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1 Introduction

In recent years, integro-differential equations have attracted extensive attention
in many scientific fields. The applications of these equations are very useful for
modeling problems encountered in very different fields [11,13,15].

Numerous numerical techniques have emerged to address Fredholm integro-
differential equations (FIDE for short) with smooth kernels, [7,9,18,19,20]. No-
table among these are the Adomian decomposition [8], the homotopy analysis
method [11], and Chebyshev and Taylor collocation methods [22]. Furthermore,
the decomposition method was effectively employed to solve the high-order lin-
ear Volterra-Fredholm integro-differential equations, as demonstrated in [6].
Recently, in [5], highly accurate pseudo-spectral Galerkin scheme for panto-
graph type Volterra integro-differential equations having singular kernels are
proposed. In [23], the authors generalize a collocation method in the reproduc-
ing kernel space in order to solve a weakly singular FIDE. In [14], a spline-based
collocation method is proposed to deal with the numerical solution of integro-
differential equations with weakly singular kernels. Other authors have worked
on this set of equations, among them [2,3, 7].

Spline quasi-interpolations (abbr. QI) provide approximating splines ex-
pressed as a linear combinations of compactly supported (B-splines). These
quasi-interpolating splines offer a practical and effective approach to approx-
imating functions due to their straightforward construction and the advanta-
geous property of achieving an optimal convergence rate, all while maintaining
a uniformly bounded norm as highlighted in [17].

In this paper, we present a numerical approach grounded in spline quasi-
interpolants (QIs) designed to provide a numerical solution for the subsequent
FIDE with weakly singular kernel u′(t) =

∫ 1

0

k(t, s)u(s) ds+ a(t)u(t) + g(t) , t ∈ [0 , 1],

u(0) = u0

(1.1)

where u0 ∈ R and u is the unknown function.
For a non-negative integer m, we assume that a, g ∈ Cm,ν [0, 1] where

Cm,ν [0, 1] is the space of all continuous functions u : [0, 1] → R which are m
times continuously differentiable in (0, 1) and such that the following estimate
holds:

for all t ∈ (0, 1), |u(m)(t)| ⩽ cσ(t)2−m−ν , 0 < ν < 1, (1.2)

c being a positive constant and σ(t) := min
0<t<1

{t, 1 − t} represents the measure

of separation between t ∈ (0, 1) and the extremities of the interval [0, 1]. Note
that Cm,ν [0, 1] is a Banach space with respect to the norm (see, e.g., [14])

∥u∥∞,v := max
0⩽t⩽1

|u(t)|+ sup
0<t<1

σ(t)ν+m−2|u(m)(t)|, u ∈ Cm,ν [0, 1] .

For 0 < ν < 1, C0,ν [0, 1] reduces to the space of continuous functions defined
on [0, 1] and endowed with the usual norm ∥u∥∞ = max

0⩽x⩽1
|u(x)|.
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We define the domain ∆ by

∆ := {(t, s) : 0 ⩽ t ⩽ 1 , 0 ⩽ s ⩽ 1 , t ̸= s}.

The kernel k belongs to the set Wm,ν(∆) of all m times continuously differen-
tiable functions k : ∆ → R satisfying, for all (t, s) ∈ ∆ and all non-negative
integers i and j such that i+ j ⩽ m, the condition∣∣∣ ( ∂

∂t

)i (
∂

∂t
+

∂

∂s

)j

k(t, s)
∣∣∣ ⩽ c1|t− s|−ν−i, 0 < ν < 1, (1.3)

for a positive constant c1. For i = j = 0, condition (1.3) leads to

|k(t, s)| ⩽ c1|t− s|−ν , (t, s) ∈ ∆.

Thus, the kernel k ∈ Wm,ν(∆) is at most weakly singular for 0 < ν < 1. A
particular important kernel is given by

k(t, s) = φ(t, s)|t− s|−ν , 0 < ν < 1, φ ∈ Cm([0, 1]× [0, 1]).

The paper is organized as follows. In Section 2, we recall the definition and
main properties of the spline quasi-interpolation operators, with their conver-
gence properties. In Section 3, we introduce the numerical method based on
spline QI operators to solve Equation (1.1). A general framework for the error
analysis of the approximate solution is given in Section 4. Lastly, in Section 5,
we offer numerical outcomes that exemplify the theoretical approximation char-
acteristics of the proposed method.

