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Abstract. We analyze how different relations in the lower order terms lead to the
same regularizing effect on singular problems whose model is −∆u+g(x, u) = f(x)/uγ

in Ω, u = 0 on ∂Ω, where Ω is a bounded open set of RN , γ > 0, f(x) is a
nonnegative function in L1(Ω) and g(x, s) is a Carathéodory function. In a framework
where no H1

0 (Ω) solution is expected, we prove its existence (regularizing effect)
whenever the datum f interacts conveniently either with the boundary of the domain
or with the lower order term.
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1 Introduction

In this paper, we study the following boundary value problem{
−div(M(x)∇u) + g(x, u) = f(x)/uγ in Ω,
u = 0 on ∂Ω.

(1.1)
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Here, Ω is a bounded open subset of RN (N ≥ 2) and M(x) is a bounded
elliptic matrix, i.e., there exist α, β > 0 such that

α|ξ|2 ≤M(x)ξ · ξ, |M(x)| ≤ β (1.2)

for every ξ ∈ RN and for almost every x in Ω. We also assume that f ∈ L1(Ω)
is a nonnegative function and that g(x, s) is a Carathéodory function (that is,
measurable with respect to x for every s ∈ R and continuous with respect to s
for almost every x ∈ Ω).

The scope of this paper is to analyze the existence of solutions to (1.1)
in H1

0 (Ω) in a wider range of values of the parameter γ or functions g than
currently known (regularizing effect). Therefore, we put in evidence that in
spite of the fact that the datum f only belongs to L1(Ω), the interplay given
by f and the boundary of Ω or with the lower order term provides a regularizing
effect on the problem (1.1). We review now the literature of problems related to
(1.1) in order to present our main results. Then we will carry out an exhaustive
analysis of our hypotheses which will show that they are natural with respect
to such literature.

The boundary value problem{
−div(M(x)∇u) = h(x, u) in Ω,
u = 0 on ∂Ω,

(1.3)

with h(x, s) singular at s = 0 has been extensively studied. In [8] the authors
dealt with some singular problems including the cases h(x, s) = f(x)e1/s or
h(x, s) = f(x)/sγ for a regular function f(x) and they proved the existence of
classical solution to problem (1.3) withM(x) being the identity matrix. Similar
results were proved in [7,17] for a regular matrix M(x) and a regular function
h(x, s) uniformly bounded for s > 1 with lims→0 h(x, s) = +∞ uniformly for
x ∈ Ω. Furthermore, in [7] it is proved some continuity properties of the
solution if h(x, s) does not depend on x.

In [13], the authors studied the problem (1.3) with h(x, s) = f(x)/sγ and
f(x) a positive Hölder continuous function in Ω and it is showed that this
problem has a classical solution which may not be in H1

0 (Ω). Concretely, it is
proved that the solution belongs to H1

0 (Ω) if, and only if, γ < 3. Moreover,
they established that for γ > 1 the solution is not in C1(Ω) (confront these
results with Theorem 1 below). Some extensions may be found, in the case
h(x, s) = f(x)h̃(s), among others in [11,12] for Ω = RN and in [18] for bounded
domains. In this last case f(x) may be singular at the boundary.

We highlight the paper [4], in which the authors extensively studied problem
(1.3) in the case h(x, s) = f(x)/sγ with f ∈ Lm(Ω) for m ≥ 1 and existence
results depending on γ and on the summability of f are obtained. For γ = 1
and f ∈ L1(Ω), they proved the existence of a solution belonging to H1

0 (Ω). A
similar result for the case γ < 1 is proved but they imposed more summability
on f , namely f ∈ Lm(Ω) with m ≥ C(N, γ) > 1. Finally, for the case γ > 1
and f ∈ L1(Ω) it was proved the existence of a solution u belonging to H1

loc(Ω)
satisfying that u(γ+1)/2 belongs to H1

0 (Ω).
In [2], the authors partially improved the results in [4] for the case γ > 1

by adding more restrictive hypotheses. Specifically, in a regular domain and
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for f ∈ Lm(Ω) greater than a positive constant the existence of a finite energy
solution to (1.1) is proved, with g ≡ 0, for every 1 < γ < (3m− 1)/(m+ 1).
These results seem to be optimal since, for f ∈ L∞(Ω), it is proved in [13] that
such solution belongs to H1

0 (Ω) for all γ < 3. The existence of energy solutions
is also discussed in [3] for elliptic systems involving a singular equation related
to (1.1), for which, with frozen unknown, they prove existence and uniqueness
of bounded solutions.

We also have to mention that existence of solution for problem (1.3) in the
case h(x, s) = f(x)/sγ with f ∈ Lm(Ω) form ≥ 1 is obtained in [9,10] where the
notion of solution is understood in a different sense from the one studied in the
paper [4]. We point out that the cases h(x, s) = f(x)/sγ+µ and h(x, s) = µh̃(s)
with µ a nonnegative Radon measure have been studied in [14,15]. Moreover the
case of a variable exponent γ = γ(x), i.e., h(x, s) = cf(x)/sγ(x) is considered
in [6].

Now, we present our principal results. Our approach is twofold, on one hand
we extend to the problem (1.1) some known results for (1.3) and on the other
hand we analyze the regularizing effect produced by different interplays of f(x),
illustrated here according to whether γ is greater or less than one. Firstly, we
prove some regularity and non-regularity results for the problem (1.1) when
γ > 1 depending on the interplay of the behavior of the datum f(x) near the
boundary of Ω and the behavior of g(x, s) when s is near zero. Secondly, we
study the problem (1.1) with γ ≤ 1 and g(x, s) = a(x)g̃(s) according to the
interplay between f(x) and a(x).

In the first case (γ > 1), we will assume that there exists r > −1 such that,
the function f(x) satisfies, for some m1 > 0, that

f(x) ≥ m1φ
r
1 a.e. in Ω, (1.4)

where φ1 denotes a positive eigenfunction associated to the first eigenvalue
of the operator −div(M(x)∇·) with zero Dirichlet boundary condition. The
relation between φ1 and a solution u to problem (1.3) when h(x, s) = f(x)/sγ

and γ > 1 was highlighted in [13] where the authors proved that u
γ+1
2 /φ1 is

bounded by two positive constants. They also observed that this result can be
slightly improved when (1.4) is imposed (with 0 < r < γ+1). Thus, we remark
that hypothesis (1.4) (and also (1.8) below) is quite natural and more general
with respect to the previous results in [13].

