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Abstract. In this paper, we study fractional-order linear, finite-dimensional dis-
turbed systems. The fundamental objective of this work is to study the remediability
or compensation problem in linear fractional-order time-invariant perturbed systems.
The remediability was introduced with the aim of finding an appropriate control that
steers the output of the perturbed system towards normal observation at the final
moment. We begin first by giving some characterizations of compensation, and then
we prove that a rank condition is sufficient to assure the remediability of our sys-
tem. The relationship between controllability and compensation is also given, and we
provide some examples to illustrate our results.
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1 Introduction

The perturbations are fundamentally errors and faults in the particular com-
putations and can cause a dynamic system to sustain considerable harm (in-
fections, pollution, etc.) in various domains of physics, chemistry, and biology.
Disturbed systems have continued to play an important role in recent years.
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Undefined perturbations are dissected by observation, and various studies have
been dedicated to their identification and reconstruction according to observa-
tion (see [1, 2, 4] and [6]).
However, it is not only needed for the detection of disturbances in the system,
but it is also necessary to intervene with adequate control to reduce the effects
of the disturbances and thus regularize their impact on the system. The notion
of remediability is introduced in the objective to find a suitable control that
ensures the compensation of the perturbations by reducing them, and this is
done by steering the observation of the perturbed system back to its natural
state in the absence of disturbance.
The notion of remediability is studied and treated initially for a class of parabolic
systems with a finite time horizon, then for the asymptotic case, discrete sys-
tems, hyperbolic systems, and regional cases [1,10]. In [9], the gradient remedi-
ability of perturbed parabolic systems and the report on gradient controllability
are studied.
The regional compensation is studied for a certain distributed nonlinear sys-
tem; the fixed point theorem was used to solve this problem. L. Afifi et al. [2]
have dealt with remediability for a type of localized linear system. The study
of remediability for distributed systems with delays has been the subject of sev-
eral works [10]. Thus, recently [7], the problem of compensation with minimal
energy for a class of perturbed linear systems at varied times has been studied.
A number of researchers have discussed the controllability and observability of
fractional-order differential systems. I. Ahmad et al. [3] give for a fractional
order delay dynamic system of the implicit type some results of controllability
and observability. In [8], M. Mohan Raja et al. are investigating a note on
results for existence and controllability for fractional integrodifferentials. The
approximate controllability of fractional nonlinear systems is studied for semi-
linear fractional differential systems.
For finite-dimensional linear fractional-order systems, the remediability has not
yet been processed. The objective of this work is to give some characteristics
of compensation for linear fractional-order systems. We give some conditions
for the remediability of finite-dimensional linear fractional-order systems, and
we discuss the assumptions with an appropriate control operator to remove the
impact of the disturbance. A comparison between the controllability and the
remediability is given, and we show that if the system is controllable, then the
remediability is verified, but the inverse is not true. To illustrate our work,
some examples are presented.
The organization of our paper is defined as follows: in Section 2, we introduce
a model of perturbed fractional order systems and give the problem statement.
Then, we determine and describe the controllability and remediability. In Sec-
tion 3, we give some properties for the characterization of the remediability of
the fractional-order system and some examples to confirm the procured results.
In Section 4, we discuss the connection between the notions of controllability
and remediability. Finally, a conclusion is given in Section 5.
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2 Problem statement

Let’s consider the linear fractional order control systems given by{
c
0D

λ
θx(θ) = Ax(θ) +Bu(θ) + g(θ), 0 < θ < τ ; 0 < λ < 1,

x(0) = x0,
(2.1)

where A ∈ Mn(R), B ∈ Mn,p(R), u ∈ L2(0, τ ;Rp), g ∈ L2(0, τ ;Rn) and c
0D

λ
θ

denotes the Caputo fractional order derivative, where

c
0D

λ
θx(θ) =

 1
Γ (1−λ)

∫ θ

0

(θ − r)−λẋ(r)dr, 0 < λ < 1,

ẋ(θ), λ = 1,

where Γ is Gamma function. The corresponding output is given by

y(θ) = Cx(θ),∀θ ∈]0, τ [ (2.2)

with C ∈ Mq,n(R). We have

x(θ) = Ψ0(θ)x0 +Hλ
θ u+Gλ

θ g,

where

Ψ0(θ) =

∞∑
m=0

Amθmλ

Γ (mλ+ 1)
.

