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Abstract. This work deals with some properties of synthetic measures designed to
differentiate objects in a multidimensional analysis. The aggregate synthetic measures
are discussed here to rank the objects including those validating the concentration
spread. The paper shows that currently used various measures (based either on a
single or a multiple model object) do not satisfy the necessary conditions requested
to be met by a “good” synthetic measure.
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1 Introduction

In economy applications Multidimensional Comparative Analysis (MCA) meth-
ods are commonly used to compare group of objects described by a set of n
indicator variables (see [2, 3, 4, 5, 7]). The simplest application is ranking of
the objects based on a certain non-directly observable variable. The latter is
coined as either a synthetic measure or a development measure or a measure
of concentration. Generally, in constructing such a variable for a given set of
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economy objects the basic role is played by hypothetical model objects (see
e.g. [1], [2], [11], [12], [13], [14], [15], [16], [18] or [20]). The additional task
associated with object ordering is a high reduction of a large quantity of col-
lected information about given objects into a few basic synthetically described
categories (synthetic measures). Eventually these categories can be used as
transformed input data for further analysis. It is worth noting that an inverse
problem is potentially of significant importance, e.g. in medicine. Indeed the
ordering or grouping the examined patients is well-known, where one searches
for features and their correlated measures resulting in such ordering or group-
ing.

The main goal of any taxonomical analysis is grouping and ordering objects
(units) of a multidimensional space. Various methods of classification and
grouping are introduced to realize the above task (see [4,7,20]). The aim of this
paper is to discuss basic properties of classification and grouping objects which
should be satisfied by aggregate synthetic measures and to present possible
difficulties in constructing such measures. Besides, we discuss here the new
IC-concentration measures introduced in [7] and perform their analysis on
well-posed problems [8], [9] or [10].

2 Selected techniques for creating synthetic measures

Ordering objects described by multiple features reduces into determination of
relevant mapping W : Rk → R meeting the imposed constraints specified by a
given recipient. Noticeably, it is not always possible for a recipient in question
to define precisely such pertinent necessary conditions. A typical approach to
construct the required transformation W (upon selecting its free variables) is
to normalize all involved variables and potentially to replace them with the so-
called stimulants. In doing so, the natural aim is to force all features/variables
to be comparable (so that they all are positioned on the same scale). Having
completed the above, one chooses next a suitable transformation W (called
aggregated measure) which values are used to order a given set of input objects.

Relevant literature proposes a large number of indicators/measures - see
e.g. [4], [5], [6] or [7]. Generally, construction methods are divided into two
categories:

1. Those based on distance from a single or two models,

2. Those using utility functions or derived from intuition based on graphical
representations of objects.

So far most of the proposed indicators in the literature are represented
as functions of distance from one or two models. Note, that any synthetic
measure W constructed by using distance from models can be normalized with
the rescaled values ranging within the unit interval [0, 1]. The most essential
items in the construction process of mapping W are introduced below.

Let X = Rn denote an n-dimensional vector space. Consider now a problem
of ordering m ∈ N objects Q1, Q2,...,Qm by using n ∈ N variables (features)
meant to describe each of them. Without loss of generality, all features may be
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considered as stimulants. Assume that symbol xi = (xi1, xi2, . . . , xin) ∈ X (for
i = 1, 2, ...,m) denotes a variables’ vector describing the i-th object Qi. We
say that xi > xj , (or xi ≥ xj) (for i, j = 1, ...,m), if xik > xjk (or xik ≥ xjk),
for k = 1, 2, ..., n. Besides, the notation Q0 and Qm+1 stands for the objects
described by vectors with coordinates

x0,k = min
1≤i≤m

xik, xm+1,k = max
1≤i≤m

xik, k = 1, 2, ..., n, (2.1)

respectively. Note that by (2.1) both vectors x0 and xm+1 can be treated as
functions of x1,x2, ...,xm, i.e.:

x0 = λ1(x1,x2, ...,xm) and xm+1 = λ2(x1,x2, ...,xm). (2.2)

Naturally, objects: Q0 described by vector x0 and Qm+1 described by vector
xm+1 (perhaps fictitious) are not worse and not better, respectively, from the
remaining objects Q1, Q2,...,Qm. Objects Q0 and Qm+1 can be treated as
extra models added to the initial input objects Q1,Q2, ...,Qm. Upon simple
inspection we have xk ∈ 〈x0,xm+1〉 (x0 ≤ xk ≤ xm+1 for k = 1, 2, ...,m).