2 Spline quasi-interpolation

Let Xn := {0 = x0 < x1 < · · · < x2n = 1} be a non-uniform partition (a graded
grid) of the interval I := [0, 1] with grid points

xj :=
1

2

(
j

n

)r

, j = 0, 1, . . . , n, xn+j := 1− xn−j , j = 1, . . . , n, (2.1)

where r ⩾ 1 is a real number that ensures the non-uniformity of the grid
Xn. The partition (2.1) is uniform for r = 1, while it is more densely at
the extremities of the interval I for r > 1, and the grid points are located
symmetrically with respect to the midpoint of the interval I. Moreover, it is
easy to see that

0 < hj := xj+1 − xj ⩽
r

2n

(
j + 1

n

)r−1

⩽
r

2n
, j = 0, . . . , n− 1 ,

and similar inequality holds for the grid points on the other half of I.
For a positive integer d, let Sd (I,Xn) be the space of Cd−1 regular polyno-

mial splines of degree d defined on the partition (2.1). With J := {0, 1, . . . , 2n+
d− 1}, its usual basis is composed of 2n+ d classical normalized B-splines Bk,
k ∈ J . By adding multiple knots x−d = · · · = x0 and x2n = · · · = x2n+d, the
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support of each resulting B-spline Bk coincides with the interval [xk−d, xk+1]
(see [17]). A discrete quasi-interpolant in this space, abbreviated as dQI can
be expressed as

Qdf :=
∑
k∈J

µk(f)Bk, (2.2)

where the coefficients µk(f) are formed by linear combinations of f values at
the specific points within En := {ξi , i = 0 , . . . , N}, with{

ξi := ti , N := 2n+ 1, if d is even,
ξi := xi , N := 2n, if d is odd,

where t0 = x0 , t2n+1 = x2n and ti =
1

2
(xi−1 + xi) for i = 1 , . . . , 2n . More

precisely, for d+ 1 ≤ k ≤ 2n, the coefficients µk(f) have the following form

µk(f) :=

{ ∑d
i=0 αi,kf (ξk−d+i) , if d is even,∑d
i=1 αi,kf (ξk−d+i−1) , if d is odd.

The values of αi,k are determined to ensure that Qd accurately reproduces the
polynomial space Pd, including all polynomials with total degree of d, i.e.,

Qdp = p, for all p ∈ Pd.

The extremal coefficients µk(f) have particular expressions (more details on
the construction of dQIs are given in [10, 17]). The dQI Qd can be expressed
as

Qdf =

N∑
j=0

f (ξj)Lj ,

where each Lj is a specific linear combination of B-splines. Due to the conti-
nuity of µk as linear functionals, the quasi-interpolation operator Qd defined
from the quas-interpolant Qdf is uniformly bounded in the space C(I). By
a well-known result in approximation theory (see [4]), it follows that for any
f ∈ Cd+1(I), the following relation holds:

∥f −Qdf∥ ≤ C1h
d+1∥f (d+1)∥,

where h := max
0⩽j⩽2n

hj and C1 is a positive constant independent of h and f .

Subsequently, we present an illustration of a spline dQI, represented as
Equation (2.1), when considering the case where d = 2. This operator is
defined on the space S2(I,Xn) of C1 quadratic splines (see, e.g., [16]) as

Q2f :=

2n+1∑
k=0

µk(f)Bk, (2.3)

where the coefficient functionals µk(f) are given by

µ0(f) = f0, µ2n+1(f) = f2n+1,

µj(f) = ajfj−1 + bjfj + cjfj+1, 1 ≤ j ≤ 2n. (2.4)

Math. Model. Anal., 29(3):442–459, 2024.
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with fj := f (ξj) and

aj = −
h2
j

(hj−1 + hj) (hj−1 + 2hj + hj+1)
,

cj = −
h2
j

(hj + hj+1) (hj−1 + 2hj + hj+1)
, bj = 1− (aj + cj) .

The following result demonstrates both the boundedness of the operator Qd

(see [12] ch. 9) and its property as a local approximation of f . Additionally, it
highlights that the spline Qdf represents the best polynomial approximation
of f with a degree d.

Lemma 1. Let Qd be the dQI defined by (2.2) and f ∈ C(I). Then for
0 ≤ j ≤ 2n− 1, we have

∥Qdf∥∞,[xj ,xj+1] ≤ kd∥f∥∞,[xj−d+1,xj+d], (2.5)

∥f −Qdf∥∞,[xj ,xj+1] ⩽ (1 + kd) d∞,[xj−d+1,xj+d] (f,Pd) , (2.6)

where

d∞,[u,v] (f,Pd) := inf
{
∥f − p∥∞,[u,v], p ∈ Pd

}
,

∥f − p∥∞,[u,v] := max
x∈[u,v]

|f(x)− p(x)|,

and kd := (2d/d!) (d(d− 1))
d
is a constant depending only on d.

The main outcome of this section is given next, for which in the rest of this
paper c, c0, c

′
0, c1 stand for positive constants which are independent of n and

can take different values.

Theorem 1. Let Qd be the dQI defined by (2.2). Then for any function f ∈
Cd+1,ν(I)

∥f −Qdf∥∞ ⩽c1

{
n−(d+1), r ⩾ (d+ 1)/(2− ν),
n−r(2−ν), 1 ⩽ r < (d+ 1)/(2− ν),

(2.7)∫ 1

0

|f(t)−Qdf(t)|dt ⩽c

{
n−(d+1), r ⩾ (d+ 1)/(3− ν),
n−r(3−ν), 1 ⩽ r < (d+ 1)/(3− ν).

