

∗
m(x)−2u+ λf(x, u) in Ω,

u = 0 on ∂Ω, (1.2)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with a Lipschitz boundary ∂Ω,
w ∈ L∞(Ω) satisfies w0 := ess infx∈Ωw(x) > 0, and λ is a positive parameter.
−→p : Ω → RN is a vector function defined as −→p (x) = (p1(x), . . . , pN (x)) , with
each component pi ∈ C+(Ω) satisfying

1 < p−m := inf
x∈Ω

{
pm(x)

}
≤ pm(x) := min

1≤i≤N
{pi(x)} ≤ pi(x) ≤ pM (x)

:= max
1≤i≤N

{pi(x)} ≤ p+M := sup
x∈Ω

{
pM (x)

}
<p∗m(x):=

Npm(x)

N−pm(x)
, for all x∈Ω.

The operator

∆−→p (x)(u) :=

N∑
i=1

∂xi

(
|∂xi

u|pi(x)−2∂xi
u
)

is referred to as the −→p (x)–Laplacian operator, which is a natural extension of
the Laplacian operator when all pi(x) = 2. The functions M : R+ → R+ and
f : Ω × R → R are continuous and satisfy the following conditions:

(HM1
) There exists M0 > 0 such that M(s) ≥ M0 for all s ≥ 0;

(HM2) There exists γ ∈ (
p+
M

p∗−
m
, 1] such that M̂(s) ≥ γM(s)s for all s ≥ 0, where

M̂(s) =
∫ s

0
M(t)dt;
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(H f1) f(x, s) = o(|s|p
+
M−1) as s→ 0, uniformly for x ∈ Ω;

(H f2) There exist a positive continuous function ℓ(x) ∈ (p+M , p
∗−
m ) for all x ∈ Ω

such that

lim
|s|→+∞

f(x, s)

|s|ℓ−−2s
= 0, uniformly for x ∈ Ω;

(H f3) There exists α ∈ (p+M/γ, p
∗−
m ) such that 0 < αF (x, s) ≤ sf(x, s) for all

x ∈ Ω and s ̸= 0, where F (x, s) =
∫ s

0
f(x, t)dt and γ is given by (HM2)

below.

Much interest has been generated in problems involving critical exponents,
since the publication of the celebrated paper by Brezis and Nirenberg [5], which
considers the case pi(.) = 2 for all i ∈ {1, 2, . . . , N}. For further study of
problems with critical exponents, we refer the reader to [2,3,4,6,7,8,10,14,15,
16,17], and the references therein.

Our approach to tackling problem (1.1), inspired by the ideas in [3], is pri-
marily variational in nature, and we employ minimax critical point theorems
as our primary tool. The main challenge we face arises from the absence of

compactness in the embedding W
1,−→p (x)
0 (Ω) ↪→ Lp∗

m(x)(Ω). Consequently, it
becomes unfeasible to directly verify the Palais-Smale condition for the asso-
ciated energy functional. To address this hurdle, we turn to the new version
of the Lions concentration-compactness principle [19], specifically designed for
anisotropic variable exponent Sobolev spaces. This adaptation was introduced
by Chems Eddine et al. in [9], and it plays a crucial role in addressing this
challenge effectively.

So the main result of the paper reads:

Theorem 1. Assume that assumptions (HM1
)–(HM2

) and (hf1)–(H f3) hold.
Then, there exists λ∗ > 0 such that for all λ ≥ λ∗, problem (1.1) has at least
one nontrivial solution.

2 Proof of the main result

We define the energy functional associated with problem (1.1) as

Eλ :W
1,−→p (x)
0 (Ω) → R, given by

Eλ(u) =M̂
(∫

Ω

N∑
i=1

1

pi(x)
|∂xiu|pi(x) +

w(x)

pM (x)
|u|pM (x)dx

)
−
∫
Ω

1

p∗m(x)
|u|p

∗
m(x) dx− λ

∫
Ω

F (x, u) dx,

where W
1,−→p (x)
0 (Ω) represents the anisotropic Sobolev space, and its norm is

given by ∥u∥ =
∑N

i=1 ∥∂xi
u∥Lpi(x)(Ω).

