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free iterative processes with quadratic convergence. This result provides us a new
fixed-point result for the integral operator considered.
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1 Introduction

Nowadays, numerical analysis is a very important branch in mathematics due
to the fact that a great variety of applied problems in science, engineering,
computer science, bio-medicine etc., can be formulated by using ordinary dif-
ferential equations, partial differential equations, nonlinear integrals or just
nonlinear equations. It is well known that these kind of equations rarely have
algebraic solution, so we have to solve these problems by numerical methods.
Moreover, the generalized use of the computer has improved the behavior of the
approximated solutions obtained in these cases, because of the improvements
in stability, precision and computational time used.

We focus now in integral equations of Fredholm-type, different numeri-
cal methods have been developed to approximate their solution, for example,
Fredholm-type integral equations [18,21,24], Volterra-Fredholm integral equa-
tions [9, 17] and nonlinear Fredholm integro-differential equations [16] can be
considered.

Let us consider a special type of the nonlinear Fredholm integral equation
of the second kind [7, 8]

x(t) = g(t) + β

∫ c

b

G(t, s)P(x)(s)ds, t ∈ [b, c], (1.1)

where β ∈ R, −∞ < b < c < +∞, g : [b, c] → R, G : [b, c] × [b, c] → R
are continuous functions and x : [b, c] → R is the unknown function to be
determined in C([b, c]). The Nemytskii operator P : Ω ⊆ C([b, c]) → C([b, c]) is
given by P(x)(s) = P (x(s)), where Ω is a nonempty open convex domain in
C([b, c]) and P : R → R is a continuous but non-differentiable function. The
set C([b, c]) denotes the space of continuous real functions in [b, c], which is a
Banach space with the infinity norm that we will use.

In order to approximate their solution we can use different numerical meth-
ods. To begin with the homotopy analysis method (see [4, 9]). Secondly, we
want to mention the hybrid method proposed by the Adomian decomposi-
tion, [6]. The technique based on a discretization process for the integral
equation is also interesting (see [3, 19, 22]). Finally, we center in the use of
iterative schemes to approximate the solutions. The best known methods in
this case are Newton-type methods, Whittaker-type methods or higher order
convergence iterative schemes, see [13, 22]. The use of this technique has suc-
cessfully permitted the obtainment of existence and uniqueness domains for
the solution of nonlinear integral equations by setting an adequate theoretical
semilocal convergence study.

If we consider the integral operator H : Ω ⊂ C([b, c]) → C([b, c]), given by

x(t) = [H(x)](t) with [H(x)](t) = g(t) + β

∫ c

b

G(t, s)P(x)(s)ds, (1.2)

then, the Banach fixed point theorem guarantees that, under certain assump-
tions, H has a unique fixed point, thus, the Fredholm integral equation (1.1)
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has exactly one solution. Besides, the method of successive approximations:{
x0 given in C([b, c]),
xn+1 = H(xn), n ≥ 0,

(1.3)

converges globally to the solution x∗ of (1.1). But this scheme has some diffi-
culties: the rate of convergence of sequence of successive approximations {xn}
is slow, H must be contractive and, crucially, the integral equation (1.1) must
have a unique fixed point at C([b, c]), which in the nonlinear case at hand is not
usually a feature of the equation. On the contrary, a very favorable feature is
that the method of successive approximations is globally convergent.

If we want to consider other possible situations in which the operator H
has more fixed points, we must apply a restricted fixed point theorem, as for
example:

Theorem 1. ( [5]) If D is a convex and compact set of C([b, c]) and the operator
H : D → D is a contraction, then H has a unique fixed point x∗ in D that can
be approximated by the method of successive approximations (1.3) from any
starting point x0 given in D.

In this case, the first problem is obviously to locate a domainD that contains
a fixed point of the operator H. For this, we need some information about the
possible fixed points of the operator H.

To remove these difficulties, we observe that Equation (1.1) can be written
as K(x) = 0, for K : Ω ⊆ C([b, c]) → C([b, c]), where

[K(x)](t) = x(t)− g(t)− β

∫ c

b

G(t, s)P(x)(s)ds, t ∈ [b, c]. (1.4)

Obviously, a solution of equation K(x) = 0 is a fixed point of operator H and,
therefore, a solution of nonlinear integral equation (1.1). Taking into account
this operator, we will be able to transfer the problem of obtaining a fixed
point of the operator H to the problem of obtaining a solution of the equation
K(x) = 0.

