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1 Introduction

Nowadays, the VO-fractional differential equations have appeared in the mod-
elling of plenty of physical phenomena [16,17]. The researchers found that the
VO-fractional derivative describes complex physical models more accurately
than the constant-order derivative [21, 23]. In the meantime, numerical meth-
ods for solving VO-fractional differential equations worked very powerfully.
Therefore, several numerical methods have been introduced, such as fractional-
order Taylor wavelets [24], spline finite difference scheme [13], modified wavelet
method [6], Genocchi collocation method [5], etc.

This paper presents the numerical framework based on discrete shifted Hahn
polynomials for solving 3D-VO time-fractional partial differential equations.
One of the important features of discrete polynomials is the approximation
of continuous functions with high accuracy. So that the coefficients in the
approximation process are accurately evaluated. The discrete shifted Hahn
polynomials have been applied in a few numerical approaches among discrete
polynomials. For instance, Mohammadi et al. [14] applied these polynomials
for solving optimal control of fractional Volterra integro-differential equations.
Authors in [4] provided a method based on Legendre-Gauss-Lobatto quadrature
and discrete shifted Hahn polynomials for solving Caputo-Fabrizio fractional
partial integro-differential equations.

Due to the complexity of 3D-time-fractional partial differential equations
and the high volume of calculations, a small number of papers have been pub-
lished in this field, which can be found in [1, 19, 22, 25]. In this study, we
focus on the numerical solution of the following 3D-VO time-fractional partial
differential equations:

D
γ(x,t)
t u(x, t) =µ1∆u(x, t) + µ2∇u(x, t) +Υ(u(x, t)) + f(x, t), (1.1)

x =(x, y) ∈ Ω ⊂ R2, t ∈ [0, 1], 0 < γ(x, t) ≤ 1,

with initial condition

u(x, y, 0) = φ(x, y), x, y ∈ Ω,

and Dirichlet boundary conditions

u(x, 0, t) = ψ1(x, t), u(x, 1, t) = ψ2(x, t),

u(0, y, t) = ψ3(y, t), u(1, y, t) = ψ4(y, t), x, y ∈ ∂Ω, t ∈ [0, 1],

where ∆u = ∂2u
∂x2 + ∂2u

∂y2 and ∇u = ∂u
∂x + ∂u

∂y represent Laplace and Gradient

operators, respectively. And also, D
γ(x,t)
t denotes the VO-Caputo fractional

derivative which is defined as follows [18]:

D
γ(x,t)
t u(x, t)=


1

Γ (q−γ(x,t))

∫ t

0

(t−s)q−γ(x,t)−1 ∂
qu(x, s)

∂sq
, q−1 < γ(x, t) < q,

∂qu(x, t)

∂tq
, γ(x, t) = q ∈ N.

Given the existence of a VO-fractional derivative in the proposed equation,
it is impossible to provide an analytical method to obtain an exact solution.
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Due to this subject, numerical methods to solve these equations received much
attention. Some of these methods are as follows:

a) Gu and Sun [8], presented a meshless method for solving the three-
dimensional VO time-fractional diffusion equation.

b) In [11], the authors applied the RBF-based differential quadrature ap-
proach for solving the 2D-VO time-fractional advection-diffusion equation.

c) Shekari et al. [20], provided the moving least squares meshless approach
for the numerical solution of the 2D-VO time-fractional nonlinear diffusion-
wave equation.

A small number of numerical methods are proposed to solve these equations.
Therefore, this issue motivated us to provide a high-precision numerical method
to solve the presented problems. The method provided here is the composition
of DSHPs properties with the operational matrices for finding the approximate
solution of the problem in two types of space domains. From outcomes illus-
trated in different space domains, it can be understood that the method is
powerful in solving problems and can be utilized to solve VO-fractional multi-
dimensional problems.

The rest of this paper is organized as follows. In Section 2, we provide a brief
summary of DSHPs and their properties. The method of finding the required
matrices is discussed in Section 3. The discretization approach for solving the
proposed problem is described in Section 4. Section 5 discusses the error of
approximate solution. The numerical experiments to confirm the accuracy and
efficiency of the method are presented in Section 6. At last, Section 7 gives
brief conclusions about the presented technique.

2 Discrete shifted Hahn polynomials

The analytical formula of Hahn polynomials on the interval [0,M ] is defined
with the help of hypergeometric series as follows [4, 14]:

Hα,β
m,M (ξ) = 3F2(−m,m+ α+ β + 1,−ξ;α+ 1,−M ; 1)

=

m∑
k=0

(−m)k(m+ α+ β + 1)k(−ξ)k
k!(α+ 1)k(−M)k

, m = 0, 1, . . . ,M ∈ Z+, α, β > −1.

where (.)k denotes the Pochhammer symbol. To simplify the above formula,
we rewrite the explicit analytical formula as below:

Hα,β
m,M (ξ) =

m∑
k=0

hk,mξ
k, m = 0, 1, . . . ,M, (2.1)

in which

hk,m =

m∑
i=k

(−1)i(−m)i(m+ α+ β + 1)iS(k, i)
i!(α+ 1)i(−M)i

,

and S(k, i) = 1
i!

∑i
j=0(−1)i−j

(
i
j

)
jk.