Proposition 1 [see [9]]. The embedding W
1,−→p (x)
0 (Ω) ↪→ Lh(x)(Ω) is continu-

ous for any h(x) ∈ [1, p∗m(x)] such that pm ∈ C log
+ (Ω). Moreover, the embedding

W
1,−→p (x)
0 (Ω) ↪→ Lh(x)(Ω) is compact for any h(x) ∈ [1, p∗m(x)).
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The following Poincaré-type inequality holds:

∥u∥LpM (x)(Ω) ≤ C

N∑
i=1

∥∂xiu∥Lpi(x)(Ω) for all u ∈W
1,−→p (x)
0 (Ω), (2.1)

where C is a positive constant independent of u ∈W
1,−→p (x)
0 (Ω) (see [12, Theo-

rem 2.6]).
Through standard calculus, it can be observed that Eλ is a function in

C1(W
1,−→p (x)
0 (Ω),R) and its Fréchet derivative is expressed as follows:

⟨E′
λ(u), v⟩ =M

(∫
Ω

N∑
i=1

1

pi(x)
|∂xiu|pi(x) +

w(x)

pM (x)
|u|pM (x)dx

)
×
(∫

Ω

N∑
i=1

|∂xiu|pi(x)−2∂xiu∂xiv + w(x)|u|pM (x)−2uv dx
)

−
∫
Ω

|u|p
∗
m(x)−2uv dx− λ

∫
Ω

f(x, u)v dx,

for all u, v ∈ W
1,−→p (x)
0 (Ω). Therefore, the weak solutions of (1.1) coincide

with the critical points of Eλ. Consequently, our focus is on establishing the
existence of these critical points.

To apply variational methods, we present certain results related to the
Palais-Smale compactness condition. It’s important to note that a sequence
{un}n∈N is considered a Palais-Smale sequence of Eλ at the level cλ if both
Eλ(un) → cλ and E′

λ(un) → 0.
Notations: Strong convergence is denoted by →, while weak convergence

is denoted by ⇀. Constants are represented by C, Ci, and C
′
i, which can vary

from one line to another and depend on specific conditions. The symbol δxj

represents the Dirac mass at xj . For any ρ > 0 and x ∈ Ω, B(x, ρ) denotes the
ball with radius ρ centered at x.

In the following, we prove that the functional Eλ exhibits the mountain
pass geometry. This assertion is established in the forthcoming lemmas.

Lemma 1. Under the assumptions (HM1), (H f1) and (H f2), there exist pos-
itive constants r and ρ such that for all u with ∥u∥ = r, it holds that Eλ(u) ≥
ρ > 0.

Proof. First, from assumptions (H f1) and (H f2), for any ε > 0, there exists a
positive constant C(ε) such that the following inequality holds for almost every
x ∈ Ω and all s ∈ R:

|F (x, s)| ≤ ε|s|p
+
M + C(ε)|s|ℓ

−
. (2.2)

Next, by using [13, Theorem 1.3] and Jensen’s inequality on the convex
function q(t) = tp̄m,M for p̃m,M > 1, we obtain that

∥u∥p̄m,M

N p̄m,M−1
=N

(∑N
i=1 ∥u∥Lpi(x)(Ω)

N

)p̄m,M

≤
N∑
i=1

∥u∥p̄m,M

Lpi(x)(Ω)
≤

N∑
i=1

∫
Ω

|u|pi(x)dµi,

(2.3)
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where p̄m,M = p+M if ∥u∥ < 1 and p̄m,M = p−m if ∥u∥ ≥ 1.
Now, consider 0 < ∥u∥ < 1. By using (M1), (2.2), (2.3), and Proposition 1,

we have

Eλ(u) ≥
γM0

p+MN
p+
M−1

∥u∥p
+
M−C ′

1∥u∥p
∗−
m −λεC ′

3
p+
M ∥u∥p

+
M − λC(ε)C ′

4∥u∥ℓ
−

(2.4)

= ∥u∥
[(

γM0

p+MN
p+
M−1

−λεC ′
3
p+
M

)
∥u∥p

+
M−1−C ′

1∥u∥p
∗−
m −1−λC(ε)C ′

4∥u∥ℓ
−−1

]
.

