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Abstract. A classical non-stationary three-body problem with two bodies of vari-
able mass moving around the third body on quasi-periodic orbits is considered. In
addition to the Newtonian gravitational attraction, the bodies are acted on by the
reactive forces arising due to anisotropic variation of the masses. We show that New-
tonian’s formalism may be generalized to the case of variable masses and equations of
motion are derived in terms of the osculating elements of aperiodic motion on quasi-
conic sections. As equations of motion are not integrable the perturbative method is
applied with the perturbing forces expanded into power series in terms of eccentrici-
ties and inclinations which are assumed to be small. Averaging these equations over
the mean longitudes of the bodies in the absence of a mean-motion resonances, we
obtain the differential equations describing the evolution of orbital parameters over
long period of time. We solve the evolution equations numerically and demonstrate
that the mass change modify essentially the system evolution.
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1 Introduction

The classical three-body problem [26] is a well-known model of celestial me-
chanics in the framework of which a motion of three bodies P0, P1, P2 of
masses m0, m1, m2, respectively, under their mutual gravitational attraction
is studied. The bodies are assumed to interact according to Newton’s law of
gravitation that is a good approximation in the case of spherically symmet-
ric bodies. However, real heaven bodies may have different shape and mass
distribution and their interaction is more complicated. To make model more
realistic some authors take into account an oblateness of heaven bodies and
some other perturbing forces like radiation pressure and quantum effects (see,
for example, [1,2,13]). Such perturbations can modify motion of the bodies or
change the regions of permissible motion but the problem is the stationary one
as physical parameters of the system remain constant.

From the other side, real-life celestial bodies are non-stationary; their char-
acteristics such as mass, size, shape, and internal structure, may vary with
time (see, for example, [8,9,25]). Non-stationarity of the bodies may influence
the dynamical evolution of their systems that makes a study of such systems
highly relevant (see [3,11,16]). At the same time, non-stationarity complicates
essentially the corresponding mathematical models of the bodies motion. Even
in the case of classical two-body problem, a general solution of which is well-
known, dependence of mass on time makes the problem non-integrable; only
in some special cases its exact analytical solution can be found (see survey of
such models in [4, 23,24]).

The bodies masses influence essentially on their interaction and motion and
so it is especially interesting to investigate the dynamics of the many-body
system with variable mass. One of the first works in this direction were done
by T.B. Omarov [20] and J.D. Hadjidemetriou [10] who started investigation of
the non-stationary two-body problem and showed that mass variability affects
essentially on the dynamic evolution of the system. Later these investigations
were generalized to the system of three bodies although works in this field are
not numerous (see, for instance, [3, 14,27,28]).

As the equations of motion are non-integrable the perturbation theory is
usually used (see [5]). Its application involves quite cumbersome symbolic
computation which can be best performed with computer algebra [21]. Investi-
gations of the three-body problem with variable masses, changing isotropically
or anisotropically, were continued in a series of works [15, 17, 18, 22], where
equations of motion were obtained in terms of the second system of Poincaré
elements (see [7]) in the framework of the Hamiltonian formalism. In order to
obtain equations of motion accurate to linear terms of the orbital elements we
need to compute the series expansion of the perturbing functions in terms of
the orbital elements up to second order inclusive. It should be noted that it is
a nontrivial task and we demonstrated that it may solved efficiently with the
aid of the computer algebra (see [15,18,21,22]).

In the present work, we study the dynamical evolution of two-planetary sys-
tem of three bodies when two planets P1, P2 move around a central star P0 in
quasi-elliptic orbits such that their orbits do not intersect. In the first approx-
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imation, these orbits are determined by the exact solutions of the unperturbed
equations of motion which can be obtained in analytic form for arbitrary laws of
mass variation of the bodies (see [16]). Mutual attraction of the bodies P1, P2

and reactive forces arising in the case of anisotropic mass variation enforce the
orbital elements to change. In contrast to our previous works (see [15,18,22]),
the differential equations determining the perturbed motion of the bodies are
obtained in terms of the osculating elements in the framework of Newton’s
formalism what enables to write out expressions for the reactive forces and to
obtain directly differential equations for the orbital elements (see [6]). In the
case of small eccentricities and inclinations of the orbits the perturbing forces
may be expanded in series in these parameters up to any desired order but here
we consider only the first order terms what is sufficient to obtain the results
corresponding to the accuracy of the observations. Averaging the equations of
the perturbed motion over mean longitudes of the bodies P1, P2 in the absence
of a mean-motion resonances, we obtain the differential equations describing
the evolution of orbital elements over long periods of time. These equations
are solved numerically for different laws of the masses change. All relevant
symbolic and numerical calculations are performed here with the aid of the
computer algebra system Wolfram Mathematica [29].

