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1 Introduction

In this paper, we consider the numerical approximation of the nonlinear Volterra
integro-differential equations (VIDEs) with weakly singular kernels:

t

VO30 =10+ [ 09K Gy te©T)

y(0) = yo.

Here, the parameter p € (0, 1), yo is the initial data, f and G are given contin-
uous functions. In addition, K € C'(D) where D :={(t,s) : 0 <s <t <T}.

It is proved that the solution of (1.1) at t = 0 appears singularly [3], which
poses a great challenge to traditional numerical methods. To overcome this dif-
ficulty, various numerical methods, such as collocation methods, Runge-Kutta
methods, spectral methods, have been proposed during the past few decades,
see [1,2,3,4,6,7,10,11,14,15,16,17,18,20] and the references therein.

Due to its characteristic, if we divide the interval [0,T], the singularity
only appears in the first one. Therefore, it is not advisable to use only one
family of functions on the whole interval to approximate the solution. We
can take the basis functions on the first interval which are different from the
others. Fortunately, the hp-version method is suitable to our thought. Com-
bined with the basis of spectral method, the hp-version spectral method can
approximate smooth solutions with possible local singularities at high alge-
braic or even exponential rates of convergence. Wang et al. [12,13] used three
types of polynomial interpolation techniques to express the numerical solution,
and proposed an hp-version spectral collocation method for weakly singular
VIDESs, where the hp-version optimal convergence is obtained. Since Miintz-
Jacobi functions [5,9] can capture the singularity of the solution exactly, we
employ Miintz-Jacobi functions as the basis in the first interval, and Legendre
polynomials as the basis in the other intervals. An hp-version spectral method
is designed and developed to approximate weakly singular VIDEs. We prove
the existence and uniqueness of solution to the numerical scheme and derive
hp-version error estimates for the singular solution.

The remainder of the paper is arranged as follows. The next section is for
preliminaries. We introduce the shifted Miuntz-Jacobi functions and Legen-
dre polynomials, and provide some approximation results which are significant
in the convergence analysis. In Section 3, we propose an hp-version spectral
method to approximate nonlinear weakly singular VIDESs, and prove the exis-
tence and uniqueness of solution to the numerical scheme. Meanwhile, optimal
error estimates in the hp-version are derived under the H!'-norm. Numerical
results are performed to demonstrate the effectiveness of the new method in
Section 4. The final section is for conclusion remarks.

2 Preliminaries

We divide the interval T :=[0,T] as I, = {t, : 0=ty < t;1 < ... <ty =T}
and let hy, =t —tn—1, hmax = max hy, I = (tn—1,t,] and y™(¢) the solution
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of (1.1) on the n-th element, namely
y'(t) =yt), Vtel,, 1<n<N.

The model (1.1) can be rewritten as

Dy -y = 1)+ Z/ (1 )Gy (€))de
¢ 2.1
—I-/t (t—s) FK(t,8)G(s,y"(s))ds, t€ I, @1)
y(0) = yo.
Let
s=58(t,7)=tn-1+ (T —tn-1){t —tn—1)/hn, TE I,.
Then, the problem (2.1) becomes
S+ (0 = £+ Tyl + Vi), 0
y(0) = o,
where
Viu(t) = Z /I (1 )G(E 3 (€))de,

Viy'() :(t *,f:‘l) B / (b — 7) K (. 5(8, 7)) Cls(8,7), ™ (s(0. 7).

2.1 The shifted Muntz-Jacobi functions on I,

For o, 8 > —1, the shifted Miintz-Jacobi function of degree p on I; is defined
by

a8, @B, aB o Lyr
JEIA () = Jo (t1> JA(25) =) ten 0<a<,

1,
P 1

where JI?’B (x) is the standard Jacobi polynomial of degree p defined on (—1,1).