Remark 1. By considering the change of variable ξ = Mx, the shifted Hahn
polynomials Hα,β

m (x) are obtained on the interval [0, 1].
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Any continuous function f(x, t) in the interval Ω can be approximated by
truncated shifted Hahn series as follows:

f(x, y, t) ≃
M∑

m=0

M∑
n=0

M∑
k=0

fmnkH
α,β
m (x)Hα,β

n (y)Hα,β
k (t)

=(Hα,β(x))TRα,β(y)Qα,β(t)F, (2.2)

where F = [f000, f001, . . . , f00M , f100, f101, . . . , f10M , . . . , fMM0, fMM1,
. . . , fMMM ]T(M+1)3×1,

Hα,β(x) =
[
Hα,β

0 (x) Hα,β
1 (x) . . . Hα,β

M (x)
]T
1×(M+1)

,

Rα,β(y) = diag
[
(Hα,β(y))T (Hα,β(y))T . . . (Hα,β(y))T

]
(M+1)×(M+1)2

,

Qα,β(t) = diag
[
(Hα,β(t))T (Hα,β(t))T . . . (Hα,β(t))

]
(M+1)2×(M+1)3

.

According to discrete orthogonal polynomials, the components of the coefficient
vector are obtained as follows:

fmnk :=

∑M
x=0

∑M
y=0

∑M
t=0 f(x, y, t)H

α,β
m (x)Hα,β

m (y)Hα,β
m (t)w(x, y, t)

τmτnτk
,

where w(x, y, t) is a real non-negative weight function:

w(x, y, t) =

(
α+Mx

Mx

)(
α+My

My

)(
α+Mt

Mt

)
×
(
β +M −Mx

M −Mx

)(
β +M −My

M −My

)(
β +M −Mt

M −Mt

)
,

τm =
(−1)m(m+ α+ β + 1)M+1(β + 1)mm!

(2m+ α+ β + 1)(α+ 1)m(−M)mM !
,

τn =
(−1)n(n+ α+ β + 1)M+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−M)nM !
,

τk =
(−1)k(k + α+ β + 1)M+1(β + 1)kk!

(2k + α+ β + 1)(α+ 1)k(−M)kM !
.

In addition, the MATLAB code of the discrete Hahn polynomials vector is as
follows:

for m=1:M+1

H(m,1)=symsum((pochhammer(-m+1,k)*pochhammer(m-1+alpha+beta+1,k)

*pochhammer(-x,k))/(pochhammer(alpha+1,k)*pochhammer(-M,k)

*factorial(k)),k,0,m-1);

end

H=expand(H);

3 Required matrices

The main aim of this section is to present the obtaining algorithm of operational
matrices used in the process of the numerical method.

Math. Model. Anal., 29(3):406–425, 2024.
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3.1 MOM and CV of integration

The modified operational matrix and complement vector of integration for
DSHPs are obtained as follows [4]:∫ x

0

Hα,β(η)dη = ΘHα,β(x) +W(x). (3.1)

Here, Θ and W(x) denote the modified operational matrix and complement
vector of integration, respectively. Due to Equation (2.1), the modified opera-
tional matrix and complement vector of Rα,β(y) and Qα,β(t) are obtained as
follows: ∫ y

0

Rα,β(η)dη = Rα,β(y)P +V(y),

where P = I(M+1)×(M+1) ⊗Θ, V(y) = I(M+1)×(M+1) ⊗W(y), and O denotes
the zero matrix with (M + 1)× (M + 1) dimension. And also, we get∫ t

0

Qα,β(η)dη = Qα,β(t)S + Z(t),

where S = I(M+1)2×(M+1)2 ⊗Θ, Z(t) = I(M+1)×(M+1) ⊗W(t).

3.2 POM of VO-fractional derivative

This section provides the pseudo-operational matrix of VO fractional derivative
in the VO-Caputo sense. Therefore, we get

Dγ(x,t)Hα,β(t) = t−γ(x,t)Λ(x, t)Hα,β(t). (3.2)

In this formula Λ(x, t) denotes the VO-fractional derivative pseudo-operational
matrix. To reach our aim, we apply the analytic formula of DSHPs and VO-
Caputo definition:

Dγ(x,t)Hα,β
m (t) = Dγ(x,t)

(
m∑

k=0

Mkhk,mt
k

)
=

m∑
k=0

Mkhk,m

× Γ (k + 1)

Γ (k + 1− γ(x, t))
tk−γ(x,t) = t−γ(x,t)

m∑
k=0

y
γ(x,t)
k,m,M

(
M∑
i=0

aiH
α,β
i (t)

)
,

where y
γ(x,t)
k,m,M =

Γ (k+1)Mkhk,m

Γ (k+1−γ(x,t)) and

ai=
⟨tk,Hα,β

k (t)⟩
τm

:=

∑M
t=0 t

kw(t)Hα,β
m (t)

τm
, w(t)=

(
α+Mt

Mt

)(
β+M−Mt

M −Mt

)
.

Then, we obtain

Dγ(x,t)Hα,β
m (t) = t−γ(x,t)

M∑
i=0

λ
γ(x,t)
i,k,m,MHα,β

m (t), λ
γ(x,t)
i,k,m,M =

m∑
k=0

aiy
γ(x,t)
k,m,M .
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Next, the corresponding pseudo-operational matrix of VO-fractional derivative
of Qα,β(t) is obtained as follows:

Dγ(x,t)Qα,β(t) = t−γ(x,t)Qα,β(t)Ψ(x, t),

where Ψ(x, t) = I(M+1)2×(M+1)2 ⊗ ΛT (x, t).