2 Model description

Consider a system of three bodies of variable mass attracting each other ac-
cording to Newton’s law of universal gravitation. Denoting the position vectors
of the bodies P1, P2 relative to the primary P0 by r⃗j = (xj , yj , zj) and applying
Newton’s second law, the equations of motion may be written as (see [15,16,18])

d2r⃗j
dt2

+G(m0 +mj)
r⃗j
r3j

− γ̈j
γj

r⃗j = F⃗j , j = 1, 2. (2.1)

Here G is the constant of gravitation, and the twice differentiable functions
γ1(t) and γ2(t) are defined by

γj(t) =
m00 +mj0

m0(t) +mj(t)
, j = 1, 2,

where m00 = m0(t0), mj0 = mj(t0) are the masses of the bodies P0, P1, P2,

respectively, at the initial instant of time. The forces F⃗1 and F⃗2 on the right-
hand side of (2.1) can be represented by

F⃗1 =Gm2

(
r⃗2 − r⃗1
r312

− r⃗2
r32

)
− γ̈1

γ1
r⃗1 + Q⃗1, (2.2)

F⃗2 =Gm1

(
r⃗1 − r⃗2
r312

− r⃗1
r31

)
− γ̈2

γ2
r⃗2 + Q⃗2, (2.3)

where

r12 =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, rj =

√
x2
j + y2j + z2j , j = 1, 2,
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and the reactive forces Q⃗1, Q⃗2 are determined by the expressions (see [12])

Q⃗1 =
ṁ1

m1
V⃗1 −

ṁ0

m0
V⃗0, Q⃗2 =

ṁ2

m2
V⃗2 −

ṁ0

m0
V⃗0. (2.4)

The dot above a symbol in (2.2)–(2.4) denotes the total time derivative of the

corresponding function, and V⃗j , (j = 0, 1, 2) are the relative velocities of the
particles leaving the body Pj or falling on it.

Note that in the case of constant masses when γ1(t) = 1, γ2(t) = 1 equations
(2.1) reduce to the well-known equations determining relative motion of the
bodies in the classical three-body problem. These equations are not integrable
and are usually studied by methods of perturbation theory using an exact
solution of the two-body problem as the first approximation (see, for example,
[5, 19]). Similar approach may be also applied in the case of variable masses
but the corresponding two-body problem is integrable only for some special
laws of mass change (see [23, 24]). To obtain integrable two-body problem for
arbitrary law of the mass variation we add the terms γ̈j/γj r⃗j in the left-hand

side of Equations (2.1) and in expressions (2.2), (2.3) for the forces F⃗1, F⃗2. As

a result, a general solution of equations obtained from (2.1) at F⃗1 = 0, F⃗2 = 0
could be written for arbitrary laws of mass variation of the bodies.

Actually, at F⃗j = 0, (j = 1, 2) two equations (2.1) become independent of
each other and each of them has an exact solution that describes aperiodic
motion of the body Pj , (j = 1, 2) on a quasi-conic section (see [16]); it can be
written as

xj = γjρj (cos(ωj + νj) cosΩj − sin(ωj + νj) sinΩj cos ij) ,

yj = γjρj (cos(ωj + νj) sinΩj + sin(ωj + νj) cosΩj cos ij) ,

zj = γjρj (sin(ωj + νj) sin ij) , (2.5)

where νj is the true anomaly and

ρj = aj(1− e2j )/(1 + ej cos νj). (2.6)

The constants aj , ej , ij , Ωj and ωj in (2.5), (2.6) are analogs of the well-known
Kepler orbital elements and are determined from the initial conditions of motion
(see [16]). The true anomaly νj characterizes the position of the body on the
orbit; introducing an analog of the eccentric anomaly Ej by the relation

tan(νj/2) =
√
(1 + ej)/(1− ej) tanEj/2, (2.7)

we obtain the known Kepler equation

Ej − ej sinEj = Mj , (2.8)

where the mean anomaly Mj is given by

Mj =
√
κj/a

3/2
j (Φj(t)− Φj(τj)) , (2.9)
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and κj = G(m00 +mj0), (j = 1, 2). The functions Φj(t) have the form

Φj(t) =

∫ t

t0

γ−2
j (t)dt. (2.10)

By τj in (2.9) we denote an analog of the time when the body Pj passes through
the pericenter.

It is readily seen that, for given orbital elements aj , ej , ij , Ωj , ωj , and τj of
each of the bodies P1 and P2 and the known functions γ1(t) and γ2(t), which
depend on the laws of mass variation of all three bodies, Equations (2.7)–(2.10)
make it possible to find the mean anomalies Mj , the eccentric anomalies Ej

and true anomalies νj as functions of time. As a result, solutions (2.5), (2.6)
enable to compute the relative Cartesian coordinates of the bodies P1 and P2 at
F⃗1 = 0, F⃗2 = 0 as functions of time and to describe their unperturbed motion.

Using Equations (2.6)–(2.10), one can write the total time derivatives of
the coordinates (2.5) in the form

ẋj =

(
γ̇j
γj

+
ρ̇j
ρj

)
xj − γjρj ν̇j (sin(ωj + νj) cosΩj + cos(ωj + νj) sinΩj cos ij) ,

ẏj =

(
γ̇j
γj

+
ρ̇j
ρj

)
yj − γjρj ν̇j (sin(ωj + νj) sinΩj − cos(ωj + νj) cosΩj cos ij) ,

żj =

(
γ̇j
γj

+
ρ̇j
ρj

)
zj + γjρj ν̇j (cos(ωj + νj) sin ij) , (2.11)

where

ν̇j =

√
κj

a
3/2
j (1− e2j )

3/2

(1 + ej cos νj)
2

γ2
j (t)

.