Let by (B+1)A—1
~a B, A(t) A (1 _ i )Q i
th t1 th ’

The set of Jla B, (t) forms a complete L~a s.» (I1)-orthogonal system, and satisfy
that

[ 0 e =355,
1

1

with
I'la+1H)I'(B+1)

”3_ I'a+8+2)
I'p+a+D)I'(p+5+1)
2 tatBr)pTpratprl) P

; p=0,
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aﬁ)\

For any given integer M; > 0, let ¢ be the shifted Miintz-Jacobi function

quadrature nodes on the interval I,

B
taﬁk—tl(x? +1

1
o) 0<i<

where {xfﬂ };\4:10 are the nodes of the standard Jacobi-Gauss interpolation on
the interval (—1,1).
We introduce the finite-dimensional approximation space as follows:

Py (1) = span{Jy") @82 0 < p< M)

Due to the property of the standard Jacobi-Gauss quadrature, there holds that
for any ¢ € Pgy, (1),

My
o 1
3 SO )l = oy Z¢ I (2.3)
where {w” P } are the corresponding Christoffel numbers of the standard

Jacobl—Gauss mterpolation on the interval (—1,1).
Let (+,-)ga.en; ||| ga.s.n be the inner product and norm of space L2, 5\ (11),
respectively. We introduce the following discrete inner product and norm:

,\ @B\ , z
<U7U>®a~3v>‘ = 2a+5+1 Z QB B ) W 67 ||UHM1,(I;0<~/3~>\ = <U7v>5,a,ﬁ,k'

Thanks to (2.3), for any ¢ € Py, 1 (11), it holds that

(D, ) gasx = (P, V) 5085,

We also introduce the non-uniformly Jacobi-weighted Sobolev space:

Bly(L) :=={v:0fv € Liuixpinn(I1),0 <k <m}, meN.
Denote the projection by 71'?1’:8]\’}1 1 L2 s (I1) = Py (1) as

(3500 = 0,0)gasn =0, Vi € Py (Ih).

Lemma 1. ( [19]) For any v(tx) € Bl Y1), and 0 < my < My +1,

2.2 The shifted Legendre polynomials on I,

a,B,A

ma —mq
WII’MI’U—U’ < chi"™ M,

QB

o ot}

Goadmy,Brmy,1

The shifted Legendre polynomial L, ,(t) on I,, is defined by

2 —t,_1—t
me(t):Lp(T;Lln>, tel, p>0,
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where L,(z) be the standard Legendre polynomial of degree p defined on
(—1,1). They form a complete L?(I,,)-orthogonal system, i.e.,

hy,
L L = — .
[ Lap®bg(t)it = 5

For any given integer M, > 0, let Pus, (In) = {Ln,o0sLn1,---, Lo, }s
{z;, wj} 5 be the Legendre- Gauss interpolation nodes and the corresponding
Chrlstoﬁel numbers on (—1,1).

Define the shifted Legendre—Gauss quadrature nodes on I,, by

hnxj +tn_1+1

tnj = 5 " 1<n<N,0<j<M,.

According to the standard Legendre-Gauss quadrature, it follows that
¢( Z<z> n,)Wss ¥ € Pang, i1 (Ln)- (2.4)

Let (-,-)7, and [|-||; be the inner product and norm of space L?(I,,), respec-
tively. We further introduce the following discrete inner product and norm:

hn, My 1
In _7Zu n,j w], H’U”Mmjn :<'U7'U>]2n~
7=0
Thanks to (2.4), we have that
(&)1, = (& ¥)1,,, VoY € Pang,+1(In).

We introduce the L?(I,,)-orthogonal projection 7y, as, @ L2(I1,,) — Pas, (1),
satisfying that
(71, 00,0 = 0, ¥)1, =0, VY € Pag, (In).

Lemma 2. ( [19]) For any v € H™(I,), and 1 < m,, < M, + 1,

171 20,0 =l < chg™ My ™ {185l

3 An hp-version spectral method for VIDESs

3.1 Spectral scheme of problem (2.2)

Let P&’? (I1) = Py, (I1)n{y(0) = yo}. The hp-version spectral scheme for (2.2)
is to look for Y (t)(€ Py;°(I1)) and Y™ (t)(€ Par,—1(I,)), such that

(%Yla @)@a,ﬁ,x + (Ylv ©)Ha.Bx
= (f,@)aann + (VY'Y 0)gausn, Voo € Py’ (I1);
(&Y™, 9), + (Y™ 9)r, = (£,9)r, + VY, ), (3.1)
+(V§LY”,”¢)[”, Yy € PM,,,—l(In), n > 2;
Y™ (tpo1) =Y L(t,_1).