4 Discretization approach

In this section, we offer the numerical approach based on MOM and CV of
integration and POM of VO-fractional derivative. To achieve this purpose, we
consider the following relation:

∂5u(x, t)

∂x2∂y2∂t
≃ (Hα,β(x))TRα,β(y)Qα,β(t)U, (4.1)

where vector U is defined as similar to F in Equation (2.2). In the next
step, we need to provide the approximation of other unknown functions in
Equation (1.1). Therefore, by integrating Equation (4.1) with respect to t and
using MOM and CV of integration, we get

∂4u(x, t)

∂x2∂y2
≃ (Hα,β(x))TRα,β(y)

(
Qα,β(t)S + Z(t)

)
U+ φ(x, y). (4.2)

By repeating the above procedure with respect to variable y, we obtain:

∂3u(x, t)

∂x2∂y
≃(Hα,β(x))T

(
Rα,β(y)P +V(y)

) (
Qα,β(t)S + Z(t)

)
U

+

∫ y

0

φ(x, η)dη +
∂3u(x, 0, t)

∂x2∂y
. (4.3)

As you can see, function ∂3u(x,0,t)
∂x2∂y is unknown. Therefore, to calculate this

function, take integral from Equation (4.3) to variable y in the range 0 to 1:

∂3u(x, 0, t)

∂x2∂y
≃ ∂2ψ2(x, t)

∂x2
− ∂2ψ1(x, t)

∂x2
− (Hα,β(x))T

([ ∫ 1

0

Rα,β(y)dy
]
P

+
[ ∫ 1

0

V(y)dy
]) (

Qα,β(t)S + Z(t)
)
U+

∫ 1

0

∫ y

0

φ(x, η)dηdy.

Now, by placing the above expression in Equation (4.3), we will have:

∂3u(x, t)

∂x2∂y
≃(Hα,β(x))T

(
Rα,β(y)P+V(y)

) (
Qα,β(t)S+Z(t)

)
U+

∫ y

0

φ(x, η)dη

+

{
∂2ψ2(x, t)

∂x2
−∂

2ψ1(x, t)

∂x2
− (Hα,β(x))T

([∫ 1

0

Rα,β(y)dy

]
P+

[∫ 1

0

V(y)dy

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ 1

0

∫ y

0

φ(x, η)dηdy

}
. (4.4)

Math. Model. Anal., 29(3):406–425, 2024.
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By integrating Equation (4.4) with respect to y, we have

∂2u(x, t)

∂x2
≃ (Hα,β(x))T

(
Rα,β(y)P 2 +V(y)P +

[∫ y

0

V(η)dη

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ y

0

∫ z

0

φ(x, η)dηdz + y
{∂2ψ2(x, t)

∂x2

− ∂2ψ1(x, t)

∂x2
− (Hα,β(x))T

([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ 1

0

∫ y

0

φ(x, η)dηdy
}
+
∂2ψ1(x, t)

∂x2
.

To continue the calculation process, it is necessary to integrate the above ex-
pression with respect to variable x:

∂u(x, t)

∂x
≃
(
(Hα,β(x))TΘT +WT (x)

)(
Rα,β(y)P 2 +V(y)P+

[∫ y

0

V(η)dη

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ x

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξ

+ y

{
∂ψ2(x, t)

∂x
− ∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ∂ψ1(x, t)

∂x
+
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

−
(
(Hα,β(x))TΘT +WT (x)

)([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ x

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdydξ

}
+
∂ψ1(x, t)

∂x
− ∂ψ1(x, t)

∂x

∣∣∣∣
x=0

+
∂u(0, y, t)

∂x
. (4.5)

In Equation (4.5), function ∂u(0,y,t)
∂x is indeterminate. Hence, to calculate this

function, we integrate Equation (4.5) from variable x in the range 0 to 1 as
follows:

∂u(0, y, t)

∂x
≃ ψ4(y, t)− ψ3(y, t)−

([∫ 1

0

(Hα,β(x))T dx

]
ΘT+

[∫ 1

0

WT (x)dx

])
×
(
Rα,β(y)P 2 +V(y)P +

[∫ y

0

V(η)dη

]) (
Qα,β(t)S + Z(t)

)
U

−
∫ 1

0

∫ x

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξdx− y

{
ψ2(1, t)− ψ2(0, t)−

∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ψ1(1, t) + ψ1(0, t) +
∂ψ1(x, t)

∂x

∣∣∣
x=0

−
([∫ 1

0

(Hα,β(x))T dx
]
ΘT

+

[∫ 1

0

WT (x)dx

]) ([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ 1

0

∫ x

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdξdydx

}
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− ψ1(1, t) + ψ1(0, t) +
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

. (4.6)

So, by replacing Equation (4.6) in Equation (4.5), we get the approximation of
∂u(x,t)

∂x as:

∂u(x, t)

∂x
≃
(
(Hα,β(x))TΘT +WT (x)

)(
Rα,β(y)P 2+V(y)P+

[∫ y

0

V(η)dη

])
×
(
Qα,β(t)S+Z(t)

)
U+

∫ x

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξ

+ y

{
∂ψ2(x, t)

∂x
− ∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ∂ψ1(x, t)