3 Equations of perturbed motion

In the absence of forces (2.2), (2.3) the orbital elements aj , ej , ij , Ωj , ωj , and
τj of the bodies P1, P2 do not change with time. However, mutual attraction
and reactive forces (2.4) arising in the case of anisotropic mass variation of
the bodies affect their motion and the orbital elements must necessarily vary
with the time. Solving Equations (2.1) at F⃗1 ̸= 0, F⃗2 ̸= 0 numerically, one can
find the perturbed coordinates of the bodies as functions of time but it will be
equally effective to obtain the orbital elements as functions of the time. These
functions may be used then to investigate the long-term evolution of orbital
elements which is the most interesting for applications in celestial mechanics.

Taking into account the dependence of the orbital elements on time, the
solutions to Equations (2.1) can be written in the general form

xj = xj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t),

yj = yj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t),

zj = zj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t), (3.1)

where the functions in the right-hand sides are determined by expressions (2.5),
in which true anomalies νj are replaced by the mean anomaliesMj and relations
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(2.9), (2.10) determine the explicit dependence of the mean anomalies Mj on
the parameters aj and τj . Such representation of solutions is well-known in
the theory of differential equations as the method of the variation of arbitrary
constants.

Direct substitution of solutions (3.1) into Equations (2.1) gives six second-
order differential equations for 12 unknown functions aj(t), ej(t), ij(t), Ωj(t),
ωj(t), Mj(t), j = 1, 2. Since each such system has an infinite number of solu-
tions, we should introduce six additional equations for the variables aj , ej , ij ,
Ωj , ωj , Mj , j = 1, 2. Usually such equations are obtained from the condition
that the rates of variation of the perturbed coordinates ẋj , ẏj , żj are equal to
the partial derivatives of functions (3.1) with respect to time. It means that in
perturbed motion both the coordinates and the velocity components at time t
are given by the formulas (2.5), (2.11) expressed in terms of the time and the
instantaneous orbital elements at t. Such instantaneous elements are known as
osculating elements (for details, see [6]).

As a result, we obtain the following equations

∂xj

∂aj

daj
dt

+
∂xj

∂ej

dej
dt

+
∂xj

∂ij

dij
dt

+
∂xj

∂Ωj

dΩj

dt
+

∂xj

∂ωj

dωj

dt
+

∂xj

∂Mj

dMj

dt
= 0,

∂yj
∂aj

daj
dt

+
∂yj
∂ej

dej
dt

+
∂yj
∂ij

dij
dt

+
∂yj
∂Ωj

dΩj

dt
+

∂yj
∂ωj

dωj

dt
+

∂yj
∂Mj

dMj

dt
= 0,

∂zj
∂aj

daj
dt

+
∂zj
∂ej

dej
dt

+
∂zj
∂ij

dij
dt

+
∂zj
∂Ωj

dΩj

dt
+

∂zj
∂ωj

dωj

dt
+

∂zj
∂Mj

dMj

dt
= 0, (3.2)

where j = 1, 2.

The time derivatives of the coordinates (3.1) can be formally written as

ẋj = ẋj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t),

ẏj = ẏj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t),

żj = żj(aj(t), ej(t), ij(t), Ωj(t), ωj(t),Mj(aj , τj , t), t), (3.3)

where the functions in the right-hand sides are determined by expressions
(2.11). Taking into account that solutions (2.5), (2.11) satisfy the equations of
motion (2.1) in the absence of perturbations and substituting (3.3) into (2.1),
we obtain the following equations for the functions ẋj , ẏj , żj

∂ẋj

∂aj

daj
dt

+
∂ẋj

∂ej

dej
dt

+
∂ẋj

∂ij

dij
dt

+
∂ẋj

∂Ωj

dΩj

dt
+

∂ẋj

∂ωj

dωj

dt
+

∂ẋj

∂Mj

dMj

dt
= Fjx,

∂ẏj
∂aj

daj
dt

+
∂ẏj
∂ej

dej
dt

+
∂ẏj
∂ij

dij
dt

+
∂ẏj
∂Ωj

dΩj

dt
+

∂ẏj
∂ωj

dωj

dt
+

∂ẏj
∂Mj

dMj

dt
= Fjy,

∂żj
∂aj

daj
dt

+
∂żj
∂ej

dej
dt

+
∂żj
∂ij

dij
dt

+
∂żj
∂Ωj

dΩj

dt
+

∂żj
∂ωj

dωj

dt
+

∂żj
∂Mj

dMj

dt
= Fjz,

(3.4)

where j = 1, 2. By solving Equations (3.2), (3.4), we can obtain explicit ex-
pressions for the derivatives of the orbital elements ȧj , ėj , i̇j , Ω̇j , ω̇j , and
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Ṁj for each body P1 and P2. Note that carrying out the corresponding cal-
culations and deriving the differential equations for the orbital elements re-
quires quite cumbersome symbolic computations. Such computations can be
performed efficiently using a computer algebra system such as Wolfram Math-
ematica (see [29]). By performing the corresponding calculations, we finally
obtain the following system of differential equations for finding the dependence
of the orbital elements on time:

daj
dt

=
2a

3/2
j γj(t)