Regarding the function g : Ω × R+
0 → R we assume that is a Carathéodory

function verifying that

g(x, s) is nonnegative and increasing in s for a.e. x ∈ Ω, (1.5)

g(·, s) ∈ L1
loc(Ω) for each s≫ 0 fixed. (1.6)

Moreover, we suppose that there exists some 0 < s0 < 1 and some c1, c2 > 0
such that  g(x, s) ≤ c1s

r−2γ
2+r , if r ≥ 2γ,

g(x, s) ≤ c1(s+ c2)
r−2γ
2+r , if r < 2γ,

(1.7)

for every 0 ≤ s ≤ s0 and almost every x ∈ Ω. A simple model of function g is
g(x, s) = a(x)st with a ∈ L∞(Ω) and t ≥ max {0, (r − 2)γ/(2 + r)}.

Math. Model. Anal., 28(4):561–580, 2023.
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Finally, the regularity result is obtained when there exists m2 > 0 and an
open neighborhood of ∂Ω in Ω, denoted by Γ , such that

f(x) ≤ m2φ
r
1 a.e. in Γ. (1.8)

The main result of the paper in the case γ > 1 is the following one.

Theorem 1. Assume that Ω satisfies the interior sphere condition, γ > 1,
M(x) verifies (1.2) and that g(x, s) satisfies (1.5) and (1.6). Assume also
that there exists r > −1 such that 0 ≤ f ∈ L1(Ω) satisfies (1.4) and g(x, s)
verifies (1.7). Then, there exists u ∈ H1

loc(Ω) solution to (1.1) such that the

function u
γ+1
2 ∈ H1

0 (Ω) and:

i) If γ > max{1, r + 1}, then u /∈ C1(Ω).

ii) If 1 < γ < 2r + 3 and f(x) satisfies (1.8), then u ∈ H1
0 (Ω).

iii) If γ ≥ 2r+3, f(x) satisfies (1.8) and u is bounded in Γ , then u ̸∈ H1
0 (Ω).

We remark that, under more restrictive hypotheses, Theorem 1 improves
the results in [2] when −1 < r < 0. Indeed, (1.8) implies that f ∈ Lm(Γ )
for every m < 1

−r and we establish the existence of a solution in H1
0 (Ω) for

1 < γ < 2r + 3. In [2], for f ∈ L1/−r(Ω) the authors obtain this existence
result only for 1 < γ < (3 + r)/(1− r) (note that (3 + r)/(1− r) < 2r + 3 if
−1 < r < 0).

Third item of Theorem 1 gives, in some sense, the sharpness of the exponent
2r+3 in order to obtain energy solutions. We remark, that condition u bounded
in Γ can be removed under additional conditions on f and g. Indeed, whenever
f satisfies (1.8) in Ω then u ∈ L∞(Ω). Also arguing as in [3] it is possible to
prove that solutions are bounded if g(x, s)sγ ≥ f(x) for s large.

In the second case (γ ≤ 1), we are inspired by [1]. We assume the particular
case g(x, s) = a(x)g̃(s), where g̃ : R → R is a function satisfying that

g̃ is continuous, increasing and odd and we denote g̃∞ = lim
s→+∞

g̃(s). (1.9)

We also assume that

0 ≤ a(x), f(x) ∈ L1(Ω) (1.10)

and the “Q-condition”:

there exists Q ∈ (0, g̃∞) such that f(x) ≤ Qa(x) a.e. in Ω. (1.11)

Notice that (1.11) is now quite natural in order to obtain more regularity
since this regularizing phenomenon was first pointed out in the literature by
D. Arcoya and L. Boccardo in [1].

Our main result of the paper in the case γ ≤ 1 is the following one.

Theorem 2. Assume that γ ≤ 1, M(x) satisfies (1.2) and g(x, u) = a(x)g̃(u)
where g̃ verifies (1.9). Assume also that a(x) and f(x) both satisfy (1.10)
and (1.11). Then the problem (1.1) has a unique solution u ∈ H1

0 (Ω)∩L∞(Ω).
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The plan of the paper is the following. In Section 2, we establish the
definition of solution that we adopt in this paper and we prove some preliminary
results mainly related with Theorem 1. Then, in Section 3, we prove Theorem 1,
which is based on a comparison principle between the approximated solutions
and a suitable power of φ1 proved in the preceding section. Finally, Section 4
is devoted to the proof of Theorem 2.

2 Preliminaries

The concept of solution we adopt is gathered in the following definition.

Definition 1. A function u ∈ H1
loc(Ω) such that u ≥ 0 a.e. in Ω, satisfying

also that g(·, u) ∈ L1
loc(Ω), f/uγ ∈ L1

loc(Ω) is a supersolution to problem (1.1)
if ∫

Ω

M(x)∇u∇ϕ+

∫
Ω

g(x, u)ϕ ≥
∫
Ω

f

uγ
ϕ, ∀0 ≤ ϕ ∈ C1

c (Ω).

When the reverse inequality is satisfied and uτ ∈ H1
0 (Ω) for some τ > 0, we

understand that u is a subsolution for problem (1.1).
A function u ∈ H1

loc(Ω) is a solution for (1.1) if it is both a subsolution and
a supersolution for such a problem. If, in addition, u ∈ H1

0 (Ω), we say that u
is a finite energy solution for problem (1.1).

Let us clarify that the function
f

uγ
ϕ takes the value +∞ in the case u = 0

and fϕ ̸= 0 while takes the value zero whenever fϕ = 0.

Remark 1. A sufficient condition to obtain f/uγ ∈ L1
loc(Ω) is that u be uni-

formly bounded from below by a positive constant in every subset compactly
contained in Ω. Namely, for all ω ⊂⊂ Ω there exists some cω > 0 such that
u ≥ cω > 0 in ω.

Remark 2. Arguing as in [5, Appendix], if u ∈ H1
0 (Ω) ∩ L∞(Ω) is a solution

of (1.1) with g(·, u) ∈ L1(Ω), then
f

uγ
ϕ ∈ L1(Ω) for all ϕ ∈ H1

0 (Ω) ∩ L∞(Ω)

and ∫
Ω

M(x)∇u∇ϕ+

∫
Ω

g(x, u)ϕ =

∫
Ω

f

uγ
ϕ, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω).

In order to prove our main results we proceed as usual by approximation.
For any k > 0 we set Tk(s) = min{k,max{s,−k}} and Gk(s) = s− Tk(s).