A function d which maps a Cartesian product X × X into a set of non-
negative numbers R1

+ = 〈0,+∞) is said to represent a distance between any
two elements x,y ∈ X, if it satisfies the following:

d(x,y) = d(y,x) and d(x,x) = 0.

The distance d(x,y) is called a metric if additionally d fulfills the triangle
inequality:

d(x,y) ≤ d(x, z) + d(z,y), for all x,y, z ∈ X.

Given x,y ∈ X with x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) the most
widely known example of a distance (and a metric) reads as:

dp(x,y) =
[ n∑
j=1

|xj − yj |p
]1/p

, 1 ≤ p ≤ ∞, (2.3)

known as Minkowski’s metric. On the other hand the following function:

drad(x,y) =
( 1

n

n∑
i=1

|xi − yi||xi+1 − yi+1|
)1/2

(2.4)

with xn+1 = x1 and yn+1 = y1 satisfies merely a distance’s but not a metric’s
axioms. To demonstrate the latter consider:

x = (n, 1, 0, 0..., 0), y = (0, 0, ..., 0), z = (0, 1, 0, 0, ...0).

A simple inspection shows that:

drad(x,y) = 1, drad(x, z) = 0, drad(z,y) = 0.

Math. Model. Anal., 23(4):699–711, 2018.
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Consequently

1 = drad(x,y) > drad(x, z) + drad(z,y) = 0.

Let the vectors x0,xm+1 ∈ Rn+ be defined by formula (2.1) and satisfy
the condition x0 6= xm+1. Suppose that ρ∗(x,y) is a distance between two
vectors x,y ∈ Rn and ρ∗(x0,xm+1) > 0. The most commonly known synthetic
indicators in the literature used to order objects are the following measures [7,
15]:

µ1(x) =
ρ∗(x0,x)

ρ∗(x0,xm+1)
, µ2(x) = 1− ρ∗(xm+1,x)

ρ∗(x0,xm+1)
,

µ3(x) =
µ1(x) + µ2(x)

2
=

1

2
+
ρ∗(x0,x)− ρ∗(xm+1,x)

2ρ∗(x0,xm+1)
,

µ4(x) =
µ1(x)

1 + µ1(x)− µ2(x)
=

ρ∗(x,x0)

ρ∗(x0,x) + ρ∗(xm+1,x)
, (2.5)

where x ∈ 〈x0,xm+1〉.
Visibly both measures µ1 and µ2 rely on a single model, whereas the remain-

ing measures µ3 and µ4 depend on two models and are expressed as elementary
functions of µ1 and µ2. Note also that by (2.2), all measures introduced in (2.5)
are parameterized by m vectors:

µi(x) = µ1(x;x1,x2, ...,xm), (2.6)

where i = 1, 2, 3, 4.

For further consideration we normalize distances of vectors ρ∗(x,y), accord-
ing to chosen model vectors x0, xm+1, by means of the following:

ρ(x,y) = ρ∗(x,y)/ρ∗(x0,xm+1).

Upon renormalization ρ(x0,xm+1) = 1. In addition, (2.5) reformulates into:

µ1(x) = ρ(x0,x), µ2(x) = 1− ρ(xm+1,x),

µ3(x) =
1

2
[1 + ρ(x0,x)− ρ(xm+1,x)] ,

µ4(x) = ρ(x0,x)/
(
ρ(x0,x) + ρ(xm+1,x)

)
. (2.7)

In the special case when models x0 = 0 = (0, 0, ..., 0), xm+1 = 1 = (1, 1, ..., 1)
then

ρ∗(0,1) =

{
1, for ρ∗ = drad,

n1/p, for ρ∗ = dp.