√
κj(1− ej cosEj)

(
ej sinEj Frj +

√
1− e2jFτj

)
, (3.5)

dej
dt

=

√
aj(1−e2j )γj(t)

√
κj(1−ej cosEj)

(√
1−e2j sinEj Frj+(2 cosEj−ej−ej cos

2 Ej)Fτj

)
,

dij
dt

=

√
ajγj(t)√

κj(1− e2j )
Fnj

(
(cosEj − ej) cosωj −

√
1− e2j sinωj sinEj

)
,

dΩj

dt
=

√
ajγj(t)√

κj(1− e2j )

Fnj

sin ij

(
(cosEj − ej) sinωj +

√
1− e2j cosωj sinEj

)
,

dωj

dt
= −

√
ajγj(t) cot ij√
κj(1− e2j )

Fnj

(
(cosEj − ej) sinωj +

√
1− e2j cosωj sinEj

)

−
√
ajγj(t)

ej
√
κj(1− ej cosEj)

(
(cosEj − ej)

√
1− e2jFrj

− (2− e2j − ej cosEj) sinEjFτj

)
,

dMj

dt
=

√
ajγj(t)

ej
√
κj(1− ej cosEj)

(√
1− e2j (−2 + e2j + ej cosEj) sinEjFτj

+
(
(1 + 3e2j ) cosEj − ej(3 + e2j cos(2Ej))

)
Frj

)
+

√
κj

a
3/2
j γ2

j (t)
, j = 1, 2. (3.6)

The forces Frj , Fτj , and Fnj on the right-hand sides of (3.5)–(3.6) are the

radial, transversal and normal components of the forces F⃗1, F⃗2, respectively,
determined by expressions (2.2), (2.3). As the reactive forces Q⃗1, Q⃗2 defined by
(2.4) are usually determined in the orbital systems of coordinates of the bodies

P1, P2 the forces F⃗1, F⃗2 are also written in these systems of coordinates. The
direction cosines of the unit vectors e⃗rj = (exj , eyj , ezj), e⃗τj = (τxj , τyj , τzj),
and e⃗nj = (nxj , nyj , nzj) along the radial, transversal, and normal directions,
respectively, can be easily written on the basis of solutions (2.5):

exj = cos(ωj + νj) cosΩj − sin(ωj + νj) sinΩj cos ij ,

eyj = cos(ωj + νj) sinΩj + sin(ωj + νj) cosΩj cos ij ,

ezj = sin(ωj + νj) sin ij , (3.7)

τxj = − sin(ωj + νj) cosΩj − cos(ωj + νj) sinΩj cos ij ,

τyj = − sin(ωj + νj) sinΩj + cos(ωj + νj) cosΩj cos ij ,
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τzj = cos(ωj + νj) sin ij ,

nxj = sinΩj sin ij , nyj = − cosΩj sin iJ , nzj = cos ij , j = 1, 2. (3.8)

Denoting the components of the relative velocities of particles leaving the
bodies P1, and P0 or falling on them along the radial, transversal, and normal
directions in the orbital system of coordinates related to the body P1 by Vr1,
Vr0, Vτ1, Vτ0, Vn1, and Vn0 and using (2.2)–(2.4), we obtain for the first body

Fr1 = − γ̈1
γ1

r1 −Gm2
r1
r312

+Gm2

(
r2
r312

− 1

r22

)
(e⃗r2 · e⃗r1) +Qr1,

Fτ1 = Gm2

(
r2/r

3
12 − 1/r22

)
(e⃗r2 · e⃗τ1) +Qτ1, (3.9)

Fn1 = Gm2

(
r2/r

3
12 − 1/r22

)
(e⃗r2 · e⃗n1) +Qn1,

where the corresponding components of the reactive force Q⃗1 are given by

Qr1 =
ṁ1

m1
Vr1 −

ṁ0

m0
Vr0, Qτ1 =

ṁ1

m1
Vτ1 −

ṁ0

m0
Vτ0, Qn1 =

ṁ1

m1
Vn1 −

ṁ0

m0
Vn0.

Similarly, denoting the components of the relative velocities of particles leaving
the body P2 or falling on it along the radial, transversal, and normal directions
in the orbital system of coordinates related to the body P2 by Vr2, Vτ2, Vn2,
we obtain the radial, transversal, and normal components of the force F⃗2 in
the form

Fr2 = − γ̈2
γ2

r2 −Gm1
r2
r312

+Gm1

(
r1
r312

− 1

r21

)
(e⃗r2 · e⃗r1) +Qr2,

Fτ2 = Gm1

(
r1/r

3
12 − 1/r21

)
(e⃗r1 · e⃗τ2) +Qτ2, (3.10)

Fn2 = Gm1

(
r1/r

3
12 − 1/r21

)
(e⃗r1 · e⃗n2) +Qn2,

where

Qr2 =
ṁ2

m2
Vr2 −

ṁ0

m0
(Vr0 (e⃗r1 · e⃗r2) + Vτ0 (e⃗τ1 · e⃗r2) + Vn0 (e⃗n1 · e⃗r2)) ,

Qτ2 =
ṁ2

m2
Vτ2 −

ṁ0

m0
(Vr0 (e⃗r1 · e⃗τ2) + Vτ0 (e⃗τ1 · e⃗τ2) + Vn0 (e⃗n1 · e⃗τ2)) , (3.11)

Qn2 =
ṁ2

m2
Vn2 −

ṁ0

m0
(Vr0 (e⃗r1 · e⃗n2) + Vτ0 (e⃗τ1 · e⃗n2) + Vn0 (e⃗n1 · e⃗n2)) .