Math. Model. Anal., 29(3):387-405, 2024.
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We may rewrite (3.1) as

(%Yla @)@a,ﬁ)\ + (Yla @)GJ"‘»ﬂA = <f7 @)G)"‘ﬂA + (V21Yl7 @)G)"ﬂﬁ»‘a
Vo € Py (L)

Yn(tn)’l/)(tn) - Ynil(tn—l)w(tn—l) (Yna dt ) (Yn’ 1/))17,

= (f,¥)r, + 1Y )1, + VY™, )1, V¢ € Pap,—1(1n), n > 2.

Using the shifted Miintz-Jacobi functions on I; and the shifted Legendre func-
tions on I,,, we expand the numerical solutions as

(3.2)

M;—1

Yit) = Y ylaPr ), ten,
=0
M1 (3.3)
Yn(t) = Z ygLn,p(t)a tel,, n=>2,
p=0
where R R .
«710,%6’ (t) = Jﬁf’ (t) + spJy f+1( )- (3.4)

Remark 1. According to [8], the Jacobi polynomials have the following prop-
erty:
[(p+5+1)
JOB(—1) = (—1)P = 2
TR CESY
then the coefficient s, in (3.4) can be uniquely determined as

_ (p+DI(B+ Dyo p+1
PT(-)pH D (p+B+2)  p+B+1

We substitute the expression (3.3) into (3.2), take ¢ = J;; P, h = Ly o(t),
and obtain that

M;—1
S (T T Do + (TE T o)
p=0

— YL TN g = (£, TN ) gesn, 0<q < My —1,
M, —1

n d

Z Yp < o (Ln,pv %Ln,q)ln + (Ln,p> Ln,q)ln + Ln,p(tn) ’ Ln,q(tn))
p=0

- (V;anLn,q)In = (f, Ln,q)In + (VILY, Ln,q)ln
+Y" (tyo1) Lyg(tn-1), 0<q¢<M,—1, n>2.

Introducing the entries as

d

o, B, o,B,A n

( ~7 . \7 [3 )wﬂ’ﬁ’*a Sap = (Ln,pa %Ln,q)lnv n 22,
(jl B j )&)”ﬁ:*a agp = (Ln,pa Ln,q)Ina n > 2,

wh =Wy, 7y 5 Maasa, wh=VEY", Lyg)r,, n>2
fq - (f7 a 57 )w“’ﬂ/j‘*a f;L = (f7 Ln,q)lna n = 2a
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(Vl )1717 d:; = Ynil(tn—l) 'Ln,q(tn—l)a n>2,
@%M@m@%ﬂ»A"ZW%%@m@hﬂvw"Z@ﬁ~ww%ﬁﬂﬂ
= (vg,- sV, —1) ", A" =(dg,- iy, _0)T
=(fos--- vanfl)Ta Yy = (v, »y}@,ﬁl)Ta
then we can obtain the following compact system as
{(Sl + Al)yl _w! = fl’ 55)
(-S"+ A"+ E"My" —w" = f"+o"+d", n>2,

where E™ is M,, x M, order matrix whose elements are all one and w™ =
w™(y™), m=1,2,..., N are implicit terms.

In the actual computation, we employ an iterative algorithm to evaluate
the expansion coefficients {yp }M"_l. Briefly, we obtain the successive values
of Y™ in terms of previously computed quantities {y;;}M’“ '1<k<n-1
The following algorithm gives the concrete calculation steps.

Algorithm A simple iterative process
for1<n<N
give initial value y™(© = (1,---,1)T, perform the following iteration proce-
dure
(S!+ ALy ) = f1 fwl(yhtD), k=1,2,...
(—=S" + A" + EM)y» k) = " Ly 4 d" + w(ym* V), k=1,2,...

3.2 Theoretical analysis

We first prove the existence and uniqueness of solution to the scheme (3.1)
under the reasonable assumption on the nonlinearity.

Theorem 1 [existence and uniqueness]. Assume that K(t,s) € C(D), and
G fulfills the following Lipschitz condition:

|G (s,y1) = G(s,92)] <ylyr — 2l 72>0, (3.6)

then for any 1 < n < N and sufficiently small h22*, the scheme (3.1) has a
unique solution.