The proofs of Theorem 1 and Theorem 2 rely on approximating the problem
(1.1) by a certain sequence of approximated problems{

−div(M(x)∇un) + gn(x, un) = fn(x)/
(
|un|+

1

n

)γ

in Ω,

un = 0 on ∂Ω,
(2.1)

and on the fact that the sequence of solutions to (2.1) converges, as n → ∞,
to a solution to (1.1).

In the next result, we summarize the main existence results for the approx-
imated problems (2.1).

Math. Model. Anal., 28(4):561–580, 2023.
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Lemma 1. Assume that 0 ≤ fn ∈ L∞(Ω) and gn(x, s) is a Carathéodory func-
tion with gn(x, s)s ≥ 0 for every s ∈ R and a.e. x ∈ Ω and gn is bounded for s
in bounded sets. There exists 0 ≤ un ∈ H1

0 (Ω) solution of (2.1) for every fixed
n ∈ N. In addition, for γ ≤ 1 we have that un ∈ L∞(Ω). Moreover, in the case
γ > 1, the existence of solution un ∈ H1

0 (Ω) is deduced even for fn ∈ L1(Ω).

Proof. The existence of un ∈ H1
0 (Ω) for fn ∈ L∞(Ω) is consequence of the

Schauder Theorem. In the case γ ≤ 1 using Stampacchia Theorem (see [16]), we
can assure that un ∈ L∞(Ω). Moreover, for fn ∈ L1(Ω) we can use the previous
existence result approaching fn(x) by fn,m(x) = Tm(fn(x)) and passing to the
limit as m → ∞. Here, to obtain the a priori estimate in H1

0 (Ω) it is key to
use the fact that γ > 1.

Finally, let us remark that un ≥ 0 since fn is nonnegative and gn(x, s)s ≥ 0.
⊓⊔

The rest of the section is devoted to the case γ > 1 where we approximate
the nonlinearity g(x, s) by a suitable sequence of Carathéodory functions gn
defined in Ω × R. Specifically, we define

gn(x, s) =

 Tn(g(x, s)), s ≥ 1/n,
n s Tn(g(x, s)), 0 < s < 1/n,
0, s ≤ 0.

(2.2)

Observe that gn(x, s) is increasing in s for a.e. x ∈ Ω when (1.5) is satisfied
and that gn(x, s) ≤ g(x, s) for s ≥ 0.

According to whether r, given by (1.4), is positive or negative, we also
approximate or not the datum f(x). In order to deal with both cases simulta-
neously we define χ(r) = 0 for r ≤ 0 and χ(r) = c1 + 1 for r > 0, where c1 is
given by (1.7). Thus, we approximate f(x) by fn(x) as follows

fn(x) = f(x) + χ(r)/nr(γ+1)/(2+r). (2.3)

Following the ideas in [2], we prove that a certain power of an approximation
of φ1 is a subsolution of (2.1) in the following result.

Lemma 2. Assume that γ > 1, M(x) verifies (1.2), g(x, s) satisfies (1.5) and
there exists r > −1 such that 0 ≤ f(x) ∈ L1(Ω) verifies (1.4) and g(x, s)
verifies (1.7). Then, there exist C > 0 (independent of n) and n0 ∈ N such
that, for every n ≥ n0, the function

zn(x) =
(
Cφ1(x) + 1/n(γ+1)/(2+r)

) 2+r
γ+1 − 1/n

is a subsolution of (2.1) with gn and fn given by (2.2) and (2.3) respectively.
Moreover, denoting un to the solution of (2.1) given by Lemma 1, we have

zn ≤ un a.e. in Ω.

Proof. First, let us note that zn ∈ H1
0 (Ω)∩L∞(Ω) since φ1 ∈ H1

0 (Ω)∩L∞(Ω).
Let us denote

wn(x) = Cφ1(x) + 1/n(γ+1)/(2+r).
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On the one hand, we have

∇zn =
C(2 + r)

γ + 1
w(1+r−γ)/(γ+1)

n ∇φ1

and thus

−div(M(x)∇zn) = −∇
(
C(2 + r)

γ + 1
w(1+r−γ)/(γ+1)

n

)
M(x)∇φ1 (2.4)

+
C(2 + r)

γ + 1
w(1+r−γ)/(γ+1)

n

(
− div(M(x)∇φ1)

)
=
C2(2 + r)(γ − r − 1)

(γ + 1)2
w(r−2γ)/(γ+1)

n M(x)∇φ1∇φ1

+
Cλ1(2 + r)

γ + 1
w(1+r−γ)/(γ+1)

n φ1

=
C

w
(2γ−r)/(γ+1)
n

[
C(2 + r)(γ − r − 1)

(γ + 1)2
M(x)∇φ1∇φ1 +

λ1(2 + r)

γ + 1
wnφ1

]

≤ C2

w
(2γ−r)/(γ+1)
n

[
β(2 + r)|γ − r − 1|

(γ + 1)2
∥∇φ1∥2L∞(Ω)

+
λ1(2 + r)

γ + 1

(
∥φ1∥2L∞(Ω) + ∥φ1∥L∞(Ω)

)]

≡ C2b

w
(2γ−r)/(γ+1)
n

=
C2bwr

n

w
γ(2+r)/(γ+1)
n

=
C2bwr

n

(zn + 1/n)
γ .

Now, since g(x, s) satisfies (1.7), we deduce in the set {zn(x) < s0}

gn(x, zn) ≤ g(x, zn) ≤ c̃

(
zn +

1

n

) r−2γ
2+r

=
c̃
(
zn + 1

n

) γ+1
2+r r(

zn + 1
n

)γ =
c̃wr

n(
zn + 1

n

)γ , (2.5)

where c̃ = c1 in the case r > 0 and c̃ = C in the case −1 < r ≤ 0. Actually
we claim that, using (1.7), given −1 < r ≤ 0, for every fixed small C, and

for n large enough there exists s0(C) ∈ (0, 1) with g(x, s) ≤ C(s + 1
n )

r−2γ
2+r for

every 0 < s < s0(C) and (Cφ1(x))
2+r
γ+1 < s0(C). Indeed, observe that since

1 + r − γ < 0, it is enough to take

∥φ1∥
2+r
γ+1

L∞(Ω) <
c2

c
2+r
2γ−r

1 − C
2+r
2γ−r

,
(
C∥φ1∥L∞(Ω)

) 2+r
γ+1 < s0(C) <

c2 (C/c1)
2+r
2γ−r

1− (C/c1)
2+r
2γ−r

.

Thus, given C > 0 small and s0(C) as above, we can choose n0 ∈ N large
enough such that

zn(x) ≤ s0(C), ∀x ∈ Ω, ∀n ≥ n0.