Note, that the relative velocities V⃗0 in (3.11) of the particles leaving the
body P0 or falling on it are given in the orbital system of coordinates related
to the body P1. If the relative velocities V⃗0, V⃗1, and V⃗2 and laws of variation
of body masses are given, Equations (3.5)–(3.11) completely determine the
perturbed motion of the bodies P1, P2.

4 Small eccentricities and inclinations

It is quite obvious that exact solution to nonlinear differential equations (3.5)–
(3.6) cannot be obtained and one can try to find only approximate solutions.

Math. Model. Anal., 28(4):636–652, 2023.
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Note that in many problems of celestial mechanics, eccentricities and inclina-
tions of body orbits are small (see [6,19]). Here we consider this practically im-
portant case of small eccentricities ej << 1 and inclinations ij << 1, (j = 1, 2)
and expand the right-hand sides of Equations (3.5)–(3.6) in series in these
parameters up to first-order terms.

First, we can find approximate solution to the Kepler equation (2.8) and
represent the eccentric anomaly in the form of a converging series in ej (see [19])
Ej = Mj + ej sinMj + . . . . Using this solution, we obtain

cosEj=cosMj− ej
2 (1− cos(2Mj))+ . . . , sinEj=sinMj+

ej
2 sin(2Mj)+ . . . .

(4.1)

On substituting expansions (4.1) into solutions (2.5) and expanding the
expressions obtained in series in small parameters, we obtain

xj=ajγj
(
cos(Mj+ωj+Ωj)+

ej
2 (cos(2Mj+ωj+Ωj)−3 cos(ωj+Ωj))

)
,

yj=ajγj
(
sin(Mj+ωj+Ωj)+

ej
2 (sin(2Mj+ωj+Ωj)−3 sin(ωj+Ωj))

)
,

zj = ajγjij sin(Mj + ωj), j = 1, 2. (4.2)

Using (4.2), we find

rj =
√
x2
j + y2j + z2j = ajγj (1− ej cosMj) , j = 1, 2. (4.3)

The distance between the bodies P1 and P2 may be written then as

r12 =
(
r21 + r22 − 2r⃗1 · r⃗2

)1/2
= ρ0 −

e1
ρ0

(
a21γ

2
1 cos(λ1 − ω1 −Ω1)

+
1

2
a1a2γ1γ2 (cos(2λ1 − λ2 − ω1 −Ω1)− 3 cos(λ2 − ω1 −Ω1))

)
−
(
a22γ

2
2 cos(λ2 − ω2 −Ω2) +

1

2
a1a2γ1γ2 (cos(λ1 − 2λ2 + ω2 +Ω2)

− 3 cos(λ1 − ω2 −Ω2))
)
e2/ρ0,

where the mean longitude λj = Mj + ωj + Ωj has been introduced instead of
the mean anomaly Mj for the convenience of computations (see [19]), and

ρ0 =
(
a21γ

2
1 − 2a1a2γ1γ2 cos(λ1 − λ2) + a22γ

2
2

)1/2
. (4.4)

Using (2.7), expansions (4.1)–(4.3), and the expressions for the direction
cosines (3.7)–(3.8), we find the scalar products of the units vectors appearing

in the expressions for the components of the forces F⃗1 and F⃗2 along the radial,
transversal, and normal directions (see (3.9)–(3.11)). They are given by

(e⃗r1 · e⃗r2) = cos(λ1 − λ2)− 2e1 sin(λ1 − λ2) sin(λ1 − ω1 −Ω1)

+ 2e2 sin(λ1 − λ2) sin(λ2 − ω2 −Ω2),

(e⃗τ1 · e⃗r2) =− sin(λ1 − λ2)− 2e1 cos(λ1 − λ2) sin(λ1 − ω1 −Ω1)

+ 2e2 cos(λ1 − λ2) sin(λ2 − ω2 −Ω2),
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(e⃗n1 · e⃗r2) =− i1 sin(λ2 −Ω1) + i2 sin(λ2 −Ω2),

(e⃗r1 · e⃗τ2) = sin(λ1 − λ2) + 2e1 cos(λ1 − λ2) sin(λ1 − ω1 −Ω1)

− 2e2 cos(λ1 − λ2) sin(λ2 − ω2 −Ω2),

(e⃗τ1 · e⃗τ2) = cos(λ1 − λ2)− 2e1 sin(λ1 − λ2) sin(λ1 − ω1 −Ω1)