(2.8)

Proof. Let us first show the estimate on the interval [x0, xd]. Let n ⩾ d be
a non-negative integer and consider Taylor’s formula of f at t = x2d−1, then
we have

f(t) = Pd(t) +
1

d!

∫ t

x2d−1

(t− s)df (d+1)(s)ds,

where

Pd(t) =

d∑
k=0

(t− x2d−1)
k

k!
f (k)(x2d−1).

Since Pd ∈ Pd, we obtain

d∞,[x0,x2d−1] (f,Pd) ⩽ ∥f − Pd∥∞,[x0,x2d−1].
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For j = 1, . . . , d− 1 and using inequality (2.6) of Lemma 1, we get

∥f −Qdf∥∞,[xj ,xj+1] ⩽ (1 + kd) ∥f − Pd∥∞,[x0,xd+j ]

⩽ (1 + kd) ∥f − Pd∥∞,[x0,x2d−1].

Then, it holds

∥f −Qdf∥∞,[x0,xd] ⩽ (1 + kd) ∥f − Pd∥∞,[x0,x2d−1].

Now, we estimate the norm ∥f − Pd∥∞,[x0,x2d−1]. Using (1.2), we have

|f(t)− Pd(t)| =
1

d!
|
∫ t

x2d−1

(t− s)df (d+1)(s)ds|

⩽
1

d!

∫ t

x2d−1

(t− s)d|f (d+1)(s)|ds ⩽ c

d!

∫ t

x2d−1

(t− s)ds1−d−νds.

Putting t = x2d−1ε, s = x2d−1δ, and using the fact that 0 < ν < 1, we get

|f(t)− Pd(t)| ⩽
c

d!

∫ 1

ε

x2−ν
2d−1(δ − ε)dδ1−d−νdδ

⩽
c

d!
x2−ν
2d−1

∫ 1

ε

(δ − ε)dδ1−d−νdδ ⩽ c0x
2−ν
2d−1.

Since x2d−1 = 0.5 (2d− 1)rn−r , we deduce that

|f(t)− Pd(t)| ⩽ c1n
−r(2−ν),

which gives

∥f − Pd∥∞,[x0,x2d−1] ⩽ c1n
−r(2−ν).

Hence,

∥f −Qdf∥∞,[x0,xd] ⩽ c1n
−r(2−ν) . (2.9)

Let us now show the estimate on the interval [xj , xj+1] for j = d, . . . , n − 1.
Consider Taylor’s formula of f at t = xj−d+1 given by

f(t) = Pd,j(t) +
1

d!

∫ t

xj−d+1

(t− s)df (d+1)(s)ds,

where

Pd,j(t) =

d∑
k=0

(t− xj−d+1)
k

k!
f (k)(xj−d+1).

From Lemma 1, we have

∥f −Qdf∥∞,[xj ,xj+1] ⩽ (1 + kd)d∞,[xj−d+1,xj+d] (f,Pd)

⩽ (1 + kd)∥f − Pd,j∥∞,[xj−d+1,xj+d],

Math. Model. Anal., 29(3):442–459, 2024.
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and using (1.2), we get

|f(t)− Pd,j(t)| =
1

d!

∣∣∣ ∫ t

xj−d+1

(t− s)df (d+1)(s)ds
∣∣∣

⩽
1

d!

∫ t

xj−d+1

(t− s)d|f (d+1)(s)|ds ⩽ c

d!

∫ t

xj−d+1

(t− s)d (σ(s))
1−d−ν

ds.

First, let us take j = d, . . . , n − d. Then, σ(s) = s, s ⩾ xj−d+1 ⩾ (2d)−rxj+d

and 1− d− ν < 0. Using this result we get

|f(t)− Pd,j(t)| ⩽
c

d!

∫ t

xj−d+1

(t− s)ds1−d−νds ⩽
c

d!

∫ xj+d

xj−d+1

|t− s|ds1−d−νds

⩽
c

d!
(xj+d − xj−d+1)

d
∫ xj+d

xj−d+1

s1−d−νds ⩽
c′0
d!

(xj+d − xj−d+1)
d+1

(xj+d)
1−d−ν

.

Since xj−d+1 = 1
2

(
j−d+1

n

)r

and xj+d − xj−d+1 ⩽ (2d−1)r
2 (j + d)r−1n−r, it can

be shown (by similar reasoning as in [21], chapter 7), that

∥f − Pd,j∥∞,[xj−d+1,xj+d] ⩽ c1

{
n−(d+1), r ⩾ (d+ 1)/(2− ν),
n−r(2−ν), 1 ⩽ r ⩽ (d+ 1)/(2− ν).