The main objective of our work is to obtain a restricted fixed point result
for the operator H, like the one cited above, but in such a way that the ap-
proximation of the fixed point is not carried out using the method of successive
approximations, of linear convergence, but rather let us do it through an it-
erative process with quadratic convergence. Furthermore, we are interested in
obtaining some kind of condition that allows us to locate the domain D. To
achieve this goal, our strategy will consist of considering an iterative process
with quadratic convergence and obtaining a global convergence result for said
iterative process. As is known, the study of the global convergence of an it-
erative process is a difficult problem to deal with. In our case, we will use
the technique in which an auxiliary point is considered to ensure the global
convergence.

The organization of the paper is as follows. Section 2 presents the iterative
schemes used to approximate a solution of the integral equation. We also define
a first-order divided difference for the Nemytskii operator, which will allow us
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to apply the considered iterative schemes later. Next, in Section 3, a global
convergence study is performed by giving first some auxiliary lemmas before
setting the main theorems and the corresponding improvements. Finally, Sec-
tion 4 shows a numerical experiment where we illustrate the obtained results.
We conclude giving some final remarks.

We denote B(ũ, R) = {u ∈ C([b, c]); ∥u − ũ∥ < R} and B(ũ, R) = {u ∈
C([b, c]); ∥u − ũ∥ ≤ R} for open and closed balls with center ũ and radius
R > 0.

2 Preliminaries

To obtain a global convergence result for an iterative process, a technique
used is to apply a fixed point theorem, with the limitations that this result
poses. However, we will follow the ideas of the result given in [8], in which the
authors established a global convergence domain for Newton’s method, with
quadratic convergence, when it is applied to nonlinear differentiable integral
equations of type (1.1). In our case, Equation (1.1) is nondifferentiable, so
we have to consider a derivative-free iterative process. To obtain derivative-
free iterative processes, it is general to approximate the derivatives by divided
differences [1,10]. If we denote the space of bounded linear operators from Ω to
C([b, c]) by L(Ω, C([b, c])), then an operator [u, v;D] ∈ L(Ω, C([b, c])) is called
a first-order divided difference for the operator F : Ω ⊆ C([b, c]) → C([b, c]) on
the points u and v (u ̸= v) if

[u, v;F ](u− v) = F(u)−F(v).

Thus, if we consider Newton’s method for the operator K:{
x0 given in C([b, c]),
xn+1 = xn − [K′(xn)]

−1K(xn), n ≥ 0,

in [14], the authors consider the following approximation

K′(xn) ∼ [(1− µ)xn + µxn−1, (1 + µ)xn − µxn−1;K] , for µ > 0,

and they consider the following derivative-free uniparametric family of iterative
processes, 

x0, x−1 given in Ω, µ ∈ [0, 1],

yn = (1− µ)xn + µxn−1,

zn = (1 + µ)xn − µxn−1,

xn+1 = xn − [yn, zn;K]
−1 K(xn), n ≥ 0.

(2.1)

Notice that the family (2.1) can be assumed as a combination of the Newton’s
method (µ = 0) for differentiable case and the Kurchatov method (µ = 1)
in both cases, differentiable and non-differentiable for operator K. This uni-
parametric family maintains the quadratic convergence [14] as the Kurcha-
tov method [2, 23] and improves the accessibility of the Kurchatov method by
considering values near to µ = 0, which is similar to the Newton’s method.
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Hernández et al. [14] established the local and semilocal convergence analysis
of method (2.1) for non-differentiable operators under ω-conditions.

Our main goal of this work is to study the integral equation of type (1.1)
from the iterative process (2.1). We obtain the domain of global convergence
for method (2.1) for a fixed µ ∈ (0, 1]. For this, we assume conditions on the
Nemytskii operator P and consider an auxiliary point in Ω. From this auxiliary
point, we prove the existence and uniqueness of a solution x∗ of the integral
equation K(x) = 0 and ensure the convergence of (2.1), starting from any point
in the ball centered on an auxiliary point that we consider. This will allow us
to obtain the restricted global convergence result for the operator H.