+ 2e2 sin(λ1 − λ2) sin(λ2 − ω2 −Ω2),

(e⃗n1 · e⃗τ2) =− i1 cos(λ2 −Ω1) + i2 cos(λ2 −Ω2),

(e⃗r1 · e⃗n2) =i1 sin(λ1 −Ω1)− i2 sin(λ1 −Ω2),

(e⃗τ1 · e⃗n2) =i1 cos(λ1 −Ω1)− i2 cos(λ1 −Ω2),

(e⃗n1 · e⃗n2) =1. (4.5)

Since ρ0 is a periodic function of the variables λ1 and λ2 (see (4.4)), the
expressions 1/ρ0, 1/ρ

3
0, 1/ρ

5
0 which will appear in the expansion of r−3

12 in small
parameters (see (3.9), (3.10)), may be replaced by the corresponding Fourier
series

1

ρ0
=

1

2

+∞∑
k=−∞

Ak cos (k(λ1−λ2)) ,
1

ρ30
=

1

2a1a2γ1γ2

+∞∑
k=−∞

Bk cos (k(λ1 − λ2)) ,

1

ρ50
=

1

2a21a
2
2γ

2
1γ

2
2

+∞∑
k=−∞

Ck cos (k(λ1 − λ2)) , (4.6)

where Ak, Bk, and Ck are the Laplace coefficients satisfying the recurrences
(see [7, 19])

Ak =
2(k − 1)

2k − 1

(
α+

1

α

)
Ak−1 −

2k − 3

2k − 1
Ak−2, k ≥ 2,

Bk =
(2k + 1)α

(
1 + α2

)
(1− α2)

2 Ak − 2α2(2k + 1)

(1− α2)
2 Ak+1, k ≥ 0,

Ck =
(2k + 3)α

(
1 + α2

)
(1− α2)

2 Bk − 2α2(2k − 1)

3 (1− α2)
2 Bk+1, k ≥ 0.

All the Laplace coefficients can be computed using the above recurrences and
the following expressions for A0 and A1:

A0 =
2

πa2γ2

∫ π

0

dλ

(1 + α2 − 2α cosλ)
1/2

=
4

πa2γ2(1 + α)
K

(
4α

(1 + α)2

)
,

A1 =
2

πa2γ2

∫ π

0

cosλdλ

(1 + α2 − 2α cosλ)
1/2

=
2

πa2γ2α(1 + α)

(
(1 + α2)K

(
4α

(1 + α)2

)
− (1 + α)2E

(
4α

(1 + α)2

))
,

where the functions K
(

4α
(1+α)2

)
, E

(
4α

(1+α)2

)
denote the complete elliptic inte-

gral of the first and second kinds, respectively, and the parameter α = a1γ1

a2γ2
< 1.

The body P2 is assumed to be an outer planet and the trajectory of body P1

is located inside of the trajectory of body P2.
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On substituting the expansions (4.1)–(4.5) into (3.9)–(3.11), we compute
the expansions of the right-hand sides of Equations (3.5)–(3.6) in powers of
eccentricities e1, e2 and inclinations i1, i2. The coefficients of these expansions
are periodic functions of mean longitudes λ1, λ2, and they are rational expres-
sions the numerators of which include the trigonometric functions cos(kλj),
sin(kλj), cos(kλ1 ± nλ2), and sin(kλ1 ± nλ2), (k, n = 1, 2, ...). These expres-
sions are quite bulky and so we do not write them here. Since we are interested
in the behaviour of the orbital elements on long time intervals, the terms on
the right-hand sides of Equations (3.5)–(3.6) determining the short-term oscil-
lations of the orbital elements can be eliminated by averaging the equations over
the mean longitudes λ1 and λ2 (see [6,7,19]). We assume that the mean-motion
resonances are absent in the system and the masses m0(t), m1(t), m2(t) of the

bodies and velocities V⃗0, V⃗1, V⃗2 in Equations (3.5)–(3.6) change very slowly
with time and the procedure of averaging does not change them.

Recall that averaging of the function W (λ1, λ2) over the variables λ1 and
λ2 and transition to the secular perturbations W (sec) is reduced to calculating
the integral

W (sec) =
1

(2π)2

∫ 2π

0

W (λ1, λ2)dλ1dλ2.

By substituting for the function W (λ1, λ2) the right-hand sides of Equations
(3.5)–(3.6) in which expansions in the small parameters are made and taking
into account the expressions (3.9)–(3.11) for the forces and expansions (4.1)–
(4.6), we obtain the following differential equations:

da1
dt

=
2a

3/2
1√
κ1

(
ṁ1

m1
Vτ1 −

ṁ0

m0
Vτ0

)
,

de1
dt

= −
3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vτ1 −

ṁ0

m0
Vτ0

)
+

Gm2e2
16
√
a1κ1

(
18B0 + 2B2 + 21C1

+ 3C3 − 6 (α+ 1/α) (3C0 − C2)
)
sin(ω1 − ω2 +Ω1 −Ω2),

di1
dt

= −
3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1 −

ṁ0

m0
Vn0

)
cosω1 +

Gm2i2
4
√
a1κ1

B1 sin(Ω1 −Ω2),

dΩ1

dt
=−

3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1−

ṁ0

m0
Vn0

)
sinω1

i1

− Gm2B1

4
√
a1κ1

(
1− i2

i1
cos(Ω1 −Ω2)