Let ε = γM0/(2λC
′
3p

+
MN

p+
M−1) and define Φ(t) as follows:

Φ(t) =
γM0

2p+MN
p+
M−1

tp
+
M−1 − C ′

1t
p∗−
m −1 − λC(ε)C ′

4t
ℓ−−1.

Since p+M < ℓ− < p∗−m , there exists r > 0 such that maxt≥0 Φ(t) = Φ(r).
Consequently, by (2.4), we deduce the existence of ρ > 0 such that Eλ(u) ≥ ρ
for all ∥u∥ = r. This completes the proof of Lemma 1. ⊓⊔

Lemma 2. Under the assumptions (HM2) and (Hf3), for all λ > 0, there exists

a nonnegative function z ∈ W
1,−→p (x)
0 (Ω), which is independent of λ, such that

∥z∥ > r and Eλ(z) < 0.

Proof. Choose a nonnegative function ϕ0 ∈ C∞
0 (Ω) with ∥ϕ0∥ = 1. By inte-

grating (HM2), we obtain

M̂ (s) ≤ M̂ (s0)s
1
γ /s

1
γ

0 ≤ c0s
1
γ for all s ≥ s0 > 0. (2.5)

By assumption (H f3),
∫
Ω
F (x, tϕ0)dx ≥ 0. So, by using Propisition 1, the

Poincaré inequality (2.1), (2.5), and the following inequality

N∑
i=1

∥∂xi
u∥p

+
M

Lpi(x)(Ω)
≤ c
( N∑

i=1

∥∂xi
u∥Lpi(x)(Ω)

)p+
M

,

with c is a positive constant, we obtain

Eλ(tϕ0) ≤
C ′

p
tp

+
M/γ − tp

∗−
m

p∗+

m

∫
Ω

|ϕ0|p
∗
m(x)dx for all t ≥ t0.

Given that p+M/γ < p∗−m , the lemma is proved by choosing z = t∗ϕ0 with t∗ > 0
large enough. ⊓⊔

In view of Lemmas 1 and 2, we can employ an version of the Mountain
Pass theorem, even without the Palais-Smale condition, to obtain a sequence

{un} ⊂W
1,−→p (x)
0 (Ω) with the properties

Eλ(un) → cλ and E′
λ(un) → 0,

where
cλ = inf

ϕ∈Γ
max
t∈[0,1]

Eλ(ϕ(t)) > 0,

with Γ =
{
ϕ ∈ C([0, 1],W

1,−→p (x)
0 (Ω)) : ϕ(0) = 0, Eλ(ϕ(1)) < 0

}
.
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Lemma 3. Under the assumptions (HM1
)–(HM2

) and (H f1)–(H f3), it holds
that limλ→∞ cλ = 0.

Proof. For a given z as established in Lemma 2, we observe that
limt→+∞Eλ(tz) = −∞, which implies the existence of tλ > 0 such that
Eλ(tλe) = max

t≥0
Eλ(tz). Hence, we have ⟨E′

λ(tλz), tλz⟩ = 0, that is

M
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi

(tλz)|pi(x) +
w(x)

pM (x)
|tλz|pM (x)dx

)(∫
Ω

N∑
i=1

|∂xi(tλz)|pi(x)

+w(x)|tλz|pM (x) dx
)
=

∫
Ω

|tλz|p
∗
m(x) dx+ λ

∫
Ω

f(x, tλz)tλz dx.

Therefore, by using assumption (H f3), Proposition 1, the Poincaré inequality
(2.1), and (2.5), it follows that

C ′∥z∥p
+
M/γt

p+
M/γ

λ ≥ ∥z∥p
∗−
m

Lp
∗−
m (Ω)

t
p∗−
m

λ with t0 < tλ.