Then,
y(θ) = CΨ0(θ)x0 + CHλ

θ u+ CGλ
θ g,

where Hλ
θ and Gλ

θ are the following operators given by

Hλ
θ : L2(0, θ;Rp) −→ Rn,

u −→
∫ θ

0

Ψ(θ − r)Bu(r)dr

and

Gλ
θ : L2(0, θ;Rn) −→Rn,

g −→
∫ θ

0

Ψ(θ − r)g(r)dr

with

Ψ(θ) =

∞∑
m=0

Amθ(m+1)λ−1

Γ [(m+ 1)λ]
.

Let us define that
R(.) denotes the range of a map.

N (.) denotes the null space of a map.

We thereafter define controllability and its characterization for linear frac-
tional order system.
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Definition 1. The system{
c
0D

λ
θx(θ) = Ax(θ) +Bu(θ), 0 < θ < τ ; 0 < λ < 1,

x(0) = x0
(2.3)

is controllable on [0, τ ], if for every (x0, xd) ∈ Rn × Rn, there exists u ∈
L2(0, τ ;Rp) such that the solution x ∈ C0(0, τ ;Rn) of the system (2.3) sat-
isfies

x(τ) = xd.

If and only if
R(Hλ

τ ) = Rn,

also, the matrix

∆λ(τ) =

∫ τ

0

Ψ(τ − r)BB∗Ψ(τ − r)∗(τ − r)2(1−λ)dr

is invertible or the famous Kalman rank condition for controllability is given
by

rank
(
B AB ... An−1B

)
= n.

In the case where the disturbance and control are g = 0 and u = 0, the
corresponding output is given by

y0,0(θ) = CΨ0(θ)x0

and if the system is perturbed by disturbance g, the observation becomes

y0,g(θ) = CΨ0(θ)x0 +
∫ θ

0
CΨ(θ − r)g(r)dr

̸= CΨ0(θ)x0.

Then, we insert a control operatorBu for suppressing at final time τ the impact
of this disturbance, i.e., yu,g(τ) = y0,0(τ).

Definition 2. The system (2.1) with the output function (2.2), or (2.1)+
(2.2) is remediable on [0, τ ], if for any g ∈ L2(0, τ ;Rn), there is a control
u ∈ L2(0, τ ;Rp) such that

CHλ
τ u+ CGλ

τ g = 0.

3 Characterization results

We define the following properties findings.

Proposition 1. The following characteristics are similar

i (2.1)+ (2.2) is remediable on [0, τ ];

ii R(CGλ
τ ) ⊂ R(CHλ

τ );

iii R(CHλ
τ ) = R(C);

Math. Model. Anal., 29(3):546–559, 2024.
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iv N (Hλ
τ
∗
C∗) = N (Gλ

τ
∗
C∗);

v N (Hλ
τ
∗
C∗) = (R(C))⊥;

vi N (B∗Gλ
τ
∗
C∗) = N (Gλ

τ
∗
C∗);

vii There exists γ > 0 such that for every ω ∈ Rq, we have

∥Ψ(τ − .)∗C∗ω∥L2(0,τ ;Rn) ≤ γ ∥B∗Ψ(τ − .)∗C∗ω∥L2(0,τ ;Rp) . (3.1)

Proof. Determined from Definition 2, by considering the orthogonal, the fact
that

N (Hλ
τ

∗
C∗) =N (B∗Ψ(τ − .)∗C∗),

N (Gλ
τ

∗
C∗) =N (Ψ(τ − .)∗C∗),

and also the result of R. F. Curtain [5]. ⊓⊔

Lemma 1. Let X , Y and Z be Banach reflexive spaces, P ∈ L(X ,Z) and
Q ∈ L(Y,Z). We have

R(P) ⊂ R(Q)

if and only if

∃γ > 0, ∀z∗ ∈ Z ′ / ∥P∗z∗∥X ′ ≤ γ ∥Q∗z∗∥Y′ .