To be undistracted from the main results, we postpone the derivation of
the formulas to Appendix A.

Let y™(t) be the solution of (2.2) and Y"(¢) be the solution of (3.1), respec-
tively. Denote e, (t) = y™(t) — Y™(t), 1 <n < N.

Theorem 2 [local error]. Assume that K(t,s)eC(D), (t*)\tehEBml L),

Y (t3)rer, € By YN, y(t)|er, € H™ (I,) with 2 < n < N and integers
1<m, <M, + 1 G fulfills the Lipschitz condition (3.6), and

1 1
O<u< ,0<A<1, —-1<ax<0, 1<B<X_L

Math. Model. Anal., 29(3):387-405, 2024.
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then for sufficiently small h22*

max ’

v e

wa+m1 1,84+mq—1,1

+ Ch2m1+1M_2m1

e

Satmy,Bmy,1’

n—1

2 _ _ 2

Hyn _ YnHHl(I,,L) < ceT(l + hﬂ)(Z himk ZMk 2my+2 Ha;nkkaIk
k=2

h2m1 1M 2mq+2 Haml l{yt t% }’ h%mlJrlele

Hatmy—1,8+mq—1,1

o]

- - n 2
oatmy, B+mq,1 ) + Chflmn 2Mn 2m"+2 Haln yn”In : (37)
We provide the proof in Appendix B.

According to Theorem 2, summing n from 1 to N in (3.7), then we can
obtain the global errors as follows.

Theorem 3 [global error]. Let y be the solution of (1.1) and Y be its nu-
merical solution, respectively. Under the assumption conditions in Theorem 2,
there holds that

N
ly = Y15y < e(U4+T)e™ Y hame =2 M 22 oy |7
n=2

+C(]. +T) (h2m1 1M—2m1+2‘

OGN

Hatmy—1,+mq—1,1

+ h2m1+1M 2m1

o {y () }‘

(3.8)

Soatmy,Brmy,1 )

4 Nwumerical results

In this section, some numerical examples will be presented to show the conver-
gence and accuracy of the proposed scheme. For this, we first introduce some
quantities to measure the errors

E\T) = max |y(tr;) — Y (te)l,
0<j <My,

(Z & Z (tkj) — (t’w’))%Jj) ,
- (; i Z;(jty’“(tk,j) Ly,

N|=

Nl=

In the forthcoming numerical tests, we choose the uniform mode M = M
and the uniform step size hy = h
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Table 1. A comparison of maximum errors for (4.1).

DOF method of [12] DOF new method
47 1.59E-08 16 1.48E-08
90 2.91E-11 22 9.42E-12
191 1.29E-14 28 3.74E-14

Ezample 1. Consider the following linear VIDE with singular kernel (cf. Ex-
ample 4 of [12]):

{ V) =~ L =9y + e te O
y(0) =0,

with the exact solution y(t) = I'(3 — u)(1 — Ea_,(—t>*~*)), where the Mittag-
Leffler function is Eq(x) = Y77 a?/I'(1+ po). Thus, y(t) behaves like t*~#
as t — 0%, which has a weak singularity at ¢ = 0 for y € (0,1). In Figure 1,
we plot the H'-errors and maximum errors in semi-log scale with = 0.5 and
A= %, which show exponential decay with respect to M. This result is in
a good agreement with the theoretical prediction given in Theorem 3, stating
that the convergence of numerical solution is exponential if y(¢%) is smooth.

=05, \=1/2 #=05, =112

0 o
—»—h-=1
2 .
& 2 ety
" W \2\
_ s \ . \I
5 S s ™
[T &
= 5
- > o ~
g . . \I\ g I\\'
\n \I> 10 2N
12 l\\' \“\
14 12 =
16 14
4 s 6 7 8 o 10 1 12 13 14 4 5 6 71 8 9 10 1 12 13 14
™ M

Figure 1. (a)The H'-errors of (4.1); (b)The maximum point-wise errors of (4.1).