It is easy to see that the considered measures, defined by (2.7) are normalized
in relationship to chosen models, i.e.:

µi(x0) = 0 and µi(xm+1) = 1, for i = 1, 2, 3, 4.
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Let vector x ∈ Rn+ be now arbitrarily fixed. With the aid of µ1 and µ2 can
construct alternative measures, possibly according to (see, e.g., [14]):

µ5(x) =

{
2µ1(x)µ2(x)
µ1(x)+µ2(x)

, for µ1(x) + µ2(x) 6= 0,

0, for µ1(x) + µ2(x) = 0.

}
− harmonic mean,

µ6(x) =
√
µ1(x)µ2(x) − geometric mean,

µ7(x) =
√

0.5
(
µ2
1(x) + µ2

2(x)
)
− root mean square. (2.8)

Again by (2.2) all measures from (2.8) are parameterized by m vectors:

µi(x) = µ1(x;x1,x2, ...,xm),

for i = 5, 6, 7. It can be shown (see [14]) that for each x ∈ 〈x0,xm+1〉 the
following inequalities hold:

min{µ1, µ2} ≤ µ5 ≤ µ6 ≤ µ3 ≤ µ7 ≤ max{µ1, µ2}.

It is easily visible that the most common synthetic indicator wi defined as
an arithmetic mean of normalized values of variables can be expressed as a
simple dependence on the distance from the negative model x0. In the case
of normalization known as zero unitarization (see [4]) this synthetic indicator
reads:

wi =
1

n

n∑
j=1

zij =
ρ∗
(
(0, ..., 0), (zi1, ..., zin)

)
ρ∗
(
(0, ..., 0), (1, ..., 1)

) ,

or in the case of normalization done by standardization it coincides with:

wi=
1

n

n∑
j=1

zij=
1

n

(
ρ∗
(
(z01, ..., z0n), (zi1, ..., zin)

)
−ρ∗

(
(0, ..., 0), (z01, ..., z0n)

))
,

where zi denote vectors xi after normalization, i = 0, 1, ...,m+ 1.
Having a vast, practically limitless, set of functions that can be used as

distances, analysts can create rich sets of measures useful in ordering of objects
described by variables in automated reporting systems. Thus an important
issue unifying such indicators is determination of measures used.

3 Properties of basic synthetic measures

For cyclical reporting (e.g. in automated reporting systems) ordering objects
is an important issue. The report creator concentrates here on both universal
properties of the synthetic indicator that orders input objects and on the spe-
cific properties of the concrete situation. Universal properties include, among
others, invariability in relation to changes in scale when all variables have values
on an interval scale (or only on a quotient scale) or in relation to the indicator
assuming a value a when the vector that describes the object, has after nor-
malization, only values of a as coordinates. Indeed, if µ denotes a synthetic

Math. Model. Anal., 23(4):699–711, 2018.
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measure of an object which is determined by the vector a then µ(a) = a, where
a ≥ 0.

On the other hand, an example of a specific property is a requirement to
have an increase in the value of a given indicator depending on component
variable, after normalization, has its value change by a. Moreover, it is often
useful to the user to know in which situations values of indicators overlap and
in which they significantly differ. Properties of commonly used indicators that
are presented bellow partially answer the above questions.

Property 1. Assume the indicators considered are treated as functions
of x ∈ 〈x0,xm+1〉 and vectors defining objects Q1, Q2,...,Qm (where for
i = 1, 2, 3, 4 define µi = µi(x;x1,x2, ...,xm)). Take the distance ρ∗ = dp
as introduced in (2.5). Then each measure µi (i = 1, 2, 3, 4) is a homogeneous
function of the zero order.

Proof. Let α > 0 and x = (x1, x2, ..., xn) ∈ 〈x0,xm+1〉 be arbitrarily fixed.
Without loss of generality assume that x0 = 0 and xm+1 = 1. The following
holds for the measure µ3 defined by (2.5) (see also (2.6)):

µ3(αx;αx1, αx2, ..., αxn) =
1

2
+
dp(α0, αx)− dp(αx, α1)

2dp(α0, α1)

=
1

2
+

(
∑n
i=1(αxi)

p)
1/p − (

∑n
i=1(α− αx1)p)

1/p

2 (
∑n
i=1 α

p)
1/p

=
1

2
+
αdp(0,x)− αdp(x,1)

2αdp(0,1)
= µ3(x;x1,x2, ...,xn).