Since p+M/γ < p∗−m , {tλ}λ is bounded. Therefore, there exists a sequence
λn → +∞ and δ0 ≥ 0 such that tλn

→ δ0 as n → ∞. Hence, by continuity

of M , we have
{
M
( ∫

Ω

∑N
i=1

1
pi(x)

|∂xi
(tλn

z)|pi(x) + w(x)
pM (x) |tλnz|pM (x)dx

)}
n
is

bounded, and so, there exists C > 0 such that

M
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi

(tλn
z)|pi(x) +

w(x)

pM (x)
|tλn

z|pM (x)dx
)

×
(∫

Ω

N∑
i=1

|∂xi
(tλn

z)|pi(x) + w(x)|tλn
z|pM (x) dx

)
≤ C

for all n ∈ N, which implies that,

λntλn

∫
Ω

f(x, tλn
z)z dx+

∫
Ω

t
p∗
m

λn
|z|p

∗
m(x)dx ≤ C for all n ∈ N.

If δ0 > 0, the inequality mentioned above implies that

λntλn

∫
Ω

f(x, tλnz)z dx+

∫
Ω

t
p∗
m

λn
|z|p

∗
m(x)dx→ +∞ ≤ C, as n→ ∞,

which is impossible, and consequently δ0 = 0. Let ϕ∗(t) = tz for t ∈ [0, 1].
Clearly ϕ∗ ∈ Γ , then, by using assumption (H f3), we have

0 < cλn
≤ max

t∈[0,1]
Eλn

(ϕ∗(t)) = Eλn
(tλn

z)

≤ M̂
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi(tλnz)|pi(x) +

w(x)

pM (x)
|tλnz|pM (x)dx

)
. (2.6)
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Since the function M is continuous and δ0 = 0, we get

lim
n→∞

M̂
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi(tλnz)|pi(x) +

w(x)

pM (x)
|tλnz|pM (x)dx

)
= 0.

So, by relation (2.6), it follows that limn→∞ cλn
= 0. Moreover, by virtue

of assumption (H f3), we can deduce that {cλ}λ forms a monotone sequence.
Consequently, we can establish that limλ→∞ cλ = 0. ⊓⊔

Let S∗ denote the optimal positive constant of the Sobolev embedding

W
1,−→p (x)
0 (Ω) ↪→ Lp∗

m(x)(Ω), which can be expressed as

S∗ := inf
u∈W

1,−→p (x)
0 (Ω)\{0}

∥u∥
∥u∥Lp∗m(x)(Ω)

.

Proof. [Proof of Theorem 1] From Lemmas 1, 2 and 3, we can establish the

existence of a sequence {un}n ⊂ W
1,−→p (x)
0 (Ω) such that Eλ(un) → cλ and

E′
λ(un) → 0, with

cλ ∈
(
0,
( 1
α
− 1

p∗−m

)
min

{
inf
j∈J

(
M

1

p
+
M

0 N1−p+
MS∗

) p∗m(xj)p
+
M

p∗m(xj)−p
+
M ,

inf
j∈J

(
M

1

p
+
M

0 N1−p+
MS∗

) p∗m(xj)p
−
m

p∗m(xj)−p
−
m

})
for λ ≥ λ∗. Consequently, we can find a constant C > 0 such that |Eλ(un)| ≤ C.
Moreover, by the assumption (H f3) and for sufficiently large n, it follows from
the assumptions (HM1) and (HM2) that

C + ∥un∥ ≥ Eλ(un)−
1

α
⟨E′

λ(un), un⟩ ≥ M0

(∫
Ω

[
γ
( N∑

i=1

1

pi(x)
|∂xi

un|pi(x)

+
w(x)

pM (x)
|un|pM (x)

)
− 1

α

( N∑
i=1

|∂xi
un|pi(x) + w(x)|un|pM (x)

)]
dx

)

≥ M0

( γ

p+M
− 1

α

) N∑
i=1

∫
Ω

|∂xi
un|pi(x)dx.