Math. Model. Anal., 28(4):561–580, 2023.
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Combining the inequalities (2.4) and (2.5), and taking into account (1.4)
we have, for C small enough, that

− div(M(x)∇zn) + gn(x, zn) ≤
(C2b+ c̃)wr

n

(zn + 1/n)
γ (2.6)

≤
(C2b+ c̃)

[
Cr

m1
f(x) + χ(r)/(c1+1)

nr(γ+1)/(r+2)

]
(zn + 1/n)

γ ≤ fn(x)

(zn + 1/n)
γ ,

i.e., that zn is a subsolution of (2.1). Here we have used that (C2b+ c̃)Cr → 0
as C → 0 (in the case −1 < r ≤ 0 we have that c̃ = C).

Now, we take (zn−un)+ ∈ H1
0 (Ω)∩L∞(Ω) as test function in the inequal-

ity (2.6) satisfied by zn and in the problem (2.1) that satisfies un. Then, we
subtract them, and applying (1.2) and that gn(x, s) is increasing in s by (1.5)
it follows that

α

∫
Ω

|∇(zn−un)+|2 ≤ α

∫
Ω

|∇(zn−un)+|2+
∫
Ω

[gn(x, zn)−gn(x, un)] (zn−un)+

≤
∫
Ω

fn(x)

[
1

(zn + 1/n)
γ − 1

(un + 1/n)
γ

]
(zn − un)

+ ≤ 0.

Therefore, we deduce that (zn − un)
+ = 0 a.e. in Ω and we can conclude

that zn ≤ un a.e. in Ω. ⊓⊔

In [4] it is proved existence of a solution to (1.1) with g(x, s) = 0. In order to
do that the authors approached the problem (1.1) with g(x, s) = 0 by a suitable
sequence of approximated problems such that, its corresponding sequence of
solutions {vn} is an increasing sequence. Then, they apply the strong maximum
principle to v1 and, in this way, they obtain the uniform lower boundedness of
vn in every subset compactly contained in Ω.

Here, we cannot obtain that {un}, the sequence of solutions to (2.1) with gn
and fn given by (2.2) and (2.3) respectively, is an increasing sequence. In fact,
we could not even apply the strong maximum principle to any un. However,
Lemma 2 allows us to obtain an uniform lower bound for un, for n ≥ n0, and
this suffices to prove the existence of a solution of (1.1). The first part of this
proof is similar to [4, Lemma 4.1], but we include it here for the convenience
of the reader.

Theorem 3. Assume that γ > 1, M(x) verifies (1.2) and g(x, s) satisfies (1.5)
and (1.6). Assume also that there exists r > −1 such that 0 ≤ f(x) ∈ L1(Ω)
satisfies (1.4) and g(x, s) verifies (1.7).

Then, there exists u ∈ H1
loc(Ω) solution of (1.1) satisfying that the function

u
γ+1
2 ∈ H1

0 (Ω). Moreover, if un satisfies (2.1) with gn and fn given by (2.2)
and (2.3) respectively, then un → u a.e. in Ω.

Remark 3. If γ ≤ 1 the existence and regularity results cotained in [4] are still
true for (1.1) with the hypotheses of this theorem.
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Proof. First of all, let us note that since φ1 ∈ C(Ω) is positive and the function

s 7→ (c + s
γ+1
2+r )

2+r
γ+1 − s with c > 0 is greater than a positive constant in [0, 1],

we deduce thanks to the Lemma 2 that

∀ω ⊂⊂ Ω, ∃cω : un ≥ cω > 0 in ω for every n ≥ n0, (2.7)

where n0 ∈ N is given by the Lemma 2. So, in what follows, let us fix n ≥ n0.

Now, we claim that the sequence {u(γ+1)/2
n }n≥n0

is bounded in H1
0 (Ω). For

γ > 1 we take Tk(un)
γ ∈ H1

0 (Ω) ∩ L∞(Ω) with k > 0 as test function in (2.1)
and, using (1.2) and (1.5), we obtain

αγ

∫
Ω

|∇Tk(un)|Tk(un)γ−1 ≤
∫
Ω

fnTk(un)
γ

(un + 1/n)
γ

≤
∫
Ω

fnu
γ
n

(un + 1/n)
γ ≤

∫
Ω

fn ≤
∫
Ω

[f + 1 + c1].

Since ∫
Ω

|∇Tk(un)|Tk(un)γ−1 =
4

(γ + 1)2

∫
Ω

∣∣∣∇Tk(un) γ+1
2

∣∣∣2 ,
we deduce that

{
Tk(un)

γ+1
2

}
n≥n0

is bounded in H1
0 (Ω) by a constant inde-

pendent of k, so we can apply Fatou Lemma to conclude that {u(γ+1)/2
n }n≥n0

is bounded in H1
0 (Ω). Moreover, by the Sobolev embedding we have that the

sequence {un}n≥n0
is bounded in Lτ (Ω) with τ = 2⋆(γ + 1)/2.

After this, we will prove that {un}n≥n0 is bounded in H1
loc(Ω).

Let ϕ ∈ C1
0(Ω) and let ω = {ϕ ̸= 0}. Choosing Tk(un)ϕ2 ∈ H1

0 (Ω)∩L∞(Ω)
with k > 0 as test function in (2.1), we have, recalling (1.2), (1.5) and (2.7),

α

∫
Ω

|∇Tk(un)|2ϕ2+2

∫
Ω

M(x)∇un∇ϕ Tk(un)ϕ ≤
∫
Ω

fnTk(un)ϕ
2

(un + 1/n)
γ

≤
∫
Ω

fnϕ
2

(un + 1/n)
γ−1 ≤ 1

cγ−1
ω

∫
Ω

fnϕ
2.

By (1.2) and by Young inequality, we deduce

−2

∫
Ω

M(x)∇un∇ϕ Tk(un)ϕ ≤ 2β

∫
Ω

|∇un| |∇ϕ|un |ϕ|

≤ α

2

∫
Ω

|∇un|2ϕ2 +
2β2

α

∫
Ω

|∇ϕ|2u2n

and thus

α

∫
Ω

|∇Tk(un)|2ϕ2 ≤ 1

cγ−1
ω

∫
Ω

fnϕ
2 +

α

2

∫
Ω

|∇un|2ϕ2 +
2β2

α

∫
Ω

|∇ϕ|2u2n.