The latter justifies the zero-homogeneity of µ3. A similar property follows for
remaining measures µi, for i = 1, 2, 4. The proof is omitted here. ut

Note 1. If the distance ρ∗ = drad (see (2.4)) is used in (2.5) then all
measures µi (for i = 1, 2, 3, 4) are homogeneous functions of the zero order.
Condition of the zero order homogeneity is the basic requirement for the mea-
sures discussed (independence from the scale – see [17]).

Note 2. The measures may be considered as the utility functions and
may be treated as functions of consumption demand for which the zero order
homogeneity means that the so-called “no money impact” phenomenon takes
place on the market (see [19]).

Property 2. If x ∈ 〈x0,xm+1〉, then equality µ3(x) = µ4(x) holds if and
only if: ρ(x0,x) = ρ(xm+1,x) or ρ(x0,x) = 1− ρ(xm+1,x).

Proof. Let a = ρ(x0,x) and b = ρ(xm+1,x). Based on (2.7) we have (1/2)(1+
a− b) = a(a+ b)−1 from which it follows a(a− 1) = b(b− 1). The last equality
holds if and only if a = b or a = 1− b. ut

In the special case when x0 = 0, xm+1 = 1 and n = 2, where ρ(x,y) =
ρ∗(x,y)/

√
2 and ρ∗ denotes Euclidean metric, the equality of measures µ3 and

µ4 holds only on the diagonals of a unit square.
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Property 3. If a = (a, a, ..., a) ∈ 〈0,1〉 and ρ in (2.5) coincides with either
a radar distance drad or with Minkowski’s metric dp, p ≥ 1, then the following
holds:

µ1(a) = µ2(a) = µ3(a) = µ4(a) = a,

where measures µi (for i = 1, 2, 3, 4) defined by (2.7).
Property 3 implies that given the worst and the best objects have the mea-

sures equal to 0 and 1, respectively, then the intermediate object described
by the vector 1/2 has a measure amounting to 0,5. This property permits to
group the objects depending on their respective measures.

The remarks below enable in particular cases to determine the surfaces and
indifference domains induced by µ3 and µ4.

Note 3. It can be shown that with an Euclidean metric d2, two objects xi,
xj (for i, j ∈ {1, 2, ...,m}) have the same measure µ3(xi) = µ3(xj) if and only
if the difference of the squares of their distances from the best object is equal
to the difference of the squares of their distance from the worst object, i.e.:

µ3(xi) = µ3(xj) ⇐⇒ d22(xi,xm+1)− d22(xj ,xm+1) = d22(xi,x0)− d22(xj ,x0).

From the above it follows that if objects xi, xj are equidistant from the best
object xm+1 and from the worst object x0, i.e.:

d2(xi,xm+1) = d2(xj ,xm+1) and d2(xi,x0) = d2(xj ,x0),

then µ3(xi) = µ3(xj). Similarly, for the measure µ4, if the objects xi, xj are
equidistant from xm+1, we have:

ρ(xi,xm+1) = ρ(xj ,xm+1),

then µ4(xi) = µ4(xj).

4 Models of measure of concentration

In the case of evaluating concentration of “goods” attributed to a given set
of objects, in practice one focuses on how much a vector x (which coordi-
nates represent the share of goods possessed by each of n objects) differs from
the so-called egalitarian vector with all coordinates equal to 1/n denoted by
e = (1/n, 1/n, ..., 1/n) ∈ Rn (see [4, 21]). For further consideration we intro-
duce also the vector s = (0, ..., 0, 1) ∈ Rn corresponding to an extreme good
concentration vector. Both vectors e and s play vital role to test different
measures in concentration analysis (see [4, 21]).