Therefore,

∥f−Qdf∥∞,[xj−d+1,xj+d] ⩽ c1

{
n−(d+1), r ⩾ (d+ 1)(2− ν),
n−r(2−ν), 1 ⩽ r ⩽ (d+ 1)/(2− ν).

(2.10)

Next, we consider j = n − d + 1, . . . , n − 1. Using xn+d−1 − xn ⩽ (d−1)r
2n , it

holds

|f(t)− Pd,j(t)| ⩽
c

d!

∫ t

xj−d+1

|t− s|ds1−d−νds

⩽
c

d!

∫ xn

xj−d+1

|t− s|ds1−d−νds+
c

d!

∫ t

xn

|t− s|d(1− s)1−d−νds

⩽
c

d!

∫ xn

xn−2d+2

|t− s|ds1−d−νds+
c

d!
(xn+d − xn)

d
∫ xn+d−1

xn

(1− s)1−d−νds

⩽
c0
d!

(xn − xn−2d+2)
d+1

(xn)
1−d−ν +

c

d!
(xn+d−1 − xn)

d+1
(1− xn)

1−d−ν

⩽ c1

(( r

n

)d+1

+
( r

2n

))d+1

⩽ c1n
−(d+1) .

Then,
∥f −Qdf∥∞,[xn−2d+2,xn+d−1] ⩽ c1n

−(d+1) . (2.11)

By (2.9), (2.10) and (2.11) we deduce the estimate (2.7), for j = 0, . . . , n− 1.
Due to the symmetry argument the proof is similar, on the other half of the

interval [0, 1], for j = n, . . . , 2n− 1.
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For the estimate (2.8), it is easy to see that the local error associated with Qd

satisfies the inequality

sup
xj−1<t<xj

|f(t)−Qdf(t)| ⩽ c (xj−xj−1)
d+1

σ(xj)
1−d−ν , j = 1, . . . , 2n. (2.12)

Using (2.12) and the symmetry of the graded grid partition, we get∫ 1

0

|f(t)−Qdf(t)|dt =
n∑

j=1

∫ xj

xj−1

|f(t)−Qdf(t)|dt+
2n∑

j=n+1

∫ xj

xj−1

|f(t)−Qdf(t)|dt

⩽ c

n∑
j=1

(xj − xj−1)
d+2

(xj)
1−d−ν

+ c

2n∑
j=n+1

(xj − xj−1)
d+2

(1− xj)
1−d−ν

⩽ 2c

n∑
j=1

(
1

2
rjr−1n−r

)d+2 (
1

2

(
j

n

)r)1−d−ν

⩽ c0n
−r(3−ν)

n∑
j=1

jr(3−ν)−d−2.

From the fact that for a real ℓ the inequality

n∑
ℓ=1

ℓα ⩽ c0

{
nα+1, if α > −1,
1, if α < −1,

holds, we deduce that∫ 1

0

|f(t)−Qdf(t)|dt ⩽ c

{
n−(d+1), r ⩾ (d+ 1)/(3− ν),
n−r(3−ν), 1 ⩽ r < (d+ 1)/(3− ν),

which completes the proof. ⊓⊔

3 Numerical method based on Qd

Equation (1.1) can be written in operator form as{
u′(t) = Au(t) +Ku(t) + g(t),
u(0) = u0,

(3.1)

where Au(t) := a(t)u(t) and Ku(t) :=
∫ 1

0
k(t, s)u(s) ds for all t ∈ I.

Let v ∈ L∞ (0, 1) be a function given by v(t) = u′(t). Then, u is given by

u(t) = (Jv)(t) + u0 , 0 ≤ t ≤ 1,

where (Jv)(t) =
∫ t

0
v(s)ds. Using the above notations, Equation (3.1) takes the

form
v = T v + f, (3.2)

where T := (K +A)J and

f(t) := g(t) + u0a(t) + u0

∫ 1

0

k(t, s) ds , t ∈ I.

Math. Model. Anal., 29(3):442–459, 2024.
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It is to be noted that T is a compact operator from L∞(I) into L∞(I) (see,
e.g., [14]).

We propose to solve (3.2) by a collocation method based on Qd. More
precisely, we consider the approximate equation

vn −QdT vn = Qdf. (3.3)

Once vn is obtained, we calculate the approximate solution un of u by

un(t) =

∫ t

0

vn(s)ds+ u0. (3.4)

In order to solve (3.3), we transform it into a system of linear equations. Indeed,
it is straightforward to prove that vn is a spline function of the form

vn =

N∑
i=0

ciLi. (3.5)

By replacing vn with the expression given in (3.3), we obtain

N∑
i=0

ciLi =

N∑
i=0

T
( N∑

j=0

cjLj

)
(ξi)Li +

N∑
i=0

f(ξi)Li.