Now, keeping in mind the iterative processes given in (2.1), we need to define
a first-order divided difference [u, v;K] for the application of iterative schemes
given by (2.1). So, for given continuous real functions u and v (u ̸= v), we
define [u, v;K] : Ω ⊆ C([b, c]) → C([b, c]) with

[u, v;K](w)(t) = w(t)− β

∫ c

b

G(t, s)[u, v;P](w)(s)ds,

where

[u, v;P](w)(s) =


P (u(s))− P (v(s))

u(s)− v(s)
w(s) if s ∈ [b, c] with u(s) ̸= v(s),

0 if s ∈ [b, c] with u(s) = v(s),

is obviously a first-order divided difference inΩ. Then, [u, v;K] ∈ L(Ω, C([b, c]))
and for u ̸= v, with u, v ∈ C([b, c])) it is easy to check that

[u, v;K](u− v) = K(u)−K(v),

and, therefore the operator [u, v;P] allows us to define a first-order divided
difference [u, v;K] for the operator K : Ω ⊆ C([b, c]) → C([b, c]).

3 Main results

This section examines the global convergence of iterative scheme (2.1) for the
operator equation K(x) = 0, with K given in (1.4). A qualitative property of
the study of the convergence of iterative processes is obtaining a result of the
existence of a solution. This fact, combined with the ad hoc elaboration of
uniqueness result, will allow us to obtain a result of existence and uniqueness
of a fixed point for the operator H.

3.1 Global convergence and uniqueness of solution for the iterative
processes given in (2.1)

The analysis of the global convergence is based on demanding conditions only
on the operator K that ensure the convergence to a solution x∗ of the equation
K(x) = 0. For a fixed value of µ ∈ (0, 1], we will establish the global convergence
result for the iterative process (2.1) under the following condition for the first-
order divided difference of the Nemystkii operator
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(I) ∥[u, v;P] − [x, y;P]∥ ≤ A + L(∥u − x∥ + ∥v − y∥), for pairs of distinct
points (u, v), (x, y) ∈ Ω ×Ω ⊆ C([b, c])× C([b, c]), with A ⩾ 0 and L ⩾ 0.

Notice that, with respect to the first-order divided difference of the Nemys-
tkii operator, we include the boundedness that is used in the non-diferenctiable
case A > 0 (see [12]), and if A = 0 this condition (I) is a generalization of the
case in which [x, y;P] is Lipschitz-continuous condition ( [15]). Notice that,
the above case, the Fréchet derivative of P exists in Ω, see [12], and satisfies
[x, x;P] = P ′(x), see [1]. So, if A = 0 then P is differentiable. Therefore, the re-
sults that we will obtain will be valid both for the case of the non-differentiable
Nemystkii operator (A > 0) and for the differentiable Nemystkii operator case
(A = 0).

Obviously, from condition (I), it follows that fixed a pair of distinct points

(ũ, ṽ) ∈ Ω×Ω, there exist Ã ≥ 0 and L̃ ≥ 0, such that for each pair of distinct
points (u, v) ∈ Ω ×Ω,

∥[u, v;P]− [ũ, ṽ;P]∥ ≤ Ã+ L̃(∥u− ũ∥+ ∥v − ṽ∥),

with Ã ≤ A and L̃ ≤ L.
Moreover, by using previous conditions, we can achieve the following result:

Lemma 1. Under condition (I), the following results are verified:

(a) For pairs of distinct points (u, v), (x, y) ∈ Ω ×Ω,

∥[u, v;K]− [x, y;K]∥ ≤ βM(A+ L(∥u− x∥+ ∥v − y∥)),

with M = ∥
∫ c

b
G(t, s)ds∥.

(b) Fixed a pair of distinct points (ũ, ṽ) ∈ Ω × Ω, there exist Ã ≥ 0 and

L̃ ≥ 0, such that for each pair of distinct points (u, v) ∈ Ω ×Ω,

∥[u, v;K]− [ũ, ṽ;K]∥ ≤ βM(Ã+ L̃(∥u− ũ∥+ ∥v − ṽ∥)),

with Ã ≤ A and L̃ ≤ L.

Next, we have two aspects to complete in our hypotheses. On the one
hand, the hypothesis related to the auxiliary point ũ ∈ Ω that we will consider.
Besides, taking into account that the iterative processes given in (2.1) are with
memory, we have to place the initial value x−1. Therefore, we take ṽ = x−1 ∈ Ω
with x−1 ̸= ũ and ∥x−1 − ũ∥ ≤ α for α > 0. On the other hand, we have to
indicate an expression that allows us to calculate the radius R of the ball of
existence and uniqueness of solution, which will also provide us with the global
convergence of the iterative processes (2.1). Moreover, we will also need to
ensure that the sequences of iterations {xn}, {yn} and {zn} given in (2.1), are
well defined in Ω and {xn} converges to a solution of the equation K(x) = 0.