Taking limits when k → +∞ and applying Fatou Lemma in the left hand side
integral we obtain

α

∫
Ω

|∇un|2ϕ2 ≤ 1

cγ−1
ω

∫
Ω

fnϕ
2 +

α

2

∫
Ω

|∇un|2ϕ2 +
2β2

α

∫
Ω

|∇ϕ|2u2n.
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Finally, due to the boundedness of {un}n≥n0
in Lτ (Ω) with τ ≥ 2 we have

α

2

∫
Ω

|∇un|2ϕ2 ≤ 1

cγ−1
ω

∫
Ω

fnϕ
2 +

2β2

α

∫
Ω

|∇ϕ|2u2n

≤
∥ϕ∥2L∞(Ω)

cγ−1
ω

∫
Ω

[f + 1 + c1] +
2β2

α
∥∇ϕ∥2L∞(Ω)

∫
Ω

u2n ≤ C(f, ϕ, ω),

so that the sequence {un}n≥n0
is bounded in H1

loc(Ω).
Thanks to this boundedness, there exists a function u ∈ H1

loc(Ω) and a
subsequence of {un}, still denoted by {un}, such that {un} converges to u
weakly in H1

loc(Ω) and a.e. in Ω. As a consequence of (2.7), u also satisfies
that

∀ω ⊂⊂ Ω, ∃cω : u ≥ cω > 0 in ω. (2.8)

Now, we prove that g(x, u) ∈ L1(Ω). Since gn(x, un) is bounded by a
constant in the set {un ≤ s0} due to (1.7) it follows that∫
Ω

gn(x, un) =

∫
{un≤s0}

gn(x, un)+

∫
{un>s0}

gn(x, un) ≤ C1+

∫
{un>s0}

gn(x, un).

Taking ψ(un) = T1

(
max{0, 2

s0
(un − s0

2 )}
)
∈ H1

0 (Ω) ∩ L∞(Ω) as test function

in (2.1) and dropping positive terms we get∫
{un>s0}

gn(x, un) ≤
∫
{un>

s0
2 }

fn
(un + 1/n)

γ

≤
(

2

s0

)γ ∫
{un>

s0
2 }

fn ≤
(

2

s0

)γ ∫
Ω

[f + 1 + c1],

so the sequence {gn(x, un)} is bounded in L1(Ω) and thus g(x, u) ∈ L1(Ω) as
a consequence of Fatou Lemma.

To conclude the proof it only remains to pass to the limit on n in the
equation satisfied by un∫

Ω

M(x)∇un∇ϕ+

∫
Ω

gn(x, un)ϕ =

∫
Ω

fnϕ

(un + 1/n)
γ , ∀ϕ ∈ C1

c (Ω).

Let us fix ϕ ∈ C1
0(Ω). First, since un ⇀ u in H1

loc(Ω), it is satisfied

lim
n→∞

∫
Ω

M(x)∇un∇ϕ =

∫
Ω

M(x)∇u∇ϕ.

Furthermore, as un satisfies (2.7), we deduce∣∣∣∣ fnϕ

(un + 1/n)
γ

∣∣∣∣ ≤ ∥ϕ∥L∞(Ω)

cγω
(f + 1 + c1) ∈ L1(Ω),

where ω is the set {ϕ ̸= 0}. Thus, since also un → u a.e in Ω, we can apply
Lebesgue Theorem and it follows that

lim
n→∞

∫
Ω

fnϕ

(un + 1/n)
γ =

∫
Ω

fϕ

uγ
.



Regularizing Effect in Singular Semilinear Problems 571

To obtain the limit of

∫
Ω

gn(x, un)ϕ we use Vitali Theorem. In order to do

that we fix ω ⊂⊂ Ω and ε > 0. For E ⊂ ω, we have by (1.5)∫
E

gn(x, un) =

∫
E∩{un≤k}

gn(x, un) +

∫
E∩{un>k}

gn(x, un)

≤
∫
E

g(x, k) +

∫
{un>k}

gn(x, un). (2.9)

On the one hand, if we use T1(Gk−1(un)) ∈ H1
0 (Ω) ∩ L∞(Ω) for k ≥ 2 as test

function in (2.1) and we drop positive terms, we obtain∫
{un>k}

gn(x, un) ≤
∫
{un>k−1}

fn(
un + 1

n

)γ ≤
∫
{un>k−1}

fn ≤
∫
{un>k−1}

(f + 1 + c1),

because
(
un + 1

n

)γ ≥ 1 on the set {un > k−1}. Since f ∈ L1(Ω) and {un}n≥n0

is bounded in L1(Ω), there exists k1 ≥ 2 such that∫
{un>k}

gn(x, un) ≤
ε

2
, ∀k ≥ k1, ∀n ≥ n0. (2.10)

On the other hand, by (1.6) there exists k0 > k1 such that g(x, k0) ∈ L1
loc(Ω).

Then, by the absolute continuity of the integral, there exists δ > 0 such that∫
E

g(x, k0) <
ε

2
, ∀E ⊂ ω with meas(E) < δ. (2.11)

Thus, joining (2.9), (2.10) and (2.11), for every E ⊂ ω such that meas(E) < δ
we have ∫

E

gn(x, un) ≤
∫
E

g(x, k0) +

∫
{un>k0}

gn(x, un) < ε, ∀n ≥ n0,

i.e., the sequence {gn(x, un)}n≥n0
is equiintegrable in each ω ⊂⊂ Ω. As we

also have that gn(x, un) → g(x, u) a.e. in Ω since meas{u = 0} = 0 by (2.8),
we can apply Vitali Theorem to obtain

lim
n→∞

∫
Ω

gn(x, un)ϕ =

∫
Ω

g(x, u)ϕ

and thus the proof is concluded. ⊓⊔

3 Regularizing effect due to the behavior of the data at
the boundary of Ω

In this section we prove Theorem 1.

Proof of Theorem 1. In the first place, since γ > 1 we can apply Theorem 3 to

assure the existence of a solution u ∈ H1
loc(Ω) of (1.1) such that u

γ+1
2 ∈ H1

0 (Ω)
which is also the a.e. limit in Ω of the sequence {un} of solutions of (2.1).
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In order to prove item i), i.e., that u /∈ C1(Ω) if γ > r + 1 we follow the
ideas in [13]. Arguing by contradiction, suppose that u ∈ C1(Ω) for γ > r + 1.
First, observe that if x0 ∈ ∂Ω and we denote by n⃗ the inner normal to ∂Ω at
x0, then

lim
s→0+

φ1(x0 + sn⃗)

s
= lim

s→0+

φ1(x0 + sn⃗)− φ1(x0)

s
= ∇φ1(x0) · n⃗ > 0.