We consider now the remediability Gramian of the system (2.1)+(2.2).

Definition 3. Let q ≥ 1, the remediability Gramian of system (2.1)+(2.2) is
the symmetric q × q-matrix defined by

Θλ(τ) =

∫ τ

0

CΨ(τ − r)BB∗Ψ(τ − r)∗C∗(τ − r)2(1−λ)dr.

Remark 1. We have, for all β ∈ Rq,

β∗Θλ(τ)β =

∫ τ

0

∥∥B∗Ψ(τ − r)∗C∗(τ − r)1−λβ
∥∥2 dr.

Hence, the remediability Gramian Θλ(τ) is a nonnegative symmetric matrix.

We give here after a second characterization of the notion remediability.

Theorem 1. Let Θ̄λ(τ) = Θλ(τ)|R(C)
, (2.1)+(2.2) is remediable on [0, τ ] if

and only if, the matrix Θ̄λ(τ) is invertible in R(C).

Proof. We first assume that Θ̄λ(τ) is invertible in R(C) and prove that (2.1)+
(2.2) is remediable on [0, τ ]. Let u ∈ L2(0, τ ;Rp) be defined by

u(r) = B∗Ψ(τ − r)∗C∗(τ − r)2(1−λ)Θ̄λ(τ)−1(−CGλ
τ g),
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for r ∈ [0, τ ]. Then,

y(τ) =CΨ0(τ)x0 +

∫ τ

0

CΨ(τ − r)BB∗Ψ(τ − r)∗C∗(τ − r)2(1−λ)drΘ̄λ(τ)−1

× (−CGλ
τ g) + CGλ

τ g = CΨ0(τ)x0.

Hence, (2.1)+ (2.2) is remediable on [0, τ ].
Let us now assume that Θ̄λ(τ) is not invertible in R(C). Then there exists
β ∈ R(C)\{0} such that Θ̄λ(τ)β = 0. In particular, β∗Θ̄λ(τ)β = 0, that is,∫ τ

0

β∗CΨ(τ − r)BB∗Ψ(τ − r)∗C∗(τ − r)2(1−λ)βdr = 0. (3.2)

But the left hand side of (3.2) is equal to∫ τ

0

∥∥B∗Ψ(τ − r)∗C∗(τ − r)1−λβ
∥∥2 dr.

Hence, (3.2) implies that

β∗(τ − r)1−λCΨ(τ − r)B = 0, r ∈ [0, τ ],

from which we get
B∗Ψ(τ − r)∗C∗β = 0,

Consequently, (3.1) does not hold. This concludes the proof of Theorem 1. ⊓⊔

We give next an adequate condition confirming the remediability of (2.1)+(2.2)
on [0, τ ].

Proposition 2. If

rank
(
CB CAB ... CAn−1B

)
= q,

then (2.1)+(2.2) is remediable on [0, τ ].

Proof. Let us now give a first proof of Proposition 2. Using Cayley-Hamilton
theorem, we have

rank
(
CB CAB ... CAn−1B

)
= q

⇐⇒ ∀β ∈ Rq,


(CB)∗

(CAB)∗

...
(CAn−1B)∗


(np,q)

β = 0 =⇒ β = 0 ⇐⇒ N (Hλ
τ
∗
C∗) = {0}.

Hence, if N (Hλ
τ
∗
C∗) = {0}, then N (Hλ

τ
∗
C∗) ⊂ N (Gλ

τ
∗
C∗), that implies (2.1)+

(2.2) is remediable on [0, τ ].
Our second proof. We assume that

rank
(
CB CAB ... CAn−1B

)
= q,

Math. Model. Anal., 29(3):546–559, 2024.
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and (2.1)+ (2.2) is not remediable on [0, τ ]. Then, Θ̄λ(τ) is not invertible
in R(C). That implies there exists β ∈ R(C)\{0} such that Θ̄λ(τ)β = 0. In
particular, β∗Θ̄λ(τ)β = 0, that is,∫ τ

0

β∗CΨ(τ − r)BB∗Ψ(τ − r)∗C∗(τ − r)2(1−λ)βdr = 0. (3.3)

But the left hand side of (3.3) is equal to∫ τ

0

∥∥B∗Ψ(τ − r)∗C∗(τ − r)1−λβ
∥∥2 dr.