In order to show the effectiveness of the new method, the maximum errors
with u = 0.5\ = %, h = % obtained by our method and the Legendre-Jacobi
spectral collocation method (geometric mesh, the parameter p = 0.2 and 6 =
1.5 in [12]) are compared in Table 1. It is clear that our spectral element
method is capable of providing more accurate numerical results with relatively
less degree of freedom.

Ezample 2. Consider the following linear VIDE with singular kernel:

YO+ == [t =9 Hysds+ 10, te O,
y(0) =0,

Math. Model. Anal., 29(3):387-405, 2024.
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with the exact solution y(t) = ¢ + ¢72. The source function is

FO= A4t T et T T B (1, 1)
+ "B (1—p, 142),

where B(-,-) is the Beta function.

The exact solution consists of two fractional power functions, which can fur-
ther illustrate the benefits of using our new method to solve general one-point
singular problems. In Figure 2 (a) and (b), we plot the H'-errors of (4.2) with
different parameters A, v1, ¥, in log-log scale. We observe that, comparing with
the classical Legendre polynomial (i.e., A = 1) in the first interval I, the Miintz
case (i.e., A < 1) enhances the convergence rates. A reasonable explanation for
this excellent result is that the regularity of the solution y(t%) is improved as
shown in the theoretical estimate of the Miintz approximation. Specifically,
the main error depends on the first interval I; because of the singularity of the
solution at the initial time. Hence, as shown in Theorem 3 that the conver-
gence rate is determined by the regularity mq, i.e., the maximum m, such that
8{”1_1{%1 (t%)} € ngﬁ,”l,l,ﬂ,,nl,l,l(Il). The theoretical convergence curves
drawn with dash lines in Figure 2 show that the convergence rates verify the
theoretical prediction given in (3.8). In Figure 2 (c), we plot the H!-errors of
(4.2) with g = 0.1,7; = 1.3,72 = 3, fixed M = 6 and different A in log-log
scale. The lines of slopes h2,h? and h? are also plotted in Figure 2 (c), which
clearly indicate that the convergence rate is close to hz for A = 1, h3 for A = %,

and h3 for A = % This is in a good agreement with the theoretical estimate
in (3.8).

#=01, 7,705, 7,712 =01, 7,728, 5,711

rror)

/
/
|

log,(Er

log,(Error)
[
,’47

I

/

Figure 2. The H'-errors of (4.2).

Note that the main advantage of new spectral element method lies in the
capability of dealing with more complicated nonlinear weakly singular VIDEs
with singular solutions, the following challenging cases are designed to validate
the high-efficiency of the new method.

Ezample 3. Consider the following nonlinear VIDE with weakly singular kernel:

{ V() +y(t) = [o(t = s) e yP(s)ds + f (1), t € (0,1],

4(0) = 0, (4.3)
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#=0.3, A=1,7,=112, 7,=312 #=0.3, \=112,7,=1/2, 7,=312

Ear=) o
e SN ==
. \\
~ SN,
N, g >
g QQ\"\»\' g s \\
g \:\“\..\:\'\-»\,, g
b\"\4»\"\“-\n\, ~
2 — '\.\l\,
’ = '?E\"\.
-14 H\‘
s ow @ owowowom oz ©oe w oz owow w2
(a) (b)
1#=0.4, \=1,7,=413, 7,=10/3 1=0.4, \=1/3,~,=4/3, 7,=10/3
—P—h=-1 (=P=h=1
e I~ e
) \\' 4 ne1a -\“\.\'\ |0 hewa
° NS
B I\u\"\’ S s I\ \
§ I 5 "-\“l\'
;I \,l\‘ — ; . \\I
\\\‘\ ) \"\ 4
: e -14 \

Figure 3. The maximum point-wise errors of (4.3).

with the exact solution y(t) = (7' + ¢72)e~*. The source function is

Ft) =(mt" ™ fypt2 et - 2t ITHB (T g oy 1)
— B — 271 + 1) — PR B(L -, 29, + 1),

where B(-,-) is the Beta function.