∂x
+
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

−
(
(Hα,β(x))TΘT +WT (x)

)([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

])
×
(
Qα,β(t)S + Z(t)

)
U+

∫ x

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdξdy

}
+
∂ψ1(x, t)

∂x
− ∂ψ1(x, t)

∂x

∣∣∣∣
x=0

+

{
ψ4(y, t)− ψ3(y, t)−

([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

])
×
(
Rα,β(y)P 2 +V(y)P +

[∫ y

0

V(η)dη

]) (
Qα,β(t)S + Z(t)

)
U

−
∫ 1

0

∫ x

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξdx− y

{
ψ2(1, t)− ψ2(0, t)−

∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ψ1(1, t) + ψ1(0, t) +
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

])
×
([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

]) (
Qα,β(t)S + Z(t)

)
U

+

∫ 1

0

∫ x

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdξdydx

}
−ψ1(1, t) + ψ1(0, t)+

∂ψ1(x, t)

∂x

∣∣∣∣
x=0

}
. (4.7)

Finally, by integrating Equation (4.7) with respect to x, the approximate solu-
tion of the problem is obtained

u(x, t) ≃
(
(Hα,β(x))T (ΘT )2 +WT (x)ΘT +

[∫ x

0

WT (ξ)dξ

])
×
(
Rα,β(y)P 2 +V(y)P +

[∫ y

0

V(η)dη

]) (
Qα,β(t)S + Z(t)

)
U

+

∫ x

0

∫ ε

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξdε+ y {ψ2(x, t)− ψ2(0, t)

− x
∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ψ1(x, t)− ψ1(0, t) + x
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

Math. Model. Anal., 29(3):406–425, 2024.
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−
(
(Hα,β(x))T (ΘT )2 +WT (x)ΘT +

[∫ x

0

WT (ξ)dξ

])
×
([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

]) (
Qα,β(t)S + Z(t)

)
U

+

∫ x

0

∫ ε

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdydξdε

}
+ ψ1(x, t)− ψ1(0, t)− x

∂ψ1(x, t)

∂x

∣∣∣∣
x=0

+ x

{
ψ4(x, t)− ψ3(x, t)−

([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

])
×
(
Rα,β(y)P 2 +V(y)P +

[∫ y

0

V(η)dη

]) (
Qα,β(t)S + Z(t)

)
U

−
∫ 1

0

∫ x

0

∫ y

0

∫ z

0

φ(ξ, η)dηdzdξdx− y

{
ψ2(1, t)− ψ2(0, t)−

∂ψ2(x, t)

∂x

∣∣∣∣
x=0

− ψ1(1, t) + ψ1(0, t) +
∂ψ1(x, t)

∂x

∣∣∣∣
x=0

−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

])
×
([∫ 1

0

Rα,β(y)dy

]
P +

[∫ 1

0

V(y)dy

]) (
Qα,β(t)S + Z(t)

)
U

+

∫ 1

0

∫ x

0

∫ 1

0

∫ y

0

φ(ξ, η)dηdξdydx

}
− ψ1(1, t) + ψ1(0, t) +

∂ψ1(x, t)

∂x

∣∣∣∣
x=0

}
+ ψ3(y, t). (4.8)

Now, to approximate the other functions in Equation (1.1), it is necessary to
integrate from Equation (4.2) concerning variable x:

∂3u(x, t)

∂x∂y2
≃
(
(Hα,β(x))TΘT +WT (x)

)
Rα,β(y)

(
Qα,β(t)S + Z(t)

)
U

+

∫ x

0

φ(ξ, y)dξ +
∂3u(0, y, t)

∂x∂y2
. (4.9)

To calculate the unknown function ∂3u(0,y,t)
∂x∂y2 , we take an integral from Equa-

tion (4.9) concerning with x in the range 0 to 1:

∂3u(0, y, t)

∂x∂y2
≃ ∂2ψ4(y, t)

∂y2
− ∂2ψ3(y, t)

∂y2
−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT

+

[∫ 1

0

WT (x)dx

])
Rα,β(y)

(
Qα,β(t)S+Z(t)

)
U−

∫ 1

0

∫ x

0

φ(ξ, y)dξdx. (4.10)

Then, by substituting Equation (4.10) in Equation (4.9), we get

∂3u(x, t)

∂x∂y2
≃
(
(Hα,β(x))TΘT +WT (x)

)
Rα,β(y)

(
Qα,β(t)S + Z(t)

)
U

+

∫ x

0

φ(ξ, y)dξ +

{
∂2ψ4(y, t)

∂y2
− ∂2ψ3(y, t)

∂y2
−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT
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+

[∫ 1

0

WT (x)dx

])
Rα,β(y)

(
Qα,β(t)S+Z(t)

)
U−

∫ 1

0

∫ x

0

φ(ξ, y)dξdx

}
. (4.11)

Next, we take the integral from Equation (4.11) with respect to x:

∂2u(x, t)

∂y2
≃
(
(Hα,β(x))T (ΘT )2 +WT (x)ΘT +

[∫ x

0

WT (ξ)dξ

])
×Rα,β(y)

(
Qα,β(t)S + Z(t)

)
U+

∫ x

0

∫ ε

0

φ(ξ, y)dξdε+ x

{
∂2ψ4(y, t)

∂y2

− ∂2ψ3(y, t)