Hence, (3.3) implies that

B∗Ψ(τ − r)∗C∗(τ − r)1−λβ = 0, r ∈ [0, τ ],

from which we get

∞∑
m=0

B∗(A∗)m(τ − r)(m+1)λ−1

Γ [(m+ 1)λ]
C∗(τ − r)1−λβ = 0.

One gets
∞∑

m=0

B∗(A∗)mC∗(τ − r)mλ

Γ [(m+ 1)λ]
β = 0,

which implies

B∗C∗

Γ [λ]
β +

B∗A∗C∗(τ − r)λ

Γ [2λ]
β +

B∗(A∗)2C∗(τ − r)2λ

Γ [3λ]
β + ... = 0, (3.4)

or putting r = τ in (3.4), one gets

B∗C∗β = 0.

The expression (3.4) becomes

B∗A∗C∗(τ − r)λ

Γ [2λ]
β +

B∗(A∗)2C∗(τ − r)2λ

Γ [3λ]
β + ... = 0,

that implies

(τ−r)λ
[
B∗A∗C∗

Γ [2λ]
β +

B∗(A∗)2C∗(τ − r)λ

Γ [3λ]
β+

B∗(A∗)3C∗(τ − r)2λ

Γ [4λ]
β + ...

]
= 0.

Then,

B∗A∗C∗

Γ [2λ]
β +

B∗(A∗)2C∗(τ − r)λ

Γ [3λ]
β +

B∗(A∗)3C∗(τ − r)2λ

Γ [4λ]
β + ... = 0,

for r = τ , one gets
B∗A∗C∗β = 0.
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Repeated this procedure (n− 1) times, one has

B∗(A∗)n−1C∗β = 0,

then, 
(CB)∗

(CAB)∗

...
(CAn−1B)∗

β = 0. (3.5)

But β ̸= 0, so (3.5) contradicts the assumption

rank
(
CB CAB ... CAn−1B

)
= q,

this concludes our second proof of Proposition 2. ⊓⊔

Let us give the following remarks

Remark 2. i) One can has

rank
(
CB CAB ... CAn−1B

)
= q

even if the system (2.3) is not controllable on [0, τ ].
ii) (2.1)+(2.2) can be remediable on [0, τ ] without having

rank
(
CB CAB ... CAn−1B

)
= q.

Following is an example that shows this.

Example 1. i) Let’s consider n = 2, p = q = 1 and

A =

(
0 1
0 0

)
; B =

(
1
0

)
; C =

(
1 0

)
.

The following is the controllability matrix by

(
B AB

)
=

(
1 0
0 0

)
and its rank is 1 < 2. As a result, the corresponding system is uncontrollable
on [0, τ ]. On the other hand,(

CB CAB
)
=

(
1 0

)
,

its rank is 1 = q, then (2.1)+(2.2) is remediable on [0, τ ].
ii) Now, for n = 2, p = 1, q = 2 and

A =

(
0 1
0 0

)
; B =

(
0
1

)
;

C =

(
0 1
0 1

)
; ω =

(
ω1

ω2

)
,

Math. Model. Anal., 29(3):546–559, 2024.
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one gets

Ψ(τ − r) =


(τ − r)λ−1

Γ (λ)

(τ − r)2λ−1

Γ (2λ)

0
(τ − r)λ−1

Γ (λ)

 .