Thus, we will also consider the following hypotheses:

(II) There exists Γ̃ = [ũ, x−1;K]−1 such that ∥Γ̃∥ ≤ λ and
∥[ũ, x−1;K]−1K(ũ)∥ ≤ θ, with θ > 0.
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(III) The auxiliary real equation

θ = (1− h(t)− h̃(t))t, (3.1)

where h(t) = λβM(A+L(1+4µ)t) and h̃(t) = λβM(Ã+L̃(2t(1+µ)+α))
has at least one positive real root and we denote by R the smallest positive
real root.

(IV) B(ũ, (1 + 2µ)R) ⊂ Ω and λβM(A+ 2LR(1 + µ)) + h̃(R) < 1.

Considering the preceding notation, we shall show the main result of global
convergence for iterative processes (2.1) based on conditions (I)− (IV). Pre-
viously, notice that we will consider that xk+1 ̸= xk for all k ⩾ 0, because, in
other case, xk+1 = xk for some k ⩾ 0, and then the sequence {xn} converges
to x∗ with x∗ = xn = xk+1 = xk for all n ⩾ k + 2. Moreover, if xk+1 ̸= xk we
obtain that yk+1 ̸= zk+1. Therefore, the operators [yk+1, zk+1;K] are always
well defined, for k ⩾ 0, if yk+1, zk+1 ∈ Ω.

We will begin our convergence study by considering n = 0. Let x0 ∈
B(ũ, R), with x0 ̸= x−1 and x0 ̸= ũ, then by definition of method (2.1) and
hypotheses (II) and (III), we obtain

∥y0 − ũ∥ ≤ (1− µ)∥x0 − ũ∥+ µ∥x−1 − ũ∥
≤ (1− µ)R+ µα ≤ (1− µ)R+ µR = R,

∥z0−ũ∥ ≤ (1+µ)∥x0−ũ∥+ µ∥x−1 − ũ∥ ≤ (1 + µ)R+ µα ≤ (1 + 2µ)R, (3.2)

it follows that y0 ∈ B(ũ, R) ⊂ Ω and z0 ∈ B(ũ, (1+2µ)R) ⊂ Ω and, as y0 ̸= z0,
[y0, z0;K] is well defined. Then, from hypotheses (III) and (IV)

∥I − [ũ, x−1;K]−1[y0, z0;K]∥ ≤ ∥[ũ, x−1;K]−1∥∥[ũ, x−1;K]− [y0, z0;K]∥

≤ λβM(Ã+ L̃(∥y0 − ũ∥+ ∥z0 − x−1∥)) ≤ λβM(Ã+ L̃(R+ (1 + 2µ)R+ α))

≤ λβM(Ã+ L̃(2R(1 + µ) + α)) = h̃(R) < 1,

since from (3.1), as R > 0, we get that h(R) + h̃(R) < 1, and then h̃(R) < 1.
Therefore, by applying Banach Lemma, [y0, z0;K]−1 exists with

∥[y0, z0;K]−1[ũ, x−1;K]∥ ≤ 1

1− h̃(R)
, ∥[y0, z0;K]−1∥ ≤ λ

1− h̃(R)
.

Next, as

K(x0) = K(ũ) + [ũ, x−1;K](x0 − ũ) + ([x0, ũ;K]− [ũ, x−1;K])(x0 − ũ),

from Lemma 1, we get

∥[ũ, x−1;K]−1K(x0)∥ ≤ ∥[ũ, x−1;K]−1K(ũ)∥+ ∥x0 − ũ∥
+ ∥[ũ, x−1;K]−1∥∥[x0, ũ;K]− [ũ, x−1;K]∥∥x0 − ũ∥

≤ θ +R+ λβM(Ã+ L̃(R+ α))R.
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Therefore,

∥x1 − x0∥ ≤ ∥[y0, z0;K]−1K(x0)∥ ≤ ∥[y0, z0;K]−1[ũ, x−1;K]∥ (3.3)

× ∥[ũ, x−1;K]−1K(x0)∥ ≤ θ +R+ λβM(Ã+ L̃(R+ α))R

1− h̃(R)
,

and as ∥x0 − y0∥ ≤ µ∥x0 − x−1∥ ≤ µR + µα, from (3.2), (3.3) and hypothesis
(II), we obtain

∥x1 − ũ∥ ≤ ∥[y0, z0;K]−1
((
[x0, ũ,K]− [y0, z0;K])(x0 − ũ) +K(ũ

))
∥

≤ ∥[y0, z0;K]−1∥∥[x0, ũ;K]− [y0, z0;K]∥∥x0 − ũ∥
+ ∥[y0, z0;K]−1[ũ, x−1;K]∥∥[ũ, x−1;K]−1K(ũ)∥

≤ θ + λβM(A+ L(∥x0 − y0∥+ ∥ũ− z0∥))R
1− h̃(R)

≤ θ + λβM(A+ L(µR+ µα+ (1 + 2µ)R))R

1− h̃(R)

≤ θ + λβM(A+ L((1 + 3µ)R+ µα))R

1− h̃(R)
≤ θ + h(R)R

1− h̃(R)
= R.