We introduce now a special set:

Ω = {x = (x1, ..., xn) ∈ [0, 1]n : x1 + x2 + ...+ xn = 1, xi ≥ 0, i = 1, 2, ..., n}

representing the set of all n-element structures.
Let P : Ω → Ω denote an operator designated to order coordinates of any

vector according to (2.1). The operator P transforms a vector x = (x1, ..., xn) ∈
Ω into a vector x′ = (x′1, ..., x

′
n) ∈ Ω by permuting its coordinates so that

Math. Model. Anal., 23(4):699–711, 2018.
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x′1 ≤ x′2 ≤ ... ≤ x′n. Such operator P is called an ordering operator with the
associated notation assigned as x′ = P (x). Upon coordinates’ re-ordering one
can define a function C : Ω → [0, 1]n (called a cumulation operator – see [4,21])

which maps vector x′ ∈ Ω into x̂ = (x̂1, x̂2, ..., x̂n) according to x̂i =
∑i
j=1 x

′
j ,

for i = 1, ..., n.
Obviously, x̂ = C(x′) = C(P (x)), x′ ∈ Ω. Given a fixed measure of distance

d, one can formulate the following concentration measures [4, 6, 21]:

Ψ1(x) =
d
(
C(e), C(P (x))

)
d
(
C(e), s

) , Ψ2(x) =
d
(
e, P (x)

)
d
(
e, s
) , (4.1)

where e, s ∈ Ω.
Recall (see [4,6,21]) that if Ψ is a measure of concentration and f : [0, 1]→

[0, 1] ⊂ R is a monotonically increasing surjection then f(Ψ) is also a measure of
concentration. In case of measures of concentration economists and sociologists
have set requirements imposed on their properties. It should be stressed that
in general researches are in agreement that a measure of concentration should,
at the very least, have the following properties:

1. the measure is equal to zero if the good is equally distributed among all
objects (egalitarian distribution);

2. the values of the indicator are in agreement with the principle of transfers,
which states that a transfer from a “poorer” object to a “richer” object
of any part of the former good will cause an increase in the inequality
within the population;

3. the transfer sensitivity axiom: the impact of a transfer from a “rich”
object to a “poor” object on the value of the indicator is directly propor-
tional to how “rich” the former object is;

4. the indicator assumes its maximal value when all goods are possessed by
a single object.

Note 4. It can be shown that the common indicators like Herfindahl - Hirsch-
man HHI or Gini GINI in their normalized forms (HHI∗ and GINI∗) are
expressible in terms of vectors e and s and Minkowski’s metric dp (2.3) accord-
ing to the formulae (see [7]):

HHI∗(x) =

[
d2
(
e, P (x)

)
d2(e, s)

]2
, GINI∗(x) =

d1
(
C(e), C(P (x)

)
d1(C(e), s)

. (4.2)

Combining (4.1) and (4.2) we obtain

HHI∗(x) = Ψ2
2 (x) and GINI∗(x) = Ψ1(x).

For x,y ∈ Ω one can show that functor dR defined by

dR(x,y) = |R∗(x)−R∗(y)|, (4.3)



On Mathematical Modelling of Synthetic Measures 707

where R∗(x), R∗(y) denote the ratios of areas of polygons created by radar
charts of vectors x, y, respectively, and the area of a polygon induced by the
radar chart of vector xmax = (1, 1, ..., 1), i.e. a function defined by:

R∗(x) = R∗(x1, x2, ..., xn) =
1

n

n∑
i=1

xixi+1 with xn+1 = x1.

Indicator dR defines the distance between structures x and y.
Note 5. If in (4.1) defining the indicator Ψ1(x) the functor dR is applied

then the so-called radar indicator of concentration is obtained

Ψrad(x) = dR
(
C(e), C(P (x))

)
/dR

(
C(e), s

)
.

Note 6. In the case of measuring concentration not every distance function
listed in (4.1) meets four requirements specified above by the practitioners.
However, as shown in [4, 21] the measures constructed by using Minkowski’s
metric and three other distances based on graphical interpretations in the form
of radar charts (especially distance dR defined by (4.3)) specify the above four
constraints.

5 Results and empirical research

To confirm the need of using multiple measures simultaneously for ordering
objects characterized by n-features and to evaluate their differentiation (e.g. of
wages) we present an application of the above analysis on some real empirical
data1.