By using the linear property of T and discerning the coefficients corresponding
to Lj , we derive the following system

ci −
N∑
j=0

T (Lj) (ξi) cj = f (ξi) , i = 0, . . . ,N . (3.6)

Let us define the vectors

CN := (c0, . . . , cN )
T

and FN := (f(ξ0), . . . , f(ξN ))
T
,

and the matrices

A := (βj (ξi))0⩽i,j⩽N , AN := diag (a (ξi))0⩽i⩽N A,

MN :=

(∫ 1

0

k (ξi, s)βj(s)ds

)
0⩽i,j⩽N

,

with βj(s) :=
∫ s

0
Lj(v)dv, j = 0, . . . ,N . Then, system (3.6) becomes(

IN −
(
AN +MN

))
CN = FN . (3.7)

After the solution CN of (3.7) is computed, the respective approximations for
vn and un can be expressed as follows:

vn = L(t)CN , un(t) = β(t)CN + u0 ,

where

L(t) :=
(
L0(t), L1(t), . . . , LN (t)

)
, β(t) :=

(
β0(t), β1(t), . . . , βN (t)

)
.
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Remark 1. It is crucial to highlight that system (3.7) involves integrals. Dur-

ing the implementation of the method, the integrals
∫ 1

0
k (ξi, s)βj(s)ds and∫ s

0
Lj(v)dv, 0 ⩽ i, j ⩽ N can be computed exactly, thanks to the explicit

expression of the piecewise polynomial functions defining Lj . For additional
insights, please refer to the appendix section.

4 Error analysis

To ensure thoroughness, we present the theorem concerning the existence and
uniqueness of the solution for the problem (1.1).

Theorem 2. Let a, g ∈ Cm,ν [0, 1], k ∈ Wm,ν(∆), 0 < ν < 1. Furthermore,
assume that the homogeneous problem associated with (1.1) has only the trivial
solution u = 0. Under these conditions, it can be established that problem
(1.1) possesses a unique solution u ∈ Cm+1,ν−1[0, 1], and its derivative v = u′

belongs to the space Cmν [0, 1].

Proof. See, Pedas [14]. ⊓⊔

The following result establishes both existence and uniqueness of the solution
for the linear algebraic system (3.7). Its proof closely resembles that of Theo-
rem 3 in reference [1].

Theorem 3. Assume that a, g ∈ C0,ν [0, 1], k ∈ W 0,ν(∆), 0 < ν < 1. Then,
for h enough small, the linear algebraic system (3.7) has a unique solution in
RN+1, consequently, the Equation (3.3) has a unique solution vn.

The following theorem outlines the convergence rate of the presented method.
In addition, we represent c as the positive constants that remain unaffected by
n and can vary based on distinct inequalities.

Theorem 4. Assume that a, g ∈ Cd+1,ν [0, 1], k ∈ W d+1,ν(∆), 0 < ν < 1. Let
un and vn be the solutions satisfying (3.4) and (3.5), respectively. Then, for n
sufficiently large, the following error estimates hold:

∥v − vn∥∞ ⩽ c

{
n−r(2−ν) for 1 ⩽ r < (d+ 1)/(2− ν),

n−(d+1) for r ⩾ (d+ 1)/(2− ν),
(4.1)

∥u− un∥∞ ⩽ c

{
n−r(3−ν) for 1 ⩽ r < (d+ 1)/(3− ν),

n−(d+1) for r ⩾ (d+ 1)/(3− ν).
(4.2)

Proof. It follows from Theorem 3 that the Equations (3.5) and (3.4) determine
in a unique way approximate solutions vn and un for v and u respectively.
Using Theorem 2 and taking m = d + 1, we find that u ∈ Cd+2,v−1[0, 1] and
v ∈ Cd+1 ,v[0, 1]. Therefore, the estimates

∥v − vn∥∞ ⩽ c0∥v −Qdv∥∞, ∥u− un∥∞ ⩽ c

∫ 1

0

|v(s)−Qdv(s)|ds,

together with (2.7) and (2.8) of Theorem 1 lead to (4.1) and (4.2), which
completes the proof. ⊓⊔
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5 Numerical results

In order to illustrate the performance of findings outlined in the preceding
sections, we examine three examples of Fredholm integro-differential equations
that we solve by the numerical method introduced in Section 3 and based on
the operator Q2 defined by (2.3) on the interval [0 , 1] endowed with graded
grid partition (2.1).
For different values of n and grading exponent r, we compute the maximum
absolute errors

E∞ := ∥u− un∥∞ and E′
∞ := ∥v − vn∥∞ ,

where un and vn are respectively the approximate solution and its derivative.
The obtained results are shown in Tables 1–3, where the notation NCO stands
for the numerical convergence orders obtained by the logarithm to base 2 of the
ratio between two consecutive errors. Furthermore, to enable a straightforward
comparison between numerical experiments and theoretical outcomes, we have
included the anticipated theoretical convergence orders from Theorem 4 in the
final row of each table.