On the other hand, for each n, let us denote by Bn1 and Bn2 the indices sets

Bn1 =
{
i ∈ {1, 2, . . . , N} :

∥∥∂xiun
∥∥
Lpi(x)(Ω)

≤ 1
}
, Bn2 =

{
i ∈ {1, 2, . . . , N} :∥∥∂xi

un
∥∥
Lpi(x)(Ω)

> 1
}
. Then, we have

C+∥un∥ ≥
(γM0

p+M
−M0

α

)( ∑
i∈Bn1

∥∂xiun∥
p+
M

Lpi(x)(Ω)
+
∑

i∈Bn2

∥∂xiun∥
p−
m

Lpi(x)(Ω)

)

=
(M0γ

p+M
− M0

α

)[ N∑
i=1

∥∂xi
un∥

p−
m

Lpi(x)(Ω)
−
∑

i∈Bn1

(
∥∂xi

un∥
p−
m

Lpi(x)(Ω)
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− ∥∂xiun∥
p+
M

Lpi(x)(Ω)

)]
≥
(M0γ

p+M
− M0

α

)( N∑
i=1

∥∂xiun∥
p−
m

Lpi(x)(Ω)
−N

)
.

Hence, by using Jensen’s inequality (2.3) (applied to the convex function h :

R+ → R+, q(t) = tp
−
m , p−m > 1), for n large enough we have

C + ∥un∥ ≥
(M0γ

p+M
− M0

αλ

)(∥un∥p
−
m

Np−
m−1

−N

)
.

Since α > p+M/γ, {un} is bounded. Therefore, up to a subsequence, we may
assume that

un ⇀ u weakly in W
1,−→p (x)
0 (Ω), un → u a.e. in Ω,

un → u in Lh(x)(Ω), 1 ≤ h(x) < p∗m(x),

N∑
i=1

|∂xi
un|pi(x) ⇀ µ =

N∑
i=1

µi (weak*-sense of measures),

|un|p
∗
m(x) ⇀ ν, (weak*-sense of measures), (2.7)

where µ and ν are nonnegative bounded measures on Ω. Then, according to
the new version of Lions’s concentration–compactness principle for anisotropic
variable exponents [9], there exists an index set J which is at most countable,
such that

ν =|u|p
∗
m(x) +

∑
j∈J

νjδxj
, νj > 0,

µ ≥
N∑
i=1

|∂xi
u|pi(x) +

∑
j∈J

µjδxj
, µj > 0,

N1−p+
MS∗ν

1
p∗m(xj)

j ≤ max
{(
µj

)1/p+
M

,
(
µj

)1/p−
m
}
. ∀j ∈ J, (2.8)

with δxj is the Dirac measure mass at xj ∈ Ω.
We consider ψ ∈ C∞

c (RN , [0, 1]) such that ∥∇ψ∥∞ ≤ 2 and

ψ(x) =

{
1 if |x| < 1,

0 if |x| ≥ 2.

For j ∈ J and ε > 0, let ψj,ε(x) = ψ(
x−xj

ε ). Given that E′
λ(un) → 0 and

(ψj,εun) is bounded, it follows that ⟨E′
λ(un), ψj,εun⟩ → 0 as n → ∞. In other

words,

M

(∫
Ω

( N∑
i=1

1

pi(x)
|∂xiun|pi(x) +

w(x)

pM (x)
|un|pM (x)

)
dx

)

×
∫
Ω

ψj,ε

( N∑
i=1

∣∣∂xiun
∣∣pi(x)−2

∂xiun + w(x)|un|pM (x)
)
dx

= −M
(∫

Ω

( N∑
i=1

1

pi(x)
|∂xiun|pi(x) +

w(x)

pM (x)
|un|pM (x)

)
dx
)

Math. Model. Anal., 29(2):254–267, 2024.
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×
N∑
i=1

∫
Ω

un|∂xiun|pi(x)−2∂xiun∂xiψj,ε dx+

∫
Ω

|un|pm∗(x)ψj,ε dx

+ λ

∫
Ω

f(x, un)ψj,εun dx+ on(1). (2.9)

First, we will show that

lim
ε→0

[
lim sup
n→∞

M
(∫

Ω

N∑
i=1

1

pi(x)
|∂xi

un|pi(x) +
w(x)

pM (x)
|un|pM (x) dx

)
×

|
N∑
i=1

∫
Ω

un|∂xi
un|pi(x)−1∂xiψj,ε dx|

]
= 0.