Thus, x1 ∈ B(ũ, R).
After that, we also give some certain properties that will be used later.

Lemma 2. For the sequence {xn} defined by (2.1), we have

K(xn) = ([xn, xn−1;K]− [yn−1, zn−1;K])(xn − xn−1),

∥xn − ũ∥ ≤ ∥[yn−1, zn−1;K]−1([yn−1, zn−1;K]− [xn−1, ũ;K])(xn−1 − ũ)∥
+ ∥[yn−1, zn−1;K]−1K(ũ)∥,

for all xn, xn−1 ∈ B(ũ, R), with xn ̸= xn−1, yn−1 ∈ B(ũ, R),
zn−1 ∈ B(ũ, (1 + 2µ)R) and yn−1 ̸= zn−1.

Lemma 3. Assume that the conditions (I)− (IV) are satisfied. Then,
[u, v;K]−1 exists with

∥[u, v,K]−1[ũ, x−1;K]∥ ≤ 1

1− h̃(R)
, ∥[u, v;K]−1∥ ≤ λ

1− h̃(R)
,

for pair of distinct points (u, v) ∈ B(ũ, R)×B(ũ, (1 + 2µ)R).

Proof. From Lemma 1 and condition (IV), we obtain

∥I − [ũ, x−1;K]−1[u, v;K]∥ ≤ ∥[ũ, x−1;K]−1∥∥[ũ, x−1;K]− [u, v;K]∥

≤ λβM(Ã+ L̃(∥u− ũ∥+ ∥v − x−1∥)) ≤ λβM(Ã+ L̃(R+ (1 + 2µ)R+ α))

≤ λβB(Ã+ L̃(2R(1 + 2µ) + α)) = h̃(R) < 1,
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therefore, by applying Banach Lemma, [u, v;K]−1 exists and the results are
satisfied.

Next, we consider n = 1. Then, from (2.1), we obtain

∥y1 − ũ∥ ≤ (1− µ)∥x1 − ũ∥+ µ∥x0 − ũ∥ < R,

∥z1 − ũ∥ = ∥x1 − ũ∥+ µ∥x1 − x0∥ < R+ 2µR = (1 + 2µ)R,

then, it follows that y1 ∈ B(ũ, R) ⊂ Ω, and z1 ∈ B(ũ, (1 + 2µ)R) ⊂ Ω. As
y1 ̸= z1 then [y1, z1;K] is well defined. In addition, as ∥x0−z0∥ ≤ µ∥x0−x−1∥ ≤
µ(R+ α) ≤ 2µR and from Lemma 2, we get

∥K(x1)∥ ≤ βM(A+ L(∥x1 − y0∥+ ∥x0 − z0∥))∥x1 − x0∥
≤ βM(A+ L(2R+ 2µR))∥x1 − x0∥
≤ βM(A+ L(2(1 + µ)R)∥x1 − x0∥.

Now, by using (2.1), we obtain

∥x2 − x1∥ ≤ ∥[y1, z1;K]−1K(x1)∥

≤λβM(A+ L(2(1 + µ)R))

1− h̃(R)
∥x1 − x0∥ ≤ N∥x1 − x0∥,

where, N = λβM(A+L(2(1+µ)R))

1−h̃(R)
< 1 from (IV). Furthermore, as

∥x1 − y1∥ ≤ µ∥x1 − x0∥ ≤ 2µR, we have

∥x2−ũ∥ ≤ ∥[y1, z1;K]−1([x1, ũ;K]− [y1, z1;K])(x1−ũ)∥+∥[y1, z1;K]−1K(ũ)∥

≤ θ + λβM(A+ L(2µR+ (1 + 2µ)R))R

1− h̃(R)
=

θ + h(R)R

1− h̃(R)
= R,

so, x2 ∈ B(ũ, R) ⊆ Ω. ⊓⊔

Next, to generalize the results obtained in steps n = 0 and n = 1, we
establish the recurrence relations that verify the elements of the sequence {xn}
given in (2.1).