∂y2
−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

])
Rα,β(y)

×
(
Qα,β(t)S + Z(t)

)
U+

∫ 1

0

∫ x

0

φ(ξ, y)dξdx

}
+
∂2ψ3(y, t)

∂y2
. (4.12)

At the end of this process, we take the integral from Equation (4.12) with
respect to y:

∂u(x, t)

∂y
≃
(
(Hα,β(x))T (ΘT )2 +WT (x)ΘT +

[∫ x

0

WT (ξ)dξ

])
×
(
Rα,β(y)P +V(y)

) (
Qα,β(t)S + Z(t)

)
U+

∫ y

0

∫ x

0

∫ ε

0

φ(ξ, η)dξdεdη

+ x

{
∂ψ4(y, t)

∂y
− ∂ψ4(y, t)

∂y

∣∣∣∣
y=0

− ∂ψ3(y, t)

∂y
+
∂ψ3(y, t)

∂y

∣∣∣∣
y=0

−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT +

[∫ 1

0

WT (x)dx

]) (
Rα,β(y)P +V(y)

)
×
(
Qα,β(t)S + Z(t)

)
U+

∫ y

0

∫ 1

0

∫ x

0

φ(ξ, η)dξdxdη

}
+
∂ψ3(y, t)

∂y
− ∂ψ3(y, t)

∂y

∣∣∣∣
y=0

+
∂u(x, 0, t)

∂y
. (4.13)

It is noted that, the function ∂u(x,0,t)
∂y is unknown. So, we take integral from

Equation (4.13) concerning with y in the range 0 to 1:

∂u(x, 0, t)

∂y
≃ ψ2(x, t)− ψ1(x, t)−

(
(Hα,β(x))T (ΘT )2 +WT (x)ΘT

+
[ ∫ x

0

WT (ξ)dξ
])([∫ 1

0

Rα,β(y)dy

]
P+

[∫ 1

0

V(y)dy

]) (
Qα,β(t)S + Z(t)

)
U

−
∫ 1

0

∫ y

0

∫ x

0

∫ ε

0

φ(ξ, η)dξdεdηdy − x

{
ψ4(1, t)− ψ4(0, t)−

∂ψ4(y, t)

∂y

∣∣∣∣
y=0

− ψ3(1, t) + ψ3(0, t) +
∂ψ3(y, t)

∂y

∣∣
y=0

−
([∫ 1

0

(Hα,β(x))T dx

]
ΘT

+

[∫ 1

0

WT (x)dx

])([∫ 1

0

Rα,β(y)dy

]
P+

[∫ 1

0

V(y)dy

]) (
Qα,β(t)S+Z(t)

)
U
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+

∫ 1

0

∫ y

0

∫ 1

0

∫ x

0

φ(ξ, η)dξdxdηdy

}
− ψ3(1, t) + ψ3(0, t) +

∂ψ3(y, t)

∂y

∣∣∣∣
y=0

.

At this point, it is necessary to approximate the part of the Caputo derivative
in the problem. For this purpose, we use Equation (4.8) and the properties
of the Caputo derivative. Consequently, by placing the approximations ob-
tained above in Equation (1.1) and using nodal points, we reach the system
of algebraic equations. By solving the system of equations, the vector of un-
known coefficients is obtained. By placing this vector in Equation (4.8), the
approximate solution of the problem is achieved.

Algorithm

Input: Space domain Ω⊂R2, time interval [0, 1], variable order 0<γ(x, t)≤1,
the number of basis function M , known functions f(x, t), Υ(u(x, t)),
φ(x, y), ψi(x, t), i = 1, 2 and ψj(y, t), i = 2, 4.

Output: The approximate solution u(x, t).

Step 1: Choose the value of M .
Step 2: Compute the modified operational matrix Θ and complement vector

W(x) of integration corresponding to M by using Eq. (3.1).
Step 3: Compute the pseudo-operational matrix of VO fractional derivative

Λ(x, t) corresponding to M by using Eq. (3.2).
Step 4: Compute the approximation of the appeared functions in Eq. (1.1)

by using Steps 2 and 3.
Step 5: Substitute the approximation functions in Eq. (1.1) and use nodal

points to obtain a system of algebraic equations.
Step 6: Calculate the unknown matrix U and replace it in Eq. (4.8).

5 Error estimation

This section investigates the error of the approximate solution.

Lemma 1. Assume that Pmg(x) =
∑M

m=0 εmHα,β
m (x) is the approximation of

g(x) ∈ Hµ(0, 1). Then, the following relation is obtained for the truncated
error [9]:

∥g − Pmg∥L∞(0,1) ≤
√
2CM

1
2−µ ∥|g|∥Hµ;M (0,1) .

Here, C denotes the positive constant dependent on µ ≥ 1 and independent of
M .