We have

Ψ(τ − r)∗C∗ω =


(τ − r)λ−1

Γ (λ)
0

(τ − r)2λ−1

Γ (2λ)

(τ − r)λ−1

Γ (λ)

(
0 0
1 1

)(
ω1

ω2

)

=

 0
(τ − r)λ−1

Γ (λ)
(ω1 + ω2)


and B∗Ψ(τ − r)∗C∗ω =

(τ − r)λ−1

Γ (λ)
(ω1 + ω2), then

∥Ψ(τ − r)∗C∗ω∥2L2(0,τ ;R2) =

∫ τ

0

(
(τ − r)λ−1

Γ (λ)
(ω1 + ω2)

)2

dr

and

∥B∗Ψ(τ − r)∗C∗ω∥2L2(0,τ ;R) =

∫ τ

0

(
(τ − r)λ−1

Γ (λ)
(ω1 + ω2)

)2

dr.

Hence
∥Ψ(τ − r)∗C∗ω∥L2(0,τ ;R2) ≤ ∥B∗Ψ(τ − r)∗C∗ω∥L2(0,τ ;R)

with γ = 1, and then, (2.1)+(2.2) is remediable on [0, τ ], even if

rank
(
CB CAB

)
= rank

(
1 0
1 0

)
= 1 ̸= 2.

In the next, we present a rank condition for the remediability.

Theorem 2. (2.1)+(2.2) is remediable on [0, τ ] if and only if

rank
(
CB CAB ... CAn−1B

)
= rank

(
C

)
.

Proof. Let us now give a first proof of Theorem 2. Through the properties of
Proposition 1, we have (2.1)+(2.2) is remediable on [0, τ ] if and only if

N (Hλ
τ

∗
C∗) = N (Gλ

τ

∗
C∗).

Then, from Cayley-Hamilton theorem, we deduce that

β ∈ N (Hλ
τ

∗
C∗) ⇐⇒


(CB)∗

(CAB)∗

...
(CAn−1B)∗


(np,q)

β = 0.
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Since
N

[
(Gλ

τ )
∗C∗] = N (C∗) ,

then (2.1)+ (2.2) is remediable on [0, τ ] if and only if

N


(CB)∗

(CAB)∗

...
(CAn−1B)∗

 = N (C∗)

or equivalently

R
(
CB CAB ... CAn−1B

)
= R(C).

Our second proof. We assume that

rank
(
CB CAB ... CAn−1B

)
̸= rank

(
C

)
and prove that (2.1)+(2.2) is not remediable on [0, τ ]. We have

rank
(
CB CAB ... CAn−1B

)
̸= rank

(
C

)
.

Then, there exists β ∈ Rq such that

β ∈ N


(CB)∗

(CAB)∗

...
(CAn−1B)∗

 \N (C∗) ,

i.e., 
(CB)∗

(CAB)∗

...
(CAn−1B)∗

β = 0,

and
C∗β ̸= 0.

Using Cayley-Hamilton theorem, one gets

B∗Ψ(τ − r)∗C∗β = 0,

which implies β ∈ N (Hλ
τ
∗
C∗) but β ̸∈ N (C∗), one gets N (Hλ

τ
∗
C∗) ̸= N (C∗) ,

then (2.1)+(2.2) is not remediable on [0, τ ].
Conversely, we assume that

rank
(
CB CAB ... CAn−1B

)
= rank

(
C

)
.

By duality,

N


(CB)∗

(CAB)∗

...
(CAn−1B)∗

 = N (C∗).

Math. Model. Anal., 29(3):546–559, 2024.
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Let β ∈ N (Hλ
τ
∗
C∗), then 

(CB)∗

(CAB)∗

...
(CAn−1B)∗

β = 0.

Hence

N
[
(Gλ

τ )
∗C∗] = N (C∗) ,

therefore, (2.1)+(2.2) is remediable on [0, τ ]. This concludes our second proof
of Theorem 2. ⊓⊔

4 Remediability and controllability

We give in the following an important result for the relation between control-
lability and remediability

Proposition 3. i) If the system (2.3) is controllable on [0, τ ], then (2.1)+(2.2)
is remediable on [0, τ ].

ii) The opposite is not true.

Proof. We suppose that the linear control system (2.3) is controllable on [0, τ ]
⇐⇒ R(Hλ

τ ) = Rn, then,

R
(
CHλ

τ

)
= R (C) ,

consequently (2.1)+(2.2) is remediable on [0, τ ].