)
,

dω1

dt
=

3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1 −

ṁ0

m0
Vn0

)
sinω1

i1
+

√
a1√
κ1

γ1

(
ṁ1

m1
Vr1 −

ṁ0

m0
Vr0

)
− 3a

3/2
1

2
√
κ1

γ1γ̈1 +
Gm2e2

16e1
√
a1κ1

(
18B0 + 2B2 + 21C1 + 3C3 − 6

(
α+ 1/α

)
× (3C0 − C2)

)
cos(ω1 − ω2 +Ω1 −Ω2) +

Gm2

8
√
a1κ1

(
6α2C0

− 6α(B0 + 2C1) + 15C0 − 9C2 − 2B1

(
1 +

i2
i1

cos(Ω1 −Ω2)
))

,
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da2
dt

=
2a

3/2
2√
κ2

ṁ2

m2
Vτ2,

de2
dt

= −
3
√
a2

2
√
κ2

γ2

(
ṁ2

m2
e2Vτ2 −

ṁ0

m0
Vr0e1 sin(ω1 − ω2 +Ω1 −Ω2)

)
+

3
√
a2

2
√
κ2

γ2
ṁ0

m0
(e1Vτ0 cos(ω1 − ω2 +Ω1 −Ω2) + i1Vn0 cos(ω2 −Ω1 +Ω2)

− i2Vn0 cosω2)−
Gm1e1
16
√
a2κ2

(
18B0 + 2B2 + 21C1

+ 3C3 − 6

(
α+

1

α

)
(3C0 − C2)

)
sin(ω1 − ω2 +Ω1 −Ω2),

di2
dt

= −
3
√
a2

2
√
κ2

e2γ2

(
ṁ2

m2
Vn2 −

ṁ0

m0
Vn0

)
cosω2 −

Gm1i1
4
√
a2κ2

B1 sin(Ω1 −Ω2),

dΩ2

dt
= −

3
√
a2

2
√
κ2

e2γ2

(
ṁ2

m2
Vn2 −

ṁ0

m0
Vn0

)
sinω2

i2

− Gm1B1

4
√
a2κ2

(
1− i1

i2
cos(Ω1 −Ω2)

)
,

dω2

dt
=

3
√
a2

2
√
κ2

e2γ2

(
ṁ2

m2
Vn2 −

ṁ0

m0
Vn0

)
sinω2

i2
+

√
a2√
κ2

γ2
ṁ2

m2
Vr2

− 3a
3/2
2

2
√
κ2

γ2γ̈2 −
3
√
a2

2
√
κ2

γ2
e2

ṁ0

m0
(e1Vr0 cos(ω1 − ω2 +Ω1 −Ω2)

− e1Vτ0 sin(ω1 − ω2 +Ω1 −Ω2) + Vn0 (i1 sin(ω2 −Ω1 +Ω2)− i2 sinω2))

+
Gm1e1

16e2
√
a2κ2

(18B0 + 2B2 + 21C1 + 3C3 − 6 (α+ 1/α) (3C0−

− C2)
)
cos(ω1 − ω2 +Ω1 −Ω2) +

Gm1

8
√
a2κ2

(
6

α2
C0 −

6

α
(B0 + 2C1)

+ 15C0 − 9C2 − 2B1

(
1 +

i1
i2

cos(Ω1 −Ω2)

))
. (4.7)

Equations (4.7) determine the secular perturbations of the orbital elements
of the bodies P1 and P2. We do not write the averaged Equation (3.6) here
because due to the integration of Equations (3.5)–(3.6) with respect to the
mean longitudes an information about the location of the bodies in the orbits
is lost and we can analyze only slow changes of the orbital parameters aj , ej ,
ij , Ωj , and ωj in time.

5 Numerical solutions to evolution equations

Although the averaged Equations (4.7) are approximation of (3.5)–(3.6) accu-
rate to the first order in eccentricities and inclinations their general solution
cannot be found in symbolic form. In order to investigate an influence of masses
change on the dynamic evolution of the system we can choose some realistic
values for the system parameters and solve Equations (4.7) numerically. To
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simplify the calculations it is convenient to use the dimensionless variables.
For example, we use initial values of the semi-major axis a10 = a1(t0) and the
mass m00 of body P0 as units of distance and mass, respectively, and define
dimensionless distance a∗j , mass m∗

j and time t∗ by

a∗j =
aj
a10

, m∗
j =

mj

m00
, t∗ = t

√
κ1a

−3/2
10 , j = 0, 1, 2.

The masses variation are described by the Eddington-Jeans law

m∗
j (t

∗) =
((

m∗
j0

)1−nj − βj(1− nj)(t
∗ − t∗0)

) 1
1−nj

, j = 0, 1, 2,

where for the bodies P0, P1, and P2 we choose, respectively

n0 = n1 = 2, n2 = 3, β0 =
1

300000
, β1 =

1

100000
, β2 = 1.