Now, due to Lemma 2 we have

Mφ
2+r
γ+1

1 ≤ u a.e. in Ω

for some M > 0 since un → u a.e. in Ω. Let us remark that γ > r + 1 implies
that t := (2 + r)(γ + 1) < 1. Since u ∈ C(Ω), then u(x0) = 0 and for s > 0 it
follows that

u(x0 + sn⃗)− u(x0)

s
≥Mφ1(x0 + sn⃗)t−1φ1(x0 + sn⃗)

s
.

Therefore, we have

lim
s→0+

u(x0 + sn⃗)− u(x0)

s
= +∞,

which contradicts that u ∈ C1(Ω).
Now, we deal with item ii) and we prove that u ∈ H1

0 (Ω) if 1 < γ < 2r+3.

Taking
(
Tk(un) +

1
n

)θ− 1
nθ ∈ H1

0 (Ω)∩L∞(Ω) with θ > max
{
0, γ − (r+1)(γ+1)

2+r

}
as test function in (2.1), we obtain after applying (1.2) and dropping a positive
term

αθ

∫
Ω

(Tk(un) + 1/n)
θ−1 |∇Tk(un)|2 ≤

∫
Ω

fn
(Tk(un) + 1/n)

θ − 1/nθ

(un + 1/n)
γ

≤
∫
Ω

fn (un + 1/n)
θ−γ

. (3.1)

First of all, let us note that

αθ

∫
Ω

(Tk(un) + 1/n)
θ−1 |∇Tk(un)|2 (3.2)

=
4αθ

(θ + 1)2

∫
Ω

∣∣∣∇(
(Tk(un) + 1/n)

(θ+1)/2 − 1/n
θ+1
2

)∣∣∣2 .
If we take θ < γ, we can apply the Lemma 2 to deduce∫

Ω

fn (un + 1/n)
θ−γ ≤

∫
Ω

fn

(
Cφ1(x) + 1/n(γ+1)/(2+r)

)(2+r)(θ−γ)/γ+1

. (3.3)

On one hand, there is C1 > 0 such that φ1 > C1 in Ω\Γ (Γ given by (1.8))
since φ1 > 0 in Ω, φ1 ∈ C(Ω) and Ω\Γ is closed. Therefore, we have∫

Ω\Γ
fn

(
Cφ1(x) +

1

n(γ+1)/(2+r)

) (2+r)(θ−γ)
γ+1

≤ C2

∫
Ω

(f + 1 + c1). (3.4)
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On the other hand, applying hypothesis (1.8), and using the definition of fn
given by (2.3), it follows that∫

Γ

fn

(
Cφ1(x) + 1/n(γ+1)/(2+r)

)(2+r)(θ−γ)/(γ+1)

≤
∫
Γ

(
m2φ1(x)

r +
χ(r)

nr(γ+1)/(2+r)

)(
Cφ1(x) +

1

n(γ+1)/(2+r)

) (2+r)(θ−γ)
γ+1

≤ C3

∫
Γ

(
φ1(x)

r +
χ(r)

nr(γ+1)/(2+r)

)(
φ1(x) +

χ(r)

n(γ+1)/(2+r)

) (2+r)(θ−γ)
γ+1

≤ C4

∫
Γ

(
φ1(x) +

χ(r)

n(γ+1)/(2+r)

)r (
φ1(x) +

χ(r)

n(γ+1)/(2+r)

) (2+r)(θ−γ)
γ+1

= C4

∫
Γ

(
φ1(x) + χ(r)/n(γ+1)/(2+r)

)r+(2+r)(θ−γ)/(γ+1)

.

(3.5)
In addition, let us note that∫

Γ

φ1(x)
r+(2+r)(θ−γ)/(γ+1) < +∞

since r + (2 + r)(θ − γ)/(γ + 1) > −1 because θ > γ − (r + 1)(γ + 1)/(2 + r)
and ∂Ω satisfies the interior sphere condition.

In this way, we can deduce from (3.1)–(3.5) that the sequence{
(Tk(un) + 1/n)

(θ+1)/2 − 1/n(θ+1)/2
}

is bounded in H1
0 (Ω) by a constant independent of k. For this reason, we can

use Fatou Lemma to assure{
(un + 1/n)

(θ+1)/2 − 1/n(θ+1)/2
}

is bounded in H1
0 (Ω) and thus, up to a subsequence, we can assume that it

converges weakly in H1
0 (Ω). Since un → u a.e. in Ω, this weak limit has to be

equal to u
θ+1
2 and, consequently u

θ+1
2 ∈ H1

0 (Ω).
Finally, let us note that

θ ∈ ]max {0, γ − (r + 1)(γ + 1)/(2 + r)} , γ[

if, and only if,

(θ + 1)/2 ∈ ]max {0.5, (γ + 1)/(2(2 + r))} , (γ + 1)/2[

and that

1 ∈ ]max {0.5, (γ + 1)/(2(2 + r))} , (γ + 1)/2[

if, and only if, 1 < γ < 2r + 3.
Finally, we prove item iii) i.e., u /∈ H1

0 (Ω) if γ ≥ 2r + 3 and u is bounded
in Γ . We argue by contradiction, so we assume that u ∈ H1

0 (Ω).
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In that case, z(x) = (Kφ1(x))
(2+r)/(γ+1)

is a supersolution of −div(M(x)∇z) + g(x, z) = f(x)/zγ in Γ,
z = 0 on ∂Γ ∩ ∂Ω,
z = u on ∂Ω ∩Ω,

(3.6)

for large K. Indeed, we get

−div(M(x)∇z) =
K

[
K(2+r)(γ−r−1)

(γ+1)2 M(x)∇φ1∇φ1 +
λ1(2+r)

γ+1 (Kφ1)φ1

]
(Kφ1)

2γ−r
γ+1

(3.7)

≥ K2b

(Kφ1)
2γ−r
γ+1

=
K2b(Kφ1)

r

(Kφ1)
γ(2+r)
γ+1

=
K2b(Kφ1)

r

zγ
,

where b is a positive constant. This inequality is possible since γ > r + 1,
φ1 ∈ C∞(Ω), φ1 > 0 in Ω and M(x)∇φ1∇φ1 > 0 in ∂Ω by (1.2) and by Hopf
Lemma.