Counter example: Let’s consider the matrix A defined by

A =

(
0 1
0 0

)
∈ M2(R).

We consider the case where p = q = 1 and

B =

(
1
0

)
; C =

(
1 0

)
,

we have (
CB CAB

)
=

(
1 0

)
,

its rank is 1 = rank
(
C

)
, consequently (2.1)+(2.2) is remediable on [0, τ ]. On

the other hand, the controllability matrix is given by

(
B AB

)
=

(
1 0
0 0

)
and its rank is 1 < 2. Then (2.3) is not controllable on [0, τ ]. ⊓⊔
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Remark 3. In the case (2.3) is controllable on [0, τ ], let ū ∈ L2(0, τ ;Rp) be
defined by:

ū(r) = B∗Ψ(τ − r)∗(τ − r)2(1−λ) ∆λ(τ)−1(−Gλ
τ f);

for r ∈ [0, τ ] and x̄ ∈ C0(0, τ ;Rn) be the solution of the fractional control
system{

c
0D

λ
θ x̄(θ) = Ax̄(θ) +Bū(θ) + f(θ), 0 < θ < τ ; 0 < λ < 1,

x̄(0) = x0.
(4.1)

Let consider the output equation of system (4.1)

ȳ(θ) = Cx̄(θ) ; 0 < θ < τ,

then,

x̄(τ) =Ψ0(τ)x0 +

∫ τ

0

Ψ(τ − r)BB∗Ψ(τ − r)∗

(τ − r)2(1−λ) ∆λ(τ)−1(−Gλ
τ f)dr +Gλ

τ f = Ψ0(τ)x0.

One has

x̄(τ)− Ψ0(τ)x0 = 0.

And we have

x̄(τ) = Ψ0(τ)x0 +Hλ
τ ū+Gλ

τ f.

Consequently,

CHλ
τ ū+ CGλ

τ f = 0,

then (2.1)+(2.2) is remediable on [0, τ ].

4.1 Numerical simulations

Let us define A, where n = 2 by

A =

(
0 1
0 0

)
.

One has with λ = 1
2

Ψ(τ − θ) =


(τ − θ)

−1
2

Γ ( 12 )
1

0
(τ − θ)

−1
2

Γ ( 12 )

 .

We consider the case where p = 1, q = 2 and

B =

(
0
1

)
; C =

(
1 0
0 1

)
Math. Model. Anal., 29(3):546–559, 2024.
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with the following disturbance

f(θ) =

(
Γ ( 12 )
0

)
.

Using Remark 3, one gets, where τ = 10,

u(θ) = −36τ
−3
2 (τ − θ) + 24τ−1(τ − θ)

1
2 .

We suppose the initial state is null x0 = 0, then y(0,0) = 0. And

y(u,f)(θ) =

 −18τ
−3
2 θ2 + 16τ−1θ

3
2 + 2θ

1
2

−24τ
−3
2 θ

3
2

√
π

+
24τ−1θ√

π

 ,

y(0,f)(θ) =

(
2θ

1
2

0

)
.

We get the following numerical attainment which perform the previous de-
velopments.

Figure 1. Representation of y(u,f). Figure 2. Representation of y(0,f).

Figure 3. Representation of the optimal control u.

Then, Figures 1 and 2, give an illustration of observations y(u,f) and y(0,f).
Figure 1 proves the impact of the control, which steer the output at the normal
one without perturbation at time τ = 10, i.e., y(u,f)(τ) = y(0,0)(τ) = 0 and
Figure 3 gives the evolution of optimal control u.
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5 Conclusions

In this paper, we define linear fractional-order dynamical systems. The notion
Remediability is a significant concept in perturbation theory. In particular,
this involves studying the attenuation of the impact of any perturbation via
observation. We give some conditions for the remediability of fractional orders,
systems, we study the possibility of eliminating the perturbation impact with
an appropriate control operator. The relationship between controllability and
compensation is also given. And some examples to illustrate our work are
given.
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