To be able to test the model we consider the Sun, Jupiter, and Saturn as
bodies P0, P1 and P2, respectively, and choose the following initial values for
orbital elements (see [19]):

m00 = 1989, 1× 1027kg, m10 = 1898, 6× 1024kg, m20 = 568, 46× 1024kg,

a10 = 5, 2034AU, a20 = 9, 5371AU, e10 = 0, 0484, e20 = 0, 0565,

i10 = 1, 305◦, i20 = 2, 485◦, Ω10 = 100, 56◦, Ω20 = 113, 72◦,

ω10 = 273, 98◦, ω20 = 335, 72◦.
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Figure 1. Long-term evolution of the eccentricities e1, e2, inclinations i1, i2, and
longitudes of ascending nodes Ω1, Ω2 (solid curves – constant masses, dashed curves –

isotropic mass changes).

In the case of constant masses of the bodies the system (4.7) describes
the secular perturbations of the orbital elements in the framework of the clas-
sical three-body problem and its solutions correspond to the known results
(see [6,7,19]). Taking into account the isotropic masses variation according to
the Eddington-Jeans law when reactive forces do not arise results in only some
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quantitative changes of solutions to (4.7) (see Figure 1). The semi-major axes
a1 and a2 remain constant while the period of oscillations of the eccentrici-
ties, inclinations and longitudes of the ascending nodes increase as the masses
decrease.
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ω2,°

Figure 2. Long-term evolution of the eccentricities e1, e2 and the arguments of
pericenter ω1, ω2 (solid curves – constant masses, dashed curves – isotropic mass changes,

dotted curves – non-isotropic mass changes, Vr0 = 1).

If only one component of the relative velocity Vr0 of the particles leaving
the most massive body P0 along the radial direction becomes greater than zero
(Vr0 = 1) dependance of the eccentricities e1, e2 and arguments of pericenter
ω1, ω2 on time changes (see Figure 2). However, the corresponding component
of the reactive force does not influence the other orbital elements.
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Figure 3. Long-term evolution of the eccentricities e1, e2 and inclinations i1, i2 (solid
curves – constant masses, dashed curves – isotropic mass changes, dotted curves –

non-isotropic mass changes, Vn0 = 1, Vr1 = −1, Vτ2 = 1).

Solving the system (4.7) in the case of Vn0 = 1, Vr1 = −1, Vτ2 = 1, when
reactive forces along the radial, transversal and normal directions arise demon-
strates noticeable changes in evolution of the orbital elements (see Figure 3).
Period of the eccentricity oscillations decreases in comparison to the case of
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absence of the reactive forces while the inclinations undergo additional oscilla-
tions with greater period. Note that numerical solutions to the system (4.7) and
visualization of the results are performed with the aid of the system Wolfram
Mathematica.

6 Conclusions

In this paper, we investigated a non-stationary three-body problem for bod-
ies of variable masses that attract each other according to Newton’s law of
gravitation taking into account the reactive forces arising due to anisotropic
variation of the bodies masses. The original equations of motion of the bodies
in the relative system of coordinates are obtained in the framework of Newton’s
formalism, which makes it possible to write the reactive forces on the basis of
Meshcherskii equation. Using the exact solutions of the non-stationary two-
body problem (see [16]) and applying the method of variation of constants, we
derived differential equations of the perturbed motion in terms of osculating
elements of the aperiodic motion along quasi-conical section. It should be em-
phasized that the obtained Equations (3.5)–(3.6) are valid for any laws of the
mass variation of the bodies and completely determine the perturbed motion
of the bodies P1, P2.

In the case of small eccentricities and inclinations of orbits, we have ex-
panded the right-hand sides of Equations (3.5)–(3.6) in power series in terms
of the orbital elements up to the first order. As the coefficients of e1, e2 and
i1, i2 in the obtained expressions are periodic functions of the mean longitudes
λ1, λ2, we replaced them by the corresponding Fourier series. Finally, we have
shown that the right-hand sides of differential equations (3.5)–(3.6) contain the
terms describing behaviour of the orbital elements on long time intervals and
quite cumbersome terms determining the short-term oscillations of the orbital
elements. Assuming that the mean-motion resonances are absent in the system
and averaging the equations over the mean longitudes λ1, λ2, we derived differ-
ential equations determining the secular perturbations of the orbital elements.
Note that the equations obtained describe the perturbed motion of the bodies
in the general case when the masses of all three bodies vary anisotropically,
and reactive forces occur.

To test the model, we have solved the averaged Equations (4.7) numerically
for some realistic values of the system parameters and some laws of the masses
variations, the obtained results are presented on Figures 1–3. Comparison
with the case of constant masses which is well-known (see, for example, [19])
demonstrates that masses variation can significantly affect the evolution of
orbital parameters. In the next paper we plan to use the model proposed to
investigate numerically some real two-planetary systems of three non-stationary
bodies and to investigate an influence of the masses variation on their evolution.

Note that all symbolic and numerical calculations were carried out using
Wolfram Mathematica (see [29]).
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