The analysis and experiments are performed on the data acquired from 10
branches of a certain retail bank. For each of them we have collected informa-
tion about personnel costs of employees (see Table 2) from their central Human
Resources (denoted as HR) system as well as indicators rating the efficiency
of these branches (see Table 1): X1 - ROA, X2 - ROE, X3 cost income ratio
(operational costs in income from their core business), X4 - ratio of clients’
deposits in balance sheet total/assets, X5 capital adequacy ratio, X6 - ratio
of performing credits to total credits. The respective values of these indicators
upon normalisation:

xi −min{i}(xi)

max{i}(xi)−min{i}(xi)

are listed in Table 1. Columns W1 and W3 contain two measures representing
distances from a negative object - in this case the negative object being x0 =
(0, 0, ..., 0). We used here a measure defined by (2.7) and a metric defined by
(2.3) for p = 1 and p = 4. Additionally, the column W2 contains an indicator
defined by (2.7) resorting to a metric (2.3) with p = 2. Rankings of branches as
per these indicators are present in columns R1, R2, R3, respectively. Rankings
R1 and R2 are identical but widely different from R3. The last column (R1-
R3) presents changes in positions of branches between rankings R1 and R3.

1 Source - own research.

Math. Model. Anal., 23(4):699–711, 2018.
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This simple juxtaposition shows that a choice of metric can greatly influence
the position of an object. However, that might not be always the case.

Ranking with respect to indicator W2 shows similar result as in case of
indicator W1, which is constructed by using a different formula and the same
metric. This example confirms our understanding of indicators’ properties and
the choice of one of them for analysis of empirical data.

This is crucial especially in a capitalist economy. If the bonus pool depends
on this ranking then the choice of a measure becomes a ”sensitive” situation.

Table 1. Values of chosen indicators after normalisation.

X1 X2 X3 X4 X5 X6 W1 W2 W3 R1 R2 R3 R1-R3

B01 0.556 0.545 0.077 0.992 0.000 0.996 0.528 0.517 0.772 7 7 3 4

B02 0.333 0.773 0.308 1.000 0.625 0.266 0.551 0.539 0.711 3 3 4 -1

B03 0.111 1.000 0.538 0.888 1.000 1.000 0.756 0.667 0.887 1 1 1 0

B04 0.444 0.273 0.769 0.875 0.750 0.158 0.545 0.535 0.682 4 4 6 -2

B05 1.000 0.636 1.000 0.197 0.250 0.114 0.533 0.521 0.775 6 6 2 4

B06 0.778 0.455 0.646 0.756 0.625 0.614 0.646 0.639 0.669 2 2 7 -5

B07 0.222 0.182 0.846 0.308 0.875 0.769 0.534 0.525 0.702 5 5 5 0

B08 0.000 0.318 0.385 0.058 0.938 0.051 0.292 0.358 0.605 10 10 9 -1

B09 0.667 0.614 0.231 0.000 0.813 0.000 0.388 0.422 0.600 8 8 10 -2

B10 0.889 0.000 0.000 0.320 0.375 0.727 0.385 0.422 0.628 9 9 8 1

We calculated the differentiation of personnel costs for 10 branches of some
retail bank. Table 2 contains personnel costs assigned to each of employees
(Q1, ..., Q10) and values of coefficients of concentration HHI∗, GINI∗ and
RADAR (see notes 4 and 5) given to the third decimal place. For further il-
lustration we also include values of indicator C3 (the ratio of three largest per-
sonnel costs assigned to employees to the total personnel cost of the branches),
the mean (average personnel cost per employee) and the value of the volatility
index V (ratio of standard deviation to the mean). Table 2 shows that when
observing the values of a popular GINI∗ indicator (or its normalised values,
to be precise) one cannot observe a significant concentration difference of in-
come in branch B4 as compared to B5–B10. A similar situation occurs for
HHI∗ and branches B1, B2, B3. Moreover, Table 2 contains in its last five
rows (R1, ..., R5) the rankings as defined by coefficients of concentration V ,
C3, HHI∗, GINI∗, RADAR. It is clear that the three coefficients of concen-
tration (HHI∗, GINI∗, RADAR) result in different ordering of branches by
levels of concentration of personnel costs. The latter coincides with our intu-
ition as each of these coefficients is ”sensitive” to a different aspect of changes
in the structure of costs of a branch in relation to an egalitarian structure e
(see equations (4.1), (4.2) and (4.3)).