Now, we use that g(x, z) ≥ 0 by (1.5), the inequality (3.7) and the hypothe-
ses (1.8) to deduce for K large enough that

−div(M(x)∇z) + g(x, z) ≥ K2b(Kφ1)
r

zγ
≥

K2+rb
m2

f(x)

zγ
≥ f(x)

zγ
, x ∈ Γ, (3.8)

i.e., z is a supersolution of (3.6). Now, we take (u − z)+ ∈ H1
0 (Ω) ∩ L∞(Ω)

as test function in the problem satisfied by u in Γ and in the inequality (3.8)
satisfied by z and subtracting we yield to

α

∫
Γ

|∇(u− z)+|2 ≤ α

∫
Γ

|∇(u− z)+|2 +
∫
Γ

(g(x, u)− g(x, z))(u− z)+

≤
∫
Γ

(f(x)/uγ − f(x)/zγ) (u− z)+ ≤ 0.

Therefore, we deduce that u ≤ z a.e. in Γ .

We recall that g(x, u) ∈ L1(Ω). Thus we can take as test function in (1.1)

Tk(u), for some k ≥ Kφ
2+r
γ+1

1 , (see Remark 2) and, due to (1.2) and (1.4), we
obtain for some K1 > 0 that

β∥u∥2H1
0 (Ω) + k∥g(x, u)∥L1(Ω) ≥ β

∫
{u≤k}

|∇u|2 +
∫
Ω

g(x, u)Tk(u)

≥
∫
Ω

f

uγ
Tk(u) ≥

∫
{u≤k}

fu1−γ ≥
∫
Γ

fu1−γ ≥ K1

∫
Γ

φ
r+

(1−γ)(2+r)
γ+1

1 = +∞.

The last equality is due to γ ≥ 2r + 3, since in this case r + (1−γ)(2+r)
γ+1 ≤ −1.

This is a contradiction which assures that u ̸∈ H1
0 (Ω) and we conclude the

proof. ⊓⊔
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4 Regularizing effect thanks to the Q-condition

In this section, we prove Theorem 2.

Proof of Theorem 2. Inspired by [1], we define the approximated problems −div(M(x)∇un) + an(x)g̃(un) =
fn(x)

(|un|+ 1/n)
γ in Ω,

un = 0 on ∂Ω,
(4.1)

where

fn(x) =
f(x)

1 + (1/n)f(x)
, an(x) =

a(x)

1 + (Q/n)a(x)
.

Note that as the function s 7→ s

1 + s/n
is increasing, we deduce by (1.11)

fn(x) ≤ Qan(x) a.e. in Ω. (4.2)

Since an(x) and fn(x) are nonnegative functions by (1.10) and g̃(s)s ≥ 0
for all s ∈ R by (1.9), we can apply Lemma 1 to assure the existence of
un ∈ H1

0 (Ω) ∩ L∞(Ω) solution of (4.1), i.e., satisfying∫
Ω

M(x)∇un∇ϕ+

∫
Ω

an(x)g̃(un)ϕ =

∫
Ω

fn(x)ϕ

(|un|+1/n)
γ , ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω).

(4.3)
Moreover, these hypotheses allow us to prove that un ≥ 0 for all n ∈ N by

taking u−n ∈ H1
0 (Ω) ∩ L∞(Ω) as test function in (4.3).

The scheme of the rest of the proof is as follows:
Step 1. {un} is bounded in L∞(Ω) and in H1

0 (Ω).
Step 2. Control of the right hand side integral of (4.3).
Step 3. Passing to the limit in (4.3).
Step 1. In this step we apply the ideas in [1]. To obtain the boundedness

of {un} in L∞(Ω) we use Gk(un) ∈ H1
0 (Ω) ∩ L∞(Ω) as test function in (4.1),

with k = max{1, g̃−1(Q)}. Let us remark that we are allowed to write g̃−1(Q)
since by (1.9) g̃ has an inverse g̃−1 in (−g̃∞, g̃∞) and 0 < Q < g̃∞. Therefore,
taking Gk(un) as test function we get thanks to (1.2) and to (4.2)

α

∫
Ω

|∇Gk(un)|2+
∫
Ω

an(x)g̃(un)Gk(un) ≤
∫
Ω

fn(x)Gk(un)

(un + 1/n)
γ

≤
∫
Ω

Qan(x)Gk(un)

(un + 1/n)
γ ≤

∫
Ω

Qan(x)Gk(un),

where in the last inequality we have used that
(
un + 1

n

)γ ≥ uγn ≥ kγ ≥ 1 on
the set {un ≥ k}. Thus, we obtain

α

∫
Ω

|∇Gk(un)|2 +
∫
Ω

an(x)[g̃(un)−Q]Gk(un) ≤ 0.

Since the second integral of the previous inequality is nonnegative because
g̃(un) ≥ Q on the set {un ≥ k} we conclude that ∥Gk(un)∥H1

0 (Ω) = 0. Then,
{un} is bounded in L∞(Ω) with ∥un∥L∞(Ω) ≤ k.
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Now, using un ∈ H1
0 (Ω) ∩ L∞(Ω) as test function in (4.1) and using this

boundedness of {un} in L∞(Ω), we can deduce by (1.2), (1.10) and (1.9)

α

∫
Ω

|∇un|2 ≤
∫
Ω

M(x)∇un∇un +

∫
Ω

an(x)g̃(un)un

=

∫
Ω

fn(x)un
(un + 1/n)

γ ≤
∫
Ω

fn(x)u
1−γ
n ≤

∫
Ω

f(x)k1−γ .

It should be noted that we have been able to obtain this a priori bound since
γ ≤ 1.

Thus, {un} is bounded in H1
0 (Ω). Therefore, there exists a subsequence,

still denoted by {un}, which converges weakly in H1
0 (Ω) and a.e. to some

0 ≤ u ∈ H1
0 (Ω) with ∥u∥L∞(Ω) ≤ k.

Step 2. In this part, we follow the ideas in [9]. We introduce for δ > 0 the
function

Zδ(s) =

 1, if 0 ≤ s ≤ δ,
−s/δ + 2, if δ ≤ s ≤ 2δ,
0, if 2δ ≤ s.

Taking Zδ(un)ϕ ∈ H1
0 (Ω)∩L∞(Ω) as test function in (4.1), where ϕ belongs

to H1
0 (Ω) ∩ L∞(Ω) with ϕ ≥ 0, one has∫

Ω

M(x)∇un∇ϕZδ(un) +

∫
Ω

an(x)g̃(un)Zδ(un)ϕ

=
1

δ

∫
{δ≤un≤2δ}

M(x)∇un∇unϕ+

∫
Ω

fn(x)

(un + 1/n)
γ Zδ(un)ϕ.