(2.10)

By applying the Hölder inequality and considering the boundedness of {un}n∈N

in W
1,−→p (x)
0 (Ω), we obtain∣∣∣ ∫

Ω

un|∂xi
un|pi(x)−1∂xiψj,ε dx

∣∣∣ ≤ ∫
Ω

|∂xi
un|pi(x)−1|un∂xiψj,ε|dx

≤ 2∥|∂xiun|pi(x)−1∥
L

pi(x)
pi(x)−1 (Ω)

∥∂xiψj,εun∥Lpi(x)(Ω)

≤ Cmax
{(∫

Ω

|un|pi(x)|∂xiψj,ε|pi(x)
) 1

p
−
i ,
(∫

Ω

|un|pi(x)|∂xiψj,ε|pi(x)
) 1

p
+
i

}
.

Therefore, by Lebesgue’s Dominated Convergence Theorem, we get∣∣∣ ∫
Ω

un|∂xi
un|pi(x)−1∂xiψj,ε dx

∣∣∣
≤ Cmax

{(∫
Ω

|u|pi(x)|∂xiψj,ε|pi(x)
) 1

p
−
i ,
(∫

Ω

|u|pi(x)|∂xiψj,ε|pi(x)
) 1

p
+
i

}
.

Moreover, by Hölder inequality∫
Ω

|u|pi(x)|∂xiψj,ε|pi(x) dx

≤ C∥|u|pi(x)∥
L

N
N−pi(x) (B(xj ,2ε))

∥|∂xiψj,ε|pi(x)∥
L

N
pi(x) (B(xj ,2ε))

.

Note that ∫
B(xj ,2ε)

|∂xiψj,ε|N dx ≤
(2
ε

)N
meas(B(xj , 2ε)) =

4N

N
SN ,

with SN is the surface area of an N -dimensional unit sphere. We have

∥|∂xiψj,ε|pi(x)∥
L

N
pi(x) (B(xj ,2ε))

≤ max

{(∫
B(xj ,2ε)

|∂xiψj,ε|Ndx
) 1(

N
pi(x)

)+
,

(∫
B(xj ,2ε)

|∂xiψj,ε|Ndx
) 1(

N
pi(x)

)−}
≤ C
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with C is a positive constant that doesn’t depend on ε. Therefore,

lim sup
n→∞

∥∥∥∫
Ω

un|∂xiun|pi(x)−1∂xiψε dx
∥∥∥

≤ C

{
∥|u|pi(x)∥

1

p
−
i

L
N

N−pi(x) (B(xj ,2ε))
, ∥|u|pi(x)∥

1

p
+
i

L
N

N−pi(x) (B(xj ,2ε))

}
.

But,

∥|u|pi(x)∥
L

N
N−pi(x) (B(xj ,2ε))

≤ max

{(∫
B(xj ,2ε)

|u|p
∗
i (x)dx

) 1(
N

N−pi(x)

)+
,

(∫
B(xj ,2ε)

|u|p
∗
i (x)dx

) 1(
N

N−pi(x)

)−}
.

From this, it follows that

lim
ε→0

lim sup
n→∞

∣∣∣ ∫
Ω

un|∂xi
un|pi(x)−1∂xiψj,ε dx

∣∣∣ = 0 for all i ∈ {1, 2, . . . , N}.