Suppose that Gmnk(x, y, t) =
∑M

m=0

∑M
n=0

∑M
k=0 dmnkH

α,β
m (x)Hα,β

n (y)Hα,β
k (t)

is an approximation of G(x, y, t) ∈ Hµ(Π), Π = [0, 1]× [0, 1]× [0, 1]. Then, it
can be written:

G(x, y, t)−Gmnk(x, y, t) = [G(x, y, t)− PGMnk(x, y, t)]

+ [PGMnk(x, y, t)−PGMMk(x, y, t)] + [PGMMk(x, y, t)−Gmnk(x, y, t)] (5.1)

where

G(x, y, t) =

∞∑
m=0

∞∑
n=0

∞∑
k=0

dmnkH
α,β
m (x)Hα,β

n (y)Hα,β
k (t),
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PGMnk(x, y, t) =

M∑
m=0

∞∑
n=0

∞∑
k=0

dmnkH
α,β
m (x)Hα,β

n (y)Hα,β
k (t),

PGMMk(x, y, t) =

M∑
m=0

M∑
n=0

∞∑
k=0

dmnkH
α,β
m (x)Hα,β

n (y)Hα,β
k (t).

Therefore, we utilize Equation (5.1) to obtain the upper bound of truncated
error

∥G−Gmnk∥L∞(Π) ≤
∞∑

n=0

∞∑
k=0

∥∥∥ ∞∑
m=0

dmnkH
α,β
m (x)−

M∑
m=0

dmnkH
α,β
m (x)

∥∥∥
L∞(0,1)

×
∥∥Hα,β

n (y)
∥∥
L∞(0,1)

∥∥∥Hα,β
k (t)

∥∥∥
L∞(0,1)

+

M∑
m=0

∞∑
k=0

∥∥∥ ∞∑
n=0

dmnkH
α,β
n (y)

−
M∑
n=0

dmnkH
α,β
n (y)

∥∥∥
L∞(0,1)

∥∥Hα,β
m (x)

∥∥
L∞(0,1)

∥∥∥Hα,β
k (t)

∥∥∥
L∞(0,1)

+

M∑
m=0

M∑
n=0

∥∥Hα,β
m (x)

∥∥
L∞(0,1)

∥∥Hα,β
n (y)

∥∥
L∞(0,1)

×
∥∥∥∥ ∞∑

k=0

dmnkH
α,β
k (t)−

M∑
k=0

dmnkH
α,β
k (t)

∥∥∥∥
L∞(0,1)

.

By considering the following formulas

Rnk(x) = dmnkH
α,β
m (x), Rmk(y) = dmnkH

α,β
n (y), Rmn(t) = dmnkH

α,β
k (t),

ERnk(x) =

∞∑
m=0

dmnkH
α,β
m (x)−

M∑
m=0

dmnkH
α,β
m (x),

ERmk(y) =

∞∑
n=0

dmnkH
α,β
n (y)−

M∑
n=0

dmnkH
α,β
n (y),

ERmn(t) =

∞∑
k=0

dmnkH
α,β
k (t)−

M∑
k=0

dmnkH
α,β
k (t)

and also Lemma 1, we conclude:

∥G−Gmnk∥L∞(Π)

≤
∞∑

n=0

∞∑
k=0

√
2CM

1
2−µ ∥|Rnk|∥Hµ;M (0,1)

∥∥Hα,β
n (y)

∥∥
L∞(0,1)

∥∥∥Hα,β
k (t)

∥∥∥
L∞(0,1)

+

M∑
m=0

∞∑
k=0

√
2CM

1
2−µ ∥|Rmk|∥Hµ;M (0,1)

∥∥Hα,β
m (x)

∥∥
L∞(0,1)

∥∥∥Hα,β
k (t)

∥∥∥
L∞(0,1)

+

M∑
m=0

M∑
n=0

√
2CM

1
2−µ

∥∥Hα,β
m (x)

∥∥
L∞(0,1)

∥∥Hα,β
n (y)

∥∥
L∞(0,1)

∥|Rmn|∥Hµ;M (0,1) .
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Due to the above outcome and the assumptions of Lemma 1, it can be observed
that by increasing the M , the truncated error tends to zero.

6 Numerical results

In this section, we examine some numerical examples to confirm the effective-
ness of the methodology. It should be noted that to demonstrate the accuracy
of the proposed method, we use

L2−error =

√√√√ N∑
i=1

|u(xi)−uM (xi)|2, L∞−error = max
1≤i≤N

|u(xi)−uM (xi)|,

RMS =

√√√√ 1

N

N∑
i=1

|u(xi)− uM (xi)|2.

So that, in the above formulas u(xi) and uM (xi) are the exact and approximate
solutions at a specific time, respectively. Also, we solve the problems in different
domains, which are defined as follows:

� Rectangular domain (rectangular): Ω1 =
{
(x, y) ∈ R2 : 0 ≤ x, y ≤ 1

}
.

� Non-regular domain (circular):

Ω2 =
{
(x, y) ∈ R2 : (x− 0.5)2 + (y − 0.5)2 ≤ 0.25

}
.

Example 1. Consider the following three-dimensional variable-order
time-fractional partial differential equations [11]:

D
γ(x,t)
t u(x, t)=

∂2u(x, t)

∂x2
+
∂2u(x, t)

∂y2
− ∂u(x, t)

∂x
− ∂u(x, t)

∂y
+

2t2−γ(x,t)

Γ (3− γ(x, t))

+2x+ 2y − 4,

The corresponding initial and boundary conditions of this problem are com-
puted due to the exact solution u(x, t) = x2 + y2 + t2. By implementing the
present method for this example, we get the exact solution. From Table 1, we
realize that our discretization method for different choices of α(x, t) is more
accurate in comparison with the method in [11].