Lemma 4. Under conditions (I)−(IV), the following recurrence relations are
verified for n ≥ 2.

(i) ∥K(xn)∥ ≤ βM(A+ 2LR(1 + µ))∥xn − xn−1∥.

(ii) ∥xn+1 − xn∥ ≤ N∥xn − xn−1∥ ≤ N2∥xn−1 − xn−2∥ . . . ≤ Nn∥x1 − x0∥
< ∥x1 − x0∥.

(iii) ∥xn+1 − ũ∥ ≤ (θ + h(R)R)/
(
1− h̃(R)

)
= R.

Proof. We can prove these recurrence relation by using mathematical induc-
tion. Thus, for n = 2 we have

∥y2 − ũ∥ ≤ (1− µ)∥x2 − ũ∥+ µ∥x1 − ũ∥ ≤ R,

∥z2 − ũ∥ = ∥x2 − ũ∥+ µ∥x2 − x1∥ ≤ (1 + 2µ)R,
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then, it follows that y2 ∈ B(ũ, R) ⊂ Ω, z2 ∈ B(ũ, (1 + 2µ)R) ⊂ Ω and, as
y2 ̸= z2, then [y2, z2;K] is well defined. Then, from Lemma 2, and taking into
account that

∥x2 − y1∥ ≤ ∥x2 − ũ∥+ ∥y1 − ũ∥ ≤ 2R,

∥x1 − z1∥ = ∥x1 − (1 + µ)x1 + µx0∥ ≤ µ∥x1 − x0∥ < 2µR,

we get

∥K(x2)∥ ≤ βM(A+ L(∥x2 − y1∥+ ∥x1 − z1∥))∥x2 − x1∥
≤ βM(A+ L(2(1 + µ)R))∥x2 − x1∥.

Thus, item (i) is verified for n = 2. On the other hand, it follows that

∥x3 − x2∥ ≤ ∥[y2, z2;K]−1K(x2)∥ ≤ λβM(A+ L(2(1 + µ)R))

1− h̃(R)

× ∥x2 − x1∥ ≤ N∥x2 − x1∥ ≤ N2∥x1 − x0∥,

so, item (ii) is verified for n = 2. Next, from (3.1) and Lemma 2, as

∥y2 − x2∥ = ∥(1− µ)x2 + µx1 − x2∥ ≤ µ∥x2 − x1∥ < 2µR,

we obtain

∥x3−ũ∥ ≤ ∥[y2, z2;K]−1([y2, z2;K]−[x2, ũ;K])(x2−ũ)∥+∥[y2, z2;K]−1K(ũ)∥

<
λβM(A+ L(2µR+R(1 + 2µ)))R+ θ

1− h̃(R)
=

θ + h(R)R

1− h̃(R)
= R,

then, the item (iii) is verified for n = 2.
Next, applying a process of mathematical induction, the result is proved in

a simple way. Since the inductive step is proved analogous to the one used for
the step n = 2. ⊓⊔

Once the recurrence relations seen in the previous result have been proven,
we are now in a position to prove the global convergence result for the iterative
processes given in (2.1) applied to the equation K(x) = 0.

Theorem 2. Let us assume that conditions (I) − (IV) are verified. Then,
the iterative process (2.1) is well defined and converges to x∗, a solution of
K(x) = 0, with xn, x

∗ ∈ B(ũ, R) for any initial point x0 ∈ B(ũ, R), with
x0 ̸= ũ. Moreover, x∗ is the only solution of the equation K(x) = 0 in B(ũ, R).

Proof. From the recurrence relations, we have to prove that the sequence {xn}
is a Cauchy sequence in the Banach space C([b, c]), then, {xn} is a convergent
sequence. For this, we consider

∥xn+m − xn∥ ≤ ∥xn+m − xn+m−1∥+ ∥xn+m−1 − xn+m−2∥+ . . .

+ ∥xn+2 − xn+1∥+ ∥xn+1 − xn∥

<(Nn+m−1 +Nn+m−2 + . . .+Nn+1 +Nn)∥x1 − x0∥ <
Nn

1−N
∥x1 − x0∥.
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Then, obviously, {xn} is a Cauchy sequence. Therefore, there exists x∗ such
that {xn} → x∗. On the other hand, from Lemma 4, we have that ∥K(xn)∥ ≤
βM(A+2LR(1+µ))∥xn−xn−1∥ and, by continuity of operator K, when n → ∞
we get K(x∗) = 0.