We apply the numerical scheme (3.5) and corresponding iterative algorithm
to solve the above model. The related numerical results with different parame-
ters u, A, y1, 2 are presented in Figure 3. Convergence rates are quite low in (a)
and (c) for the reason that classical Legendre polynomial ((i.e., A = 1)) cannot
approximate the solution very well due to the singularity at the initial time.
Therefore, we choose suitable small parameter A < 1 so that the regularity
of y(ﬁ) can be improved. We can observe that convergence rates are greatly
enhanced in (b) and (d), which show the efficiency of Miintz-Jacobi functions
for singular solutions.

Ezample 4. Consider the following nonlinear VIDE with weakly singular kernel:

Y1) +y(t) = [o(t—s)"OFsin?(y(s))ds + f(t), te (0,T],

(4.4)
y(0) =0,

with the exact solution y(t) = t2et.

In Figure 4 (a) and (b), we plot the H'-errors of (4.4) with T' =4, A = 1.
The numerical results again confirm that new spectral element method (i.e.,
A < 1) performs much better than classical spectral element method (i.e.,
A=1).

Math. Model. Anal., 29(3):387-405, 2024.



398 Z.P. Liu, D.Y. Tao and C. Zhang

=05, A=1 #=05, =112

o1 [y
- = —=hee
\ “ne 2 '\\"\ e
21N AN “
5 \ \| 5
o '\.\' g
g \»\' g
.~
3 3 P~
\ \,.\“\‘ 10 \ ~y
\\ 12 I\:
—
4 En
4 3 8 10 12 14 16 4 3 8 10 12 4 16
M M

[y

log ,(Error)
log , (Error)

==L =6, 35k=5
 1=k=10
| —4—Nonuniform step size:h, =n =112, h, =19/8, 3=k=10

100 200 300 400 500 600 6 B 10 12 14 16 18
T M

() (d)

Figure 4. The H'-errors and maximum point-wise errors of (4.4).

Next, we use new method to test (4.4) with large time interval [0,7]. In
Figure 4 (c), we plot the maximum point-wise errors with h = 1, M = 12, \ = %
and various 7. The error curve shows that the new method is accurate and
stable for long time numerical simulation.

Finally, we provide the numerical results with variable steps to show the
consistency between theoretical analysis and numerical results. In Figure 4
(d), we plot the maximum point-wise errors of (4.4) with 7' = 20,A = 1,
the uniform mode M} = M, and the nonuniform step size distribution. More
precisely, we take

(1) N = 5, the uniform step size hy = 4;

(2) N =5, the nonuniform step size hy = hy = 1,hy = 6,3 < k < 5;

(3) N = 10, the uniform step size hy = 2;

(4) N = 10, the nonuniform step size hy = hy = &, hj, = 2,3 <k < 10.

Numerical results show that such a delicate mesh can obtain better approxi-
mation results than the simple uniform mesh.

5 Conclusions

In this paper, we constructed Miintz-Jacobi functions according to the sin-
gularity expansion of the solution. An hp-version spectral method combining
Miintz-Jacobi functions and Legendre polynomials was proposed. The innova-
tion of the approach is that Miintz-Jacobi functions are capable of capturing
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the singularity of the solution exactly. We applied the new method to nonlinear
Volterra integro-differential equations with weakly singular kernels. Then we
proved the existence and uniqueness of solution to the numerical scheme and
derived the hp-version optimal convergence under some reasonable assump-
tions. Finally, we conducted numerical simulation on various models. Numeri-
cal results show that the hp-version spectral method is more effective than the
traditional spectral method.
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(Lymm gy, + (Y™ y) = (f,¢)1, + VIV, 9)1,
FVpY™m=D gy V€ Pap, 1 (1n), n> 2, (5.1)
Yn,(m) (tnfl) = Ynil’(m) (tnfl).