(2.11)
Since {un}n is bounded and the function M is continuous, we can choose a

subsequence, and there exists t0 ≥ 0 such that

M

(∫
Ω

( N∑
i=1

1

pi(x)
|∂xi

un|pi(x) +
w(x)

pM (x)
|un|pM (x)

)
dx

)
→M(t0) ≥ M0,

as n→ ∞. Then, by (2.11), we obtain that (2.10) is proved.
On the other hand, we obtain, by using assumptions (H f1)–(H f3), (2.7),

and Lebesgue’s Dominated Convergence Theorem, that

lim
n→∞

∫
Ω

f(x, un)unψj,ε dx =

∫
Ω

f(x, u)uψj,ε dx,

lim
n→∞

∫
Ω

|un|pM (x)ψj,ε dx =

∫
Ω

|u|pM (x)ψj,ε dx, (2.12)

once that, when ϵ→ 0, we find

lim
ε→0

∫
Ω

f(x, u)uψε dx = 0, lim
ε→0

∫
Ω

|u|pM (x)ψj,ε dx = 0. (2.13)

Since ψj,ε has compact support, going to the limit n → ∞ and letting ϵ → 0
in (2.9) we deduce from (2.10), (2.12) and (2.13) that

M0µj ≤ νj for any j ∈ J.

Thus, from relation (2.8), we conclude that

νj ≥ min

{(
M

1

p
+
M

0 N1−p+
MS∗

) p∗m(xj)p
+
M

p∗m(xj)−p
+
M ,

(
M

1

p
−
m

0 N1−p+
MS∗

) p∗m(xj)p
−
m

p∗m(xj)−p
−
m

}
.
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Let us demonstrate that this inequality cannot hold. Let us assume that

νj0 ≥ min

{(
M

1

p
+
M

0 N1−p+
MS∗

) p∗m(xj0
)p

+
M

p∗m(xj0
)−p

+
M ,

(
M

1

p
−
m

0 N1−p+
MS∗

) p∗m(xj0
)p−m

p∗m(xj0
)−p

−
m

}
for some j0 ∈ J . From (HM1)–(HM2) and (H f3) we see that

cλ = Eλ(un)−
1

α
⟨E′

λ(un), un⟩+ on(1) ≥
(
1

α
− 1

p∗−m

)
×
∫
Ω

|un|p
∗
m(x)dx+ on(1) ≥

(
1

α
− 1

p∗−m

)∫
Ω

ψj0,ε|un|p
∗
m(x)dx+ on(1).

Letting n→ ∞, we obtain

cλ ≥
(
1

α
− 1

p∗−m

)∑
j∈J

ψj0,ε(xj)νj ≥
(
1

α
− 1

p∗−m

)

×min

{
inf
j∈J

(
M

1

p
+
M

0 N1−p+
MS∗

) p∗m(xj)p
+
M

p∗m(xj)−p
+
M , inf

j∈J

(
M

1

p
−
m

0 N1−p+
MS∗

) p∗m(xj)p
−
m

p∗m(xj)−p
−
m

}
.

This contradicts Lemma 3. Therefore, J = ∅, and consequently, un → u in
Lp∗

m(x)(Ω). By assumptions (H f1)–(H f2) and Hölder inequality, we have∫
Ω

|f(x, un)(un − u)|dx ≤
∫
Ω

(
ε|un|p

+
M−1 + Cε|un|ℓ

−−1
)
|un − u|dx ≤ 2ε

× ∥|un|p
+
M−1∥

L

p
+
M

p
+
M

−1 (Ω)

∥un − u∥
Lp

+
M (Ω)

+2Cε∥|un|ℓ
−−1∥

L
ℓ−

ℓ−−1 (Ω)

∥un−u∥Lℓ− (Ω).

Then, using again (2.7), we obtain

lim
n→∞

∫
Ω

w(x)|un|pM (x)−2un(un−u)dx = 0, lim
n→∞

∫
Ω

f(x, un)(un−u)dx = 0.