Since Zδ(un) = 1 in {un ≤ δ} and the first integral of the right hand side
is positive, we deduce the inequality

0 ≤
∫
{un≤δ}

fn(x)

(un + 1/n)
γ ϕ ≤

∫
Ω

M(x)∇un∇ϕZδ(un)+

∫
Ω

an(x)g̃(un)Zδ(un)ϕ.

Using that {un} is bounded in L∞(Ω) and converges weakly in H1
0 (Ω) and

a.e. in Ω to u, we can easily pass to the limit in n to obtain

0 ≤ lim sup
n→+∞

∫
{un≤δ}

fn(x)

(un + 1/n)
γ ϕ ≤

∫
Ω

M(x)∇u∇ϕZδ(u) +

∫
Ω

a(x)g̃(u)Zδ(u)ϕ.

Now, we pass to the limit as δ tends to 0. Let us note that Zδ(u) → χ{u=0}.
We use the fact that g̃(0) = 0, since g̃ is odd by (1.9), and we also use that
∇u = 0 a.e. in {u = 0}, since u ∈ H1

0 (Ω). This allow us to conclude

lim sup
n→+∞

∫
{un≤δ}

fn(x)

(un + 1/n)
γ ϕ→ 0 as δ → 0. (4.4)

Step 3. Let ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) with ϕ ≥ 0. Since un ⇀ u weakly in

H1
0 (Ω) and un → u a.e. in Ω and {un} is bounded in L∞(Ω), we can pass to

the limit in the left hand side of (4.3) to assure∫
Ω

M(x)∇un∇ϕ+

∫
Ω

an(x)g̃(un)ϕ→
∫
Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)g̃(u)ϕ. (4.5)
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Now, we choose δm → 0 such that meas{u = δm} = 0 (observe that this is
posible since the set {δ > 0 : meas{u = δ} > 0} is at most countable) and we
split the right hand side integral of (4.3) into two parts, namely∫

Ω

fn(x)

(un + 1/n)
γ ϕ =

∫
{un≤δm}

fn(x)

(un + 1/n)
γ ϕ+

∫
{un>δm}

fn(x)

(un + 1/n)
γ ϕ. (4.6)

With respect to the second integral of the right hand side of (4.6), we
express it as∫

{un>δm}

fn(x)

(un + 1/n)γ
ϕ =

∫
Ω

fn(x)

(un + 1/n)γ
χ{un>δm}ϕ.

Now, for every fixed m we have

0 ≤ fn(x)

(un + 1/n)γ
χ{un>δm}ϕ ≤ f(x)

δγm
ϕ ∈ L1(Ω)

and

fn(x)

(un + 1/n)
γ χ{un>δm} → f(x)

uγ
χ{u>δm} a.e. x ∈ Ω when n→ ∞.

Thus, one has by Lebesgue Theorem∫
{un>δm}

fn(x)

(un + 1/n)
γ ϕ→

∫
{u>δm}

f(x)

uγ
ϕ as n→ +∞.

Observe that thanks to (4.3), (4.5) and (4.6) we get

lim
n→∞

∫
{un≤δm}

fn(x)

(un + 1/n)
γ ϕ =

∫
Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)g̃(u)ϕ−
∫
{u>δm}

f(x)

uγ
ϕ

and, using (4.4), we obtain

0 = lim
m→∞

lim
n→∞

∫
{un≤δm}

fn(x)

(un + 1/n)
γ ϕ (4.7)

=

∫
Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)g̃(u)ϕ− lim
m→∞

∫
{u>δm}

f(x)

uγ
ϕ.

In particular, using Fatou Lemma we deduce that f(x)
uγ ϕ ∈ L1({u > 0}) and

then, using Lebesgue Theorem

lim
m→∞

∫
{u>δm}

f(x)

uγ
ϕ =

∫
{u>0}

f(x)

uγ
ϕ. (4.8)

Now we observe that (4.4) also implies that
∫
{u=0}

f(x)
uγ ϕ = 0 or equivalently

that meas{u = 0, fϕ ̸= 0} = 0. Indeed, note that for every δ > 0 it follows
that ∫

{u=0}

fn(x)

(un + 1/n)
γ χ{un≤δ}ϕ ≤

∫
{un≤δ}

fn(x)

(un + 1/n)
γ ϕ.
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Moreover, for every δ > 0

fn(x)

(un + 1/n)
γ χ{un≤δ} → f(x)

uγ
a.e. in {u = 0} when n→ ∞.

Then, we can apply Fatou Lemma to obtain∫
{u=0}

f(x)

uγ
ϕ ≤ lim sup

n→+∞

∫
{un≤δ}

fn(x)

(un + 1/n)
γ ϕ, ∀δ > 0.

In view of (4.4), this implies ∫
{u=0}

f(x)

uγ
ϕ = 0

and, as a consequence ∫
{u>0}

f(x)

uγ
ϕ =

∫
Ω

f(x)

uγ
ϕ.

This, combined with (4.7) and(4.8) give us∫
Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)g̃(u)ϕ =

∫
Ω

f(x)

uγ
ϕ, ∀0 ≤ ϕ ∈ H1

0 (Ω) ∩ L∞(Ω)

and, in this way,∫
Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)g̃(u)ϕ =

∫
Ω

f(x)

uγ
ϕ, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω).

Moreover, g(x, u) = a(x)g̃(u) ∈ L1(Ω) since u ∈ L∞(Ω) and f
uγ ∈ L1

loc(Ω)

since
∫
Ω

f(x)
uγ |ϕ| < +∞ for every ϕ ∈ H1

0 (Ω) ∩ L∞(Ω). Thus, it is proved that
the function u ∈ H1

0 (Ω)∩L∞(Ω) is a solution of (1.1), as desired. Uniqueness
is deduced, as usual, from (1.9). Indeed, given u1, u2 ∈ H1

0 (Ω) ∩ L∞(Ω) any
two solutions to (1.1) with g(x, u) = a(x)g̃(u) where g̃ verifies (1.9), then taking
(u1 − u2)

+ as test function in the problems satisfied by u1 and u2, subtracting
and taking into account (1.2), (1.9) and (1.10), we yield to

α

∫
Ω

|∇(u1 − u2)
+|2 ≤

∫
Ω

M(x)∇(u1 − u2)∇(u1 − u2)
+

+

∫
Ω

a(x)(g̃(u1)− g̃(u2))(u1 − u2)
+ =

∫
Ω

f(x) (1/uγ1 − 1/uγ2) (u1 − u2)
+ ≤ 0.

this implies that (u1 − u2)
+ = 0, i.e., u1 ≤ u2, and since both are arbitrary

solution we also have the reverse inequality and the proof is finished. ⊓⊔
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