The techniques presented in this work for constructing indicators utilizing
distance from model objects allow analysts to create measures that are directed
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Table 2. Values of personnel costs in 10 branches of a retail bank.

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10

Q1 6 7.8 7.7 11.189 9.741 5.2 10.583 8.5 8.328 12.308

Q2 6.5 8.3 8.2 11.189 9.741 7.964 10.583 9.343 8.328 12.508

Q3 7 8.8 8.7 11.189 9.741 10.728 10.583 10.269 8.328 12.708

Q4 8 9.8 9.7 11.189 9.741 13.492 10.583 11.287 8.328 12.908

Q5 8.5 10.3 10.2 11.189 9.741 16.256 10.583 12.406 8.328 13.108

Q6 9 10.8 10.75 11.189 9.741 19.02 10.583 13.636 8.328 13.308

Q7 12 12 11.95 11.189 9.741 21.784 20.817 14.988 16.338 13.508

Q8 20 12 12.3 11.189 28.765 24.548 23.419 16.474 17.505 15.577

Q9 30 22.9 23.3 11.189 28.765 27.312 24.72 18.108 18.672 21.807

Q10 50 54.3 54.2 56.299 28.765 30.076 38.043 41.989 30.809 56.076

Mean 15.700 15.700 15.700 15.700 15.448 17.638 17.050 15.700 13.329 18.382

V 0.860 0.860 0.861 0.862 0.654 0.450 0.526 0.589 0.536 0.699

C3 0.637 0.586 0.572 0.501 0.559 0.465 0.505 0.488 0.503 0.508

HHI∗ 0.082 0.082 0.082 0.083 0.035 0.023 0.031 0.039 0.032 0.054

GINI∗ 0.452 0.385 0.389 0.287 0.287 0.287 0.287 0.287 0.287 0.287

RADAR 0.566 0.520 0.524 0.432 0.379 0.344 0.383 0.394 0.386 0.417

R1 3.5 3.5 2 1 7 10 9 6 8 5

R2 1 3 2 8 4 10 6 9 7 5

R3 3 3 3 1 7 10 9 6 8 5

R4 1 3 2 2 7 7 7 7 7 7

R5 1 3 2 4 9 10 8 6 7 5

at tracing changes deemed most important by management. The above, rela-
tively simple, example shows that a rating of a branches efficiency is sensitive
to measuring the distance within the model. Hence, it seems helpful to include
in managerial briefs grading branches efforts not one but multiple synthetic
measures used to order/rate objects defined by multiple specific indicators.
Similarly, HR reports tracing changes in personnel costs structures (or just
salaries) in individual units should contain not one but many other coefficients
of concentration.

6 Conclusions

This work formulates the necessary conditions to be fulfilled while ordering
objects with n features. In literature ordering of such objects is usually done
via a certain non-directly observable variable(s), most often called a synthetic

Math. Model. Anal., 23(4):699–711, 2018.
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measure, development measure or concentration coefficient. Our studies show
that most of proposed indicators can be expressed as functions of distance from
one or two model objects. We indicated here that synthetic indicator W based
on calculating a distance from models should be defined in an interval [0, 1].
Moreover, the distances between any two objects x,y ∈ X, have to fulfill at
least two conditions: (1) d(x,y) = d(y,x) and (2) d(x,x) = 0.

Universal properties of indicators also include invariability with respect to
changes in scale when all variables have values on an interval scale (or only on
a quotient scale). But the indicator must be sensitive to any other variation
of the object features and such changes must result in changing the value of
indicator. This paper shows that for measuring the concentration not every
distance results in a measure with desired properties. However, as proved in [4]
the measures constructed by Minkowski’s metric and three distances based on
graphical interpretations in the form of radar charts (especially distance dR
defined by (4.3)) meet all the properties specified in Section 4.
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