Example 2. Consider the following three-dimensional non-linear variable-order
time-fractional advection-reaction-diffusion equation [15]:

D
γ(x,t)
t u(x, t) =

∂2u(x, t)

∂x2
+
∂2u(x, t)

∂y2
+
∂u(x, t)

∂x

+
∂u(x, t)

∂y
+ u(x, t)(1− u(x, t)) + f(x, t),

where f(x, t) = 2t2−γ(x,t)

Γ (3−γ(x,t))x
2y2 + x4y4t4 + t2(−2xy2 − 2y2 + x2(−2 − y2)) −

2x2yt2. The corresponding initial and boundary conditions of this problem are
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Table 1. The errors of the approximate solution for diverse choices of α(x, t) with M = 2
in the rectangular domain Ω1 of Example 1.

Present method
γ(x, t) = 0.5, 0.8, 0.8− 0.1 cos(xt) sin(x)− 0.1 cos(yt) sin(y)

t L2-error L∞-error RMS

0.2 9.2550× 10−41 9.1835× 10−41 2.7904× 10−41

0.4 6.3791× 10−40 3.6734× 10−40 1.9233× 10−40

0.6 8.4668× 10−40 7.3468× 10−40 2.5528× 10−40

0.8 4.1070× 10−40 3.6734× 10−40 1.2383× 10−40

1.0 1.1020× 10−39 7.3468× 10−40 3.3227× 10−40

Ref. [11]
γ(x, t) = 0.5

t L2-error L∞-error RMS

0.2 1.6997× 10−4 2.9999× 10−5 1.5452× 10−5

0.4 1.7686× 10−4 2.1276× 10−4 1.6078× 10−5

0.6 1.7975× 10−4 3.1766× 10−5 1.6341× 10−5

0.8 1.8144× 10−4 3.2083× 10−5 1.6494× 10−5

1.0 1.8256× 10−4 3.2296× 10−5 1.6596× 10−5

Ref. [11]
γ(x, t) = 0.8

t L2-error L∞-error RMS

0.2 1.1577× 10−3 2.0416× 10−4 1.0536× 10−4

0.4 1.2020× 10−3 2.1276× 10−4 1.0938× 10−4

0.6 1.2147× 10−3 2.1522× 10−4 1.1054× 10−4

0.8 1.2210× 10−3 2.1641× 10−4 1.1109× 10−4

1.0 1.2248× 10−3 2.1712× 10−4 1.1143× 10−4

Ref. [11]
γ(x, t) = 0.8− 0.1 cos(xt) sin(x)− 0.1 cos(yt) sin(y)

t L2-error L∞-error RMS

0.2 6.6238× 10−4 1.1668× 10−4 6.0217× 10−5

0.4 6.9398× 10−4 1.2258× 10−4 6.3089× 10−5

0.6 7.1434× 10−4 1.2612× 10−4 6.4940× 10−5

0.8 7.3611× 10−4 1.2974× 10−4 6.6919× 10−5

1.0 7.6200× 10−4 1.3394× 10−4 6.9272× 10−5
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Table 2. The Maximum absolute error of the approximate solution for γ(x, t) = 0.9 in the
rectangular domain Ω1 of Example 2.

Present method
M L∞-error CPU

y = t = 0.5, 0 ≤ x ≤ 1 2 6.14273× 10−14 1.848613
x = t = 0.5, 0 ≤ y ≤ 1 2 6.05582× 10−14 1.848613

Ref. [15]
N L∞-error CPU

y = t = 0.5, 0 ≤ x ≤ 1 5 0.00033 7.47
7 0.000028 10.54
9 0.0000022 12.35

x = t = 0.5, 0 ≤ y ≤ 1 5 0.00038 7.47
7 0.000032 10.53
9 0.0000026 12.35

computed due to the exact solution u(x, t) = x2y2t2. Due to the method, for
M = 2 and γ(x, t) = 0.9 in the rectangular domain Ω1, we get

u(x, t) = 1.0000000001095t2x2y2 + · · · × 10−13.

In order to compare the results with method [15], we listed the maximum
absolute error and CPU time for γ(x, t) = 0.9 and M = 2 in Table 2. The
results illustrate that the proposed method is more efficient than method [15].
Furthermore, the plots of the absolute error in the different domains are shown
in Figures 1 and 2. From these figures, we can understand that the proposed
method is powerful and efficient for solving nonlinear problems.

Figure 1. The graphs of the absolute error at different time t = 0.5 (left) and t = 1
(right) with γ(x, t) = 0.55 + 0.45 sin(xyt) and M = 2 on regular domain Ω1 of Example 2.

Example 3. We consider three-dimensional non-linear variable-order
time-fractional nonlinear Fisher’s equation [15]:

D
γ(x,t)
t u(x, t) =

∂2u(x, t)

∂x2
+
∂2u(x, t)

∂y2
+ u2(x, t)(1− u(x, t)) + f(x, t),
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Figure 2. The graphs of the absolute error (left) and contour plot (right) for
γ(x, t) = 0.55+ 0.45 sin(xyt) and M = 2 at t = 0.5 on non-regular domain Ω2 of Example 2.

Table 3. The Maximum absolute error of the approximate solution for γ(x, t) = 0.9 in the
rectangular domain Ω1 of Example 3.