According to the definition of 77} ’ﬂ]\’/fl and 77, a,, we know from (5.1) that

{ Y1) YL = 82 (4 VY m=D)

5.2
Ayn(m) 4y =7 a, (f +VPY +Vpynm=b) p > 2, (5.2)

Let V™M) (¢) = Y™(m)(¢) — yn(m=1(¢)(n > 1). Obviously, Y™™ (t,_;) = 0.
We further get from (5.2) that

v1,(m v1,(m B m— m—
{ APLOD 4 PO = 08 (Y LOn) _YJyLin=2), 53)

Aymim) 4yt =y, (VpY ™= —ypymm=2) g > 9,
Set
UM ) = G, YR™ (@) — G, YR V@), te Iy, 1<k<n. (5.4)

Using (5.3), (2.2), (5.4), Cauchy-Schwarz (C-S) inequality and (3.6) succes-
sively, we obtain that

d ~ _ 2
ZyLim) 4 y1,(m)
Hdt + I

(5:3)‘ ?5>\(Vyl(m 1) V Hvyl(ml Vylm2)
1 I
t
22 / ( / (tfs)’”K(t,s)(G(s,Yl’(m’l)(s))fG(s,Yl’(m’z)(s)))ds) dt
Il to
(5.4) ¢
< c/ (/(t )y—Hyhm 1()ds) dt
I to
c—8 t t
< c/ (/( )_"ds/ (t — 5) (U (s))ds) d
to
t
gch}‘“/ /(t—s)’”(Ul’(m’l)(s))stdt
I, Jtg
t1 (3.6) - 2
<chy ™" /(Ul’(m’l)(s))z(/(tfs)’“dt)ds < chf*QHHYWH) - (55)
I s 1

Meanwhile, we know that

yLim) 4 y1,(m)

Hdt

Iy
= H 2 +Hf”*"w T / Lo O @a (5.6)
dt I 1, dt ’
~ - 2
yrm|I® o grimi g ))2 > Hyl,(m) .
Hdt +H P ()" = L
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Thus, the combination of (5.5) and (5.6) gives that

Similarly, for n > 2, it holds that

i\}l,(m—l) 2

2
2-2
<chy :
I

I

Hi}n,(m) 2 SchimeHi}n,(mfl) ?

I,

n

Hence, for sufficiently small h2;2*, the existence and uniqueness are verified

max ?

due to [[YL(™) |, — 0 and [|[Y™™)|; — 0 as m — co. O

Appendix B: Proof of Theorem 2

Proof.  First, we know from (3.1) that

,B,\ ,B,\
Yl + vi= 7T11 le +m 11 V2Y1 (57)
Yn—i—Yn = T7,,M, f—‘rﬂ'] M, V1Y+7T]mMnV5LYn.
By subtracting (2.2) from (5.7), we obtain that
Yl +y _yl— f- Il,ﬁkf_’_ 1y _Wll,liw/\lvzlyl
—Yt"+y —Y"=f—7T1mMnf+V1y—7TI”,M wy (5.8)

+V,2nyn - 7TI7L)M71V2 ’ n 2 2

We also know from (2.2) that

A A A BiA
F=mihnd  =vt = hnut Ayt = m Ryt + (7 55n - DViYh
f=mra f =y =T,y Y = Tyt (T, — D)V (5.9)
+(rr, 0, —DV3Y", =2,
where 7 is the identity operator. The combination of (5.8) and (5.9) leads to
A BiA BA
ei+er =yl =m0yt +yt —a Yt + N Viyt - VY,
enten =y =7y Yt =y + T, o, (VY = VYY)

ny ny

+7r,,M, (V" n V;Yn), n > 2.
Clearly, we derive from the Cauchy-Schwarz inequality that

a,B,A BN 1
*”11 Yty — T oY H n

2
ﬂ'iﬂ’\ Viyt —vivt) .

2
lex + ey, <

+2‘

< 2(Dy + Dy), (5.10)

leh +eall7, < 2y =71, 00,97 + 4" = 7,000,577,
+2 |1, ar, VP y=VPY )+, ar, (V39" =V3Y )|l < 2(Ds + Da),



An hp-Version Spectral Method 403

2
o=l o | pe =y -
1
2
D3 =yt — 71, m, 98 +y" — 70, 0,9" 7

Dy =||(Vi'y = VI'Y) + (V3'y" _ngn)||§n~ (5.11)

Therefore, it is sufficient to estimate D;,1 < j < 4. First, for ¢t € I, if
-1<a<, 71<[3<§71, then we have that

(@B (1) = %1(1 - <t>k)_a (t)(ﬁﬂ)m < chy. (5.12)

tq
According to (5.11), (5.12) and Lemma 1, we obtain that

(5.11)
Dy < 2|yt —apityl

- 7T11 Mlyt

A
el =]