To finish, we will prove the uniqueness of the solution x∗. Let y∗ be another
solution of equation K(x) = 0 in B(ũ, R). We consider

∥[ũ, x−1;K]−1([y∗, x∗;K]−[ũ, x−1;K])∥≤λβM(Ã+L̃(∥ũ−y∗∥+∥x−1−x∗∥))

≤ λβM(Ã+ L̃(2R+ α)) < h̃(R) < 1, (3.4)

hence, by Banach Lemma the operator, [y∗, x∗;K]−1 exists and as

[y∗, x∗;K](y∗ − x∗) = K(y∗)−K(x∗) = 0,

then y∗ = x∗. ⊓⊔

3.2 An improvement of the uniqueness result

Here, we improve the uniqueness result that we have just proved by taking into
account the uniqueness result of the Theorem 2 and inequality (3.4).

Theorem 3. Under the conditions of Theorem 2, we assume that there exists
R1 ≥ R such that

λβM(Ã+ L̃(R1 +R+ α)) < 1,

then, x∗ is the unique solution of equation K(x) = 0 in B(ũ, R1) ∩Ω.

Proof. Let y∗ be another solution of equation K(x) = 0 in B(ũ, R1) ∩ Ω. As
in (3.4), we obtain

∥[ũ, x−1;K]−1([y∗, x∗;K]− [ũ, x−1;K])∥ ≤ λβM(Ã+ L̃(∥ũ− y∗∥

+ ∥x−1 − x∗∥)) ≤ λβM(Ã+ L̃(R1 + α+R)) < 1,

and, as in Theorem 2, it follows that y∗ = x∗. ⊓⊔

3.3 Fixed-point type result for integral equation (1.1)

As we indicated in the Introduction, a solution of the equation K(x) = 0 is a
fixed point of the operator H and, therefore, a solution of the integral equation
(1.1). Bearing this in mind, we can express the Theorem 2 as a fixed-point
type result, with existence and uniqueness of solution for the integral equation
(1.1), in the following form:

Theorem 4. Let us consider the operator H given in (1.2) and assume condi-
tions (I) − (IV) are verified. Then, there exists a unique fixed point of H in
B(ũ, R). Moreover, the sequence

x0, x−1 given in Ω, µ ∈ [0, 1],

yn = (1− µ)xn + µxn−1,

zn = (1 + µ)xn − µxn−1,

xn+1 = xn − [yn, zn;K]
−1 K(xn), n ≥ 0
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converges to the fixed point of H for any initial point x0 in B(ũ, R), with x0 ̸= ũ,
where the operator K(x) = x−H(x).

As we can see in the previous result, we have achieved our main objective
in this work, obtaining a fixed-point-type result for operator H. In addition,
we have located a domain B(ũ, R) in which there is a unique fixed point and
iterative process (2.1) converges globally to said fixed point. Therefore, we
have obtained a result of the existence and uniqueness of the solution for the
integral equation (1.1). Moreover, we have established a procedure for its
approximation with quadratic convergence.

4 Numerical experiments

Next, we present two numerical examples where we illustrate all the above
results. In the first one, as we have previously indicated, the max-norm has been
considered for setting the global convergence study. Second example is devoted
to compare a family of secant-type iterative processes with the uniparametric
family (2.1).

Example 1. We consider a nonlinear integral equation of Fredholm, which can
be used to describe applied problems in the fields of electro-magnetics, fluid
dynamics, in the kinetic theory of gases and, in general, in the reformulation
of boundary value problems. So, we consider the equation of the form (1.1),
given by

x(t) = g(t) + β

∫ 1

0

ts
(
x(s)3 + |x(s)|

)
ds, 0 ≤ t ≤ 1. (4.1)

Notice that, G(s, t) = st and P(x)(s) = x(s)3 + |x(s)|. We will consider g(t) =
(1− 11β

80 )t− 1
2 , so that x∗(t) = t− 1

2 is a solution of this integral equation.
Next, we obtain the bounds included in the assumptions (I)–(IV) for ob-

taining the results of Theorem 4. So, condition (I) gives us the following:

∥[u, v;P]− [x, y;P]∥ ≤ ∥u
3 − v3

u− v
+

|u| − |v|
u− v

− x3 − y3

x− y
+

|x| − |y|
x− y

∥

≤ A+ L(∥u− x∥+ ∥v − y∥),

for pairs of distinct points (u, v), (x, y) ∈ Ω × Ω ⊆ C([b, c]) × C([b, c]), with
A = 2, L = 3r and Ω = B(0, r), moreover we take Ã = A and L̃ = L.