Present method
M L∞-error CPU

y = t = 0.5, 0 ≤ x ≤ 1 2 5.909235× 10−6 1.294003
3 2.176107× 10−7 6.679956

x = t = 0.5, 0 ≤ y ≤ 1 2 5.909235× 10−6 1.284393
3 1.257769× 10−7 6.622301

Ref. [15]
N L∞-error CPU

y = t = 0.5, 0 ≤ x ≤ 1 5 0.00026 7.12
7 0.000041 9.26
9 0.0000067 10.55

x = t = 0.5, 0 ≤ y ≤ 1 5 0.0003 7.10
7 0.000039 9.41
9 0.0000064 10.48

where

f(x, t)= exp(xy)

(
2t2−γ(x,t)

Γ (3−γ(x, t))
+ exp(xy)t4(−1+ exp(xy)t2)− t

2

2
(x2+y2)

)
.

The corresponding initial and boundary conditions of this problem are com-
puted due to the exact solution u(x, t) = t2 exp(xy). Fisher’s equation has
appeared in different mathematical models, such as flame propagation [7], nu-
clear reactor theory [3], branching Brownian motion process [2] and chemical
kinetics [12]. We have solved this problem with regard to the presented method.
The outcomes are demonstrated in Figure 3 and Table 3. The maximum ab-
solute error and CPU time (in seconds) in the rectangular domain Ω1 with
various choices of M are listed in Table 3. This table shows that the pro-
posed method with a smaller number of basis functions has higher accuracy
than method [15]. Moreover, the graphs of the absolute error on non-regular
domain Ω2 are plotted in Figure 3.

Example 4. Consider the following three-dimensional non-linear variable-order
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Figure 3. The graphs of the absolute error with γ(x, t) = 0.2 (left) and
γ(x, t) = 1− 0.75 exp(−(xyt)2) (right) at t = 1 and M = 3 on non-regular domain Ω2 of

Example 3.

time-fractional advection-diffusion equation [10]:

D
γ(x,t)
t u(x, t) =5

∂2u(x, t)

∂x2
+ 5

∂2u(x, t)

∂y2
− ∂u(x, t)

∂x
− ∂u(x, t)

∂y

+ sin (u(x, t))) + f(x, t),

where

f(x, t) =
(
2t1−γ(x,t)E1,2−γ(x,t)(2t)

)
(sin(x) + sin(y))

+ exp(2t) (5(sin(x) + sin(y)) + cos(x) + cos(y)) .

The corresponding initial and boundary conditions of this problem are com-
puted due to the exact solution u(x, t) = (sin(x) + sin(y)) exp(2t). The ob-
tained approximate solution of the provided method for γ(x, t) = 1 withM = 2
is as follows:

u(x, t) = exp(2t) sin(x) + exp(2t) sin(y) + · · · × 10−13.

Also, the different errors are provided in the rectangular domain Ω1 for this
example in Table 4. The result demonstrates that the present method at various
times is more accurate than the method in [10]. Moreover, Figures 4 and 5 can
be seen that the method on non-regular domain Ω2 also has high accuracy.

Figure 4. The graphs of the absolute error with t = 0.3 (left), t = 0.5 (centre) and t = 1
(right) with γ(x, t) = 1− 0.75 exp(−(xyt)2) and M = 2 on regular domain Ω1 of Example 4.
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Table 4. The error of the approximate solution for γ(x, t) = 0.25 + 0.25 sin2(xyt) in the
rectangular domain Ω1 of Example 4.

Present method
t L2-error L∞-error RMS

0.2 1.5324× 10−18 7.0858× 10−19 4.6204× 10−18

0.4 1.5324× 10−18 7.0858× 10−19 4.6204× 10−18

0.6 1.5324× 10−18 7.0858× 10−19 4.6204× 10−18

0.8 1.5324× 10−18 7.0858× 10−19 4.6204× 10−18

1.0 1.5324× 10−18 7.0858× 10−19 4.6204× 10−18

Ref. [10]
t L2-error L∞-error RMS

0.2 1.4857× 10−4 3.4763× 10−5 1.4857× 10−5

0.4 7.4543× 10−4 2.0172× 10−4 7.4543× 10−5

0.6 1.2883× 10−3 3.3247× 10−4 1.2883× 10−4

0.8 9.6180× 10−4 3.1914× 10−4 9.6198× 10−5

1.0 9.3911× 10−3 3.0913× 10−4 9.3911× 10−5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

-2.0×10-1�

-1.5×10-15

-1.0×10-15

-5.0×10-16

0

5.0×10-16

1.0×10-15

Figure 5. The graphs of the absolute error (left) and contour plot (right) for
γ(x, t) = 0.8− 0.1 cos(xt) sin(x)− 0.1 cos(yt) sin(y) and M = 2 at t = 1 on non-regular

domain Ω2 of Example 4.

7 Conclusions

In this paper, by combining the modified operational matrix and complement
vector of integration and pseudo-operational matrix of VO-fractional deriva-
tive with the discretization method, we introduced a new technique for solving
three-dimensional variable-order time-fractional partial differential equations.
In the proposed method algorithm, MOM and CV of integration and problem
conditions are used, and this process is very effective in the accuracy of the ap-
proximate solution. The method is implemented in several numerical examples
where the results are presented in the form of tables and figures. It should be
noted that the figures are drawn in the form of two types of space domains.
The results illustrate that the method introduced in two types of space domains
has high accuracy and efficiency and is in high agreement with the analytical
solution.

Math. Model. Anal., 29(3):406–425, 2024.
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