(2.14)
As un → u in Lp∗

m(x)(Ω), it follows that

lim
n→∞

∫
Ω

|un|p
∗
m(x)−2un(un − u)dx = 0. (2.15)

Additionally, from ⟨E′
λ(un), un − u⟩ = on(1), we deduce

⟨E′
λ(un), un − u⟩ =M

(∫
Ω

( N∑
i=1

1

pi(x)
|∂xi

un|pi(x) +
w(x)

pM (x)
|un|pM (x)

)
dx

)

×
(∫

Ω

N∑
i=1

|∂xi
un|pi(x)−2∂xi

un∂xi
(un − u) + w(x)|un|pM (x)−2un(un − u)

)
dx

−
∫
Ω

|un|p
∗
m(x)−2un(un − u)dx− λ

∫
Ω

f(x, un)(un − u)dx = on(1).
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This, (2.14) and (2.15) imply

lim
n→∞

M0

∫
Ω

N∑
i=1

|∂xiun|pi(x)−2∂xiun
(
∂xiun − ∂xiu

)
dx ≤ 0. (2.16)

Since {un}n∈N converges weakly to u in W
1,−→p (x)
0 (Ω), we have

lim
n→∞

M0

∫
Ω

N∑
i=1

|∂xi
u|pi(x)−2∂xi

u
(
∂xi

un − ∂xi
u
)
dx ≤ 0. (2.17)

So, by combining relation (2.16) and relation (2.17), we have

lim
n→∞

N∑
i=1

∫
Ω

(
|∂xi

un|pi(x)−2∂xi
un−|∂xi

u|pi(x)−2∂xi
u
)(
∂xi

un−∂xi
u
)
dx ≤ 0.

(2.18)
Hence, by applying some elementary inequalities (see, e.g., [11, Chapter I ]),
for any σ > 1 there exists a positive constant Cσ such that

⟨|ξ|σ−2ξ−|η|σ−2η, ξ−η⟩≥

{
Cσ|ξ − η|σ if σ ≥ 2,

Cσ
|ξ−η|2

(|ξ|+|η|)2−σ , (ξ, η) ̸= (0, 0) if 1<σ<2,
(2.19)

for any ξ, η ∈ R. Then, by (2.18) and (2.19), we find that

lim
n→∞

N∑
i=1

∫
Ω

|∂xiun − ∂xiu|pi(x) dx = 0.

Hence, we can infer that un → u strongly in W
1,−→p (x)
0 (Ω), and consequently,

E′
λ(u) = 0, this implies that u is a nontrivial weak solution to problem (1.1)

for every λ ≥ λ∗. ⊓⊔

3 A special case

Now, we consider a special case of the problem given by Equation (1.1). The
problem is described as follows:

−
(
a+ b

∫
Ω

N∑
i=1

1

pi(x)
|∂xiu|pi(x) +

w(x)

pM (x)
|u|pM (x)dx

)
×
(
∆−→p (x)(u)− w(x)|u|pM (x)−2u

)
= |u|p

∗
m(x)−2u+ λf(x, u) in Ω,

u = 0 on ∂Ω, (3.1)

where Ω is a bounded smooth domain of RN , a and b are a positive constants.
Assuming M(s) = a+ bs, it is evident that M(s) ≥ a. Additionally, we can

compute M̂(s) as follows

M̂(s) =

∫ 1

0

M(t)dt = as+
1

2
bs2 ≥ 1

2
(a+ bs)s = γM(s)s,
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where γ = 1/2. Therefore, the conditions (HM1
) and (HM2

) are satisfied.
In this specific case, a typical example of a function f(x, s) that satisfies

the conditions (H f1)–(H f3) is given as follows:

f(x, s) =

κ∑
i=1

gi(x)|s|ℓi(x)−2s,

where κ ≥ 1, p+M < ℓi(x) < p∗−m and the nonnegative functions gi(x) ∈ C(Ω).
Based on Theorem 1, we can derive the following corollary:

Corollary 1. Under the assumptions (H f1)–(H f3), there exists a positive con-
stant λ∗ > 0 such that for any λ ≥ λ∗, the problem described by Equation (3.1)
has at least one nontrivial solution.
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