(5.12) . N
< h/ (5t — 7P g2 Bt )dt+ch1/I (5! — 702 g1 2B () dt
1 1

2
S U A A

Hatmi—1,+mq—1,1

1 2
e ot | (5.13)
We set
UR(t) = G(t,y"(t)) — G(t, YF (), t € Iy, 1 <k <n. (5.14)

By (5.11), (5.14), (3.6) and the Cauchy-Schwarz inequality, we derive that

t
D, 2V vty - viy|? 2 / ( / (t—s)_"K(t,s)ﬁl(s)dS>2dt

I to
c-8 t L t i
< c/h (/to(ts) ds)(/to(ts) U (s))2d5>dt
<chy " / (@ ()*( /:1@ —srat)ds £ el (515)

It is clear that each ej satisfies that

ex(te) — ez (te-1) = 2f1k e (e (t)dt < ||ek|‘i11(1k) ) (5.16)
ex(th—1) = ex—1(tr—1), ei(to) =0.
Summing up all these inequalities, we obtain
n—1
2
)<Y lerlZ ) - (5.17)
k=1
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By virtue of (5.10), (5.13), (5.15) and (5.16) with k = 1, we can get that
2 _
leb 7, + (1= chi™") [leall,

oyt ()}

2
2 —1 —2 2
< ch2m—l it ‘

a)a+7n171,ﬁ+m1 —1,1

2
+ chPmMH A2 gy (43)) . (5.18)
a)a+m1,/3+m1,1
We can find constants n; and 7 such that
0<m<1—chy?<m<1l 1<n<N, (5.19)

then we may rewrite (5.18) as

my— —2m mi— L
ety < eh?™ = aar 22 o= i3 )}

2
Hetmy—1,84my—1,1

2miq+1 —2mq
+ chy M,

2
ootmi,B+my,1 )

o7 (" (1))

On the other hand, according to Lemma 2, for any integer 1 < m,, < M,,+1,

Ds <2y = mr, w7, + 21" — 7o, 0"

2
In
< chm M AR 0y |7 4 chym M |07y

< chZmn 2L 2R gy |2 (5.20)
By (5.11) and (2.2) we obtain that
Dy = |[Viy = VY +V3y" — VeY™ |2 < 2||Ds|; +2|Dell3.

where
Da= [t PG5 — Gl V()

D = / (t — 8) MK (t, 5)(Gls,y" () — s, Y™(s)))ds.

tn—1

Thus, by (3.6) and the Cauchy-Schwarz inequality, for 0 < p < %, we obtain
that

2

? :/I (/Otn_l(t — ) MK (t,8)(G(s,y(s)) — G(s,Y(s)))ds) dt

C-S

< ¢ /1 ( /0 tnil(t—s)”“ds)( /0 " G (s)) — Gls, Y (5)))ds ) dt
< C/zn t1_2“(/0tnl(G(s,y(s)) — G(s,Y(s)))%ds )t

(3.6) tn—1 )

e /1 /0 (y(s) — Y(s))2dsdt

tn_1 n—1
< ch, / (y(s) — Y (5))%ds < chy 3 flex2 .
0 k=1

[ Ds




An hp-Version Spectral Method 405
Similar to the estimate of Dy, we have that
1D6l7, < chi? lleall7, - (5.21)

By virtue of (5.10), (5.17), (5.19) and (5.20)—(5.21), we can deduce that

n—1 n—1
2 2 2 o 2
||en||H1(In) <c Zh" llexll7, —|—cZ ”ekHHl(Ik) ch2ma =2 | 2ma+2 || gy 2
k=1 k=1

Z +h ”616”}[1([ ) +Ch2m" 2]\4’ 2mp +2 ||(9m"y HI
k=1

Consequently, we obtain from Gronwall inequality that

el g,y <e(tha)e® (W= h2m ops iy

Hatmi—1,84my—1,1

2m1+1 2my M1 +
+ MR oy (13) }‘ acbma pma, )
n—1 9
+ C(l + hn)eT Z himkf2M];2m1‘-,+2 H(Q)ankaIk
k=2

L Ve A

The proof is ended. O
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