For the divided difference for operator K is easy to obtain that:

∥[u, v;K]− [x, y;K]∥ ≤ βM(2 + 3r (∥u− x∥+ ∥v − y∥)

with M = ∥
∫ c

b
stds∥ = 1

2 . Now, by taking r = 1, β = 1/10, ũ = 1
2 , x−1 =

1/4, x0 = 1/3 ∈ Ω = B(0, 1), we construct the auxiliary functions given in
(3.1), with α = 1

4 , and θ = 0.5625. First equation gives us the value of R.
We can see in Table 1 this radius of the global convergence ball for different
values of parameter µ. We observe that, if we take values of µ smaller, we get
a better location of the fixed point in the global convergence balls obtained.
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Table 1. Radii of existence and uniqueness of the global convergence
balls for different values of µ.

µ R R1

0.2 B(1/2, 0.088839) B(1/2, 4.327827) ∩B(0, 1)
0.4 B(1/2,0.092256) B(1/2, 4.324411) ∩B(0, 1)
0.6 B(1/2, 0.096332) B(1/2, 4.320333) ∩B(0, 1)
0.8 B(1/2, 0.101376) B(1/2, 4.315290) ∩B(0, 1)
1.0 B(1/2, 0.107986) B(1/2, 4.308679) ∩B(0, 1)

Last column in this table is due to the uniqueness domain, solving equation
given in Theorem 3.

Now, in order to solve the Equation (4.1) we approximate the integral by
Simpson quadrature formula with n subintervals h = 1/n the corresponding
weights w = (1, 4, 2, 4, . . . , 2, 4, 1) and nodes sj = hj, j = 0, 1, 2, . . . , n, and
giving to t the values sj with j = 0, 1, . . . , n, the discretization of the problem
gives us the following nonlinear system:

xj = gj +
h

3
βsj

n∑
i=1

wisi(x
3
i + |xi|) j = 0, 1, 2, . . . , n, (4.2)

with xj = x(sj) and gj = g(sj), with j = 0, 1, ..., n.
Now, the system (4.2) can be written as

K(x) ≡ x− g − βh

3
s̄w̄s̄P(x) = 0, K(x) : Rn → Rn, K = (K1,K2, . . . ,Kn),

(4.3)

where x = (x0, x1, x2, . . . , xn)
T , g = (g0, g1, g2, . . . , gn)

T
, s̄ = diag(s), w̄ is a

square matrix of dimension n+ 1 with all row equal to w and

P(x) =
(
(x3

0 + |x0|), (x3
1 + |x1|), . . . , (x3

n + |xn|)
)T

,

so that K is nonlinear and nondifferentiable. Now, by taking into account (4.3)
we note that the first order divided difference verifies:

[x, y;P] = diag(x2
i + xiyi + y2i +

|xi| − |yi|
xi − yi

) i = 0, ..., n.

Finally, taking into account the study carried out previously in the infinite-
dimensional case, by taking n = 10, with auxiliary point ũ = 1

3 (1, ..., 1)
T

and starting points x−1 = 1
2 (1, .., 1, 1)

T and x0 = 1
4 (1, ..., 1)

T , we program
the iterative schemes given in (2.1) in Matlab 20 by using variable precision
arithmetic with 100 digits, using as stopping criteria ∥xn+1 − xn∥ < 10−30

and with the starting point x0 and x−1 mentioned above. Then, for different
values of µ we obtain the approximated solution to the problem, we appreciate
in Table 2 the number of iterations, the distance between the last two iterates,
the norm of the K operator at the approximation to the solution and in the
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last row we have the approximated computational convergence order, defined
in [11].

We can check in Table 2 the results showing that the behavior of the intro-
duced method is always better that the initial Kurchatov’s iterative method
(µ = 1) and we point out that Newton’s method (µ = 0) can not be applied
for non differentiable operators.

Table 2. Numerical results with different values of parameter µ.

Method (2.1) (2.1) (2.1) (2.1) Kurchatov

µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8 µ = 1

iter 6 6 6 6 6

∥xn+1 − xn∥ 2.0710e-34 6.3649e-33 2.116e-32 5.987e-32 1.5443e-31
∥K(xn+1)∥ 1.9072e-69 1.0186e-66 1.0661e-65 8.3701e-65 5.515e-64
ACOC 2.0310 