Example 1. Let us consider the equation u′(t) =
√
t u(t) + g(t) +

∫ 1

0

|t− s|−1/2u(s) ds , t ∈ [0 , 1],

u(0) = 0,

where the function g is selected so that u(t) = t3/2 + (1 − t)3/2 − 1 is the
exact solution. It is easy to check that u ∈ Cm,ν [0, 1] and k ∈ Wm,ν(∆) where
ν = 1/2 and m ∈ N. From Theorem 4, the theoretical convergence orders
associated to the approximate solutions un and vn are given in the following
way

E∞ = O
(
hδ(0)r

)
and E′

∞ = O
(
hδ(1)r

)
,

where

δ(0)r =

{
3, if r ⩾ 6/5,
2.5 r, if 1 ⩽ r < 6/5,

and δ(1)r =

{
3, if r ⩾ 2,
1.5 r, if 1 ⩽ r < 2.

Example 2. Now, we consider the equation u′(t) = u(t) + g(t) +

∫ 1

0

|t− s|−5/6u(s) ds , t ∈ [0 , 1],

u(0) = 1.

The function g is selected so that u(t) = t11/6+(1−t)11/6 is the exact solution.
In this case u ∈ Cm,ν [0, 1] and k ∈ Wm,ν(∆) where ν = 5/6 and m ∈ N.
By applying Theorem 4, the theoretical convergence orders are

E∞ = O
(
hδ(0)r

)
and E′

∞ = O
(
hδ(1)r

)
,
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Table 1. Absolute errors E∞ , E′
∞ and corresponding NCO.

n
r = 1 r = 1.1 r = 6/5

E∞ NCO E∞ NCO E∞ NCO

4 1.02(−01) −− 8.48(−02) −− 7.86(−02) −−
8 2.49(−02) 2.03 1.47(−02) 2.52 1.16(−02) 2.76
16 6.71(−03) 1.89 2.28(−03) 2.37 1.85(−03) 2.64
32 2.01(−03) 1.73 6.44(−04) 2.13 3.56(−04) 2.38
64 6.54(−04) 1.62 1.64(−04) 1.96 7.96(−05) 2.16
128 2.21(−04) 1.56 4.49(−05) 1.87 1.93(−05) 2.04

Theo. Value −− 2.50 −− 2.75 −− 3.00

n
r = 1 r = 1.4 r = 2

E′
∞ NCO E′

∞ NCO E′
∞ NCO

4 3.06(−01) −− 2.32(−01) −− 2.01(−01) −−
8 9.36(−02) 1.70 2.22(−02) 3.38 1.31(−02) 3.94
16 1.31(−02) 2.83 5.23(−03) 2.08 7.96(−04) 4.04
32 7.52(−03) 0.79 3.82(−04) 3.77 3.98(−05) 4.31
64 1.30(−03) 2.53 7.58(−05) 2.33 7.10(−06) 2.48
128 4.54(−04) 1.51 1.61(−05) 2.23 8.01(−07) 3.14

Theo. Value −− 1.50 −− 2.10 −− 3.00

Table 2. Absolute errors E∞ , E′
∞ and corresponding NCO.

n
r = 1 r = 1.1 r = 18/13

E∞ NCO E∞ NCO E∞ NCO

4 6.95(−02) −− 6.33(−02) −− 4.94(−02) −−
8 1.81(−02) 1.94 1.43(−02) 2.14 8.36(−03) 2.56
16 3.69(−03) 2.29 2.39(−03) 2.58 8.76(−04) 3.25
32 6.57(−04) 2.48 3.33(−04) 2.84 6.40(−05) 3.77
64 1.12(−04) 2.55 4.20(−05) 2.99 1.84(−06) 5.12
128 1.97(−05) 2.50 4.99(−06) 3.07 5.18(−08) 5.15

Theo. Value −− 2.16 −− 2.38 −− 3.00

n
r = 1 r = 1.4 r = 18/7

E′
∞ NCO E′

∞ NCO E′
∞ NCO

4 3.45(−01) −− 3.17(−01) −− 2.47(−01) −−
8 1.06(−01) 1.70 8.64(−02) 1.87 5.59(−02) 2.14
16 2.30(−02) 2.20 1.42(−02) 2.60 4.28(−03) 3.70
32 3.58(−03) 2.68 1.82(−03) 2.96 2.69(−04) 3.99
64 6.67(−04) 2.42 2.55(−04) 2.83 1.62(−05) 4.04
128 1.21(−04) 2.45 3.10(−06) 1.78 1.01(−07) 4.01

Theo. Value −− 1.16 −− 1.63 −− 3.00

where

δ(0)r =

{
3, if r ⩾ 18/13,
(13/8) r, if 1 ⩽ r < 18/13,

δ(1)r =

{
3, if r ⩾ 18/7,
(7/6) r, if 1 ⩽ r < 18/7.
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Table 3. Absolute errors E∞ , E′
∞ and corresponding NCO.

n
r = 1 r = 1.05 r = 12/11

E∞ NCO E∞ NCO E∞ NCO

4 8.14(−01) −− 8.14(−01) −− 8.14(−01) −−
8 2.62(−03) 8.27 2.31(−03) 8.46 2.09(−03) 8.60
16 5.91(−04) 2.14 4.61(−04) 2.32 3.74(−04) 2.48
32 1.00(−04) 2.55 6.73(−05) 2.77 4.83(−05) 2.95
64 2.05(−05) 2.29 1.24(−05) 2.44 8.01(−06) 2.59
128 5.24(−06) 1.96 2.90(−06) 2.09 1.71(−06) 2.22

Theo. Value −− 2.75 −− 2.88 −− 3.00

n
r = 1 r = 1.1 r = 12/7

E′
∞ NCO E′

∞ NCO E′
∞ NCO

4 3.76(−02) −− 3.55(−02) −− 2.66(−02) −−
8 1.29(−02) 1.54 9.67(−03) 1.87 3.23(−03) 3.04
16 2.83(−03) 2.18 3.83(−03) 1.33 5.48(−04) 2.56
32 1.42(−03) 0.99 5.93(−04) 2.69 4.20(−05) 3.70
64 8.76(−05) 4.02 2.41(−05) 4.62 2.04(−06) 4.36
128 1.01(−05) 3.11 3.17(−06) 2.92 2.47(−07) 3.04

Theo. Value −− 1.75 −− 1.92 −− 3.00

Example 3. As third example, consider the equation u′(t) =
√
t5u(t) + g(t) +

∫ 1

0

|t− s|−1/4u(s) ds , t ∈ [0 , 1],

u(0) = 0.

The function g is selected so that u(t) = t7/4 + (1 − t)7/4 − 1 is the exact
solution. In this case u ∈ Cm,ν [0, 1] and k ∈ Wm,ν(∆), where ν = 1/4 and
m ∈ N.
From Theorem 4, the theoretical convergence orders are

E∞ = O
(
hδ(0)r

)
and E′

∞ = O
(
hδ(1)r

)
,

where

δ(0)r =


3, if r ⩾

12

11
,

11

4
r, if 1 ⩽ r <

12

11
,

and δ(1)r =


3, if r ⩾

12

7
,

7

4
r, if 1 ⩽ r <

12

7
.

From Tables 1–3 we can see that the used method provides small and inter-
esting errors. In most case, they are bigger than the expected ones according
to the theoretical results. This phenomenon is worth examining further in a
future paper.

6 Conclusions

In this paper, we have introduced a numerical method based on spline quasi-
interpolation operators defined on a bounded interval, designed to numerically
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solve a specific class of FIDEs with weakly singular kernels. We have thor-
oughly discussed the computational aspects involved in obtaining the approx-
imate solution. Additionally, we presented and proved theoretical results con-
cerning the convergence order, considering both the quasi-interpolant degree
and the grading exponent of the graded grid partition. Throughout our exper-
iments, we observed that the proposed method yields interesting small errors.
Furthermore, the numerical convergence orders obtained were generally larger
than what was expected based on the theoretical results. This interesting phe-
nomenon warrants further investigation, and we intend to explore it in a future
paper. While the majority of the numerical tests have confirmed the theoretical
results, we acknowledge that in some cases, when the number of subintervals is
sufficiently large, the convergence orders decrease significantly. This could be
related to round-off errors caused by the concentration of subdivision nodes at
the extremities.
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Appendix: The exact computation of the integrals involved
in the linear system (3.7)

In this section, we report the exact calculation of the integrals appearing in the
linear system (3.7), which must be solved to implement the method presented
in this paper. We restrict ourselves to the case where the kernel is defined as

k(t, s) := |t− s|−ν , 0 < ν < 1,

and the basis functions are given by quadratic B-splines explicitly defined on
the partition Xn (see [4]).

B0(x) =


(x− x0)

2

(x0 − x1)2
, if x0 ⩽ x < x1,

0 , otherwise ,

B1(x) =



(−x+ x0)(−2x1x2 + x0(x1 + x2) + x(−2x0 + x1 + x2))

(x1 − x0)2(x2 − x0)
,

if x0 ⩽ x < x1,
(x− x2)

2

(x2 − x1)(x2 − x0)
, if x1 ⩽ x < x2,

0 , otherwise ,

Bj(x) =



(x− xj−2)
2

(xj−1 − xj−2)(xj − xj−2)
, if xj−2 ⩽ x < xj−1,

x− xj−1

xj − xj−1

(
x− xj+1

xj−1 − xj+1
− x− xj−2

xj − xj−2

)
,

if xj−1 ⩽ x < xj , 2 ⩽ j ⩽ 2n− 1 ,
(x− xj+1)

2

(xj+1 − xj)(xj+1 − xj−1)
, if xj ⩽ x < xj+1,

0 , otherwise ,

B2n(x) =



(x− x2n−2)
2

(x2n−1 − x2n−2)(x2n − x2n−2)
, if x2n−2 ⩽ x < x2n−1,

(x− x2n)

(x2n − x2n−1)2(x2n − x2n−2)
(−2x2n−2x2n−1 + x2n(x2n−1 + x2n−2)

+x(−2x2n + x2n−1 + x2n−2)) , if x2n−1 ⩽ x < x2n,

0 , otherwise ,

B2n+1(x) =


(x− x2n−1)

2

(x2n − x2n−1)2
, if x2n−1 ⩽ x < x2n,

0 , otherwise .

First, we calculate for j = 0, . . . , 2n + 1 the integrals βj defined by βj(s) =∫ s

0

Lj(t)dt. We know that the quasi-Lagrange functions Lj are linear combi-
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nations of a finite number of B-splines. More precisely, it holds

Lj(t) =



B0(t) + a1B1(t), j = 0,

b1B1(t) + a2B2(t), j = 1,

cj−1Bj−1(t) + bjBj(t) + aj+1Bj+1(t), j = 2, . . . , 2n− 1,

c2n−1B2n−1(t) + b2nB2n(t), j = 2n,

c2nB2n(t) +B2n+1(t), j = 2n+ 1,

where the coefficients aj , bj and cj , j = 1, . . . , 2n, are given by (2.4). Hence,
Lj are piecewise polynomial functions with compact support

Supp(Lj) := [xj−3, xj+2], j = 0, . . . , 2n+ 1,

where multiple knots at the extremities are properly defined. By integrating
each Lj on its support, it is easy to see that

β0(s) =

{
P0,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = 1, 2,

λ0, s ⩾ x2,

β1(s) =

{
P1,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ, ℓ = 1, 2, 3,

λ1, s ⩾ x3,

β2(s) =

{
P2,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = 1, 2, 3, 4,

λ2, s ⩾ x4,

βj(s) =


0, s ⩽ xj−3,

Pj,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = j − 2, . . . , j + 2 , j = 3, . . . , 2n− 2,

λj , s ⩾ xj+2,

β2n−1(s) =


0, s ⩽ x2n−4,

P2n−1,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = 2n− 3, . . . , 2n,

λ2n−1, s ⩾ x2n,

β2n(s) =


0, s ⩽ x2n−3,

P2n,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = 2n− 2, . . . , 2n,

λ2n, s ⩾ x2n,

β2n+1(s) =


0, s ⩽ x2n−2,

P2n+1,ℓ(s), xℓ−1 ⩽ s ⩽ xℓ , ℓ = 2n− 1, . . . , 2n,

λ2n+1, s ⩾ x2n,

where Pj,ℓ, j = 0, . . . , 2n + 1, ℓ = 0, . . . , 2n + 1 , are cubic polynomials of the

form Pj,ℓ(s) = αj,ℓ
3 s3 + αj,ℓ

2 s2 + αj,ℓ
1 s+ αj,ℓ

0 and λj , j = 0, . . . , 2n+ 1, are real
constants. We can now give the expressions of the integrals

Ij(x) :=
∫ 1

0

k (x, s)βj(s)ds, x ∈ [0, 1].
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Indeed, let Bk
ν [a, b] be the functions defined for k ∈ {0, 1, 2, 3}, 0 ⩽ a , b ⩽

1 and 0 < ν < 1, by

Bk
ν [a, b](x) :=

∫ b

a

sk|x− s|−νds, x ∈ [0, 1].

These functions are exactly computed with the help of a computer algebra
system. Then, from the formulas of βj given above, it is easy to show that the
required integrals are given by

I0 (ξi) =
2∑

ℓ=1

3∑
k=0

α0,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) + λ0B0
ν [x2, 1] (ξi) ,

I1 (ξi) =
3∑

ℓ=1

3∑
k=0

α1,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) + λ1B0
ν [x3, 1] (ξi) ,

I2 (ξi) =
4∑

ℓ=1

3∑
k=0

α2,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) + λ2B0
ν [x4, 1] (ξi) ,

Ij (ξi) =
j+2∑

ℓ=j−2

3∑
k=0

αj,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) + λjB0
ν [xj+2, 1] (ξi) , j = 3 , . . . , 2n− 2,

I2n−1 (ξi) =

2n∑
ℓ=2n−3

3∑
k=0

α2n−1,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) ,

I2n (ξi) =
2n∑

ℓ=2n−2

3∑
k=0

α2n,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) ,

I2n+1 (ξi) =

2n∑
ℓ=2n−1

3∑
k=0

α2n+1,ℓ
k Bk

ν [xℓ−1, xℓ] (ξi) .

Math. Model. Anal., 29(3):442–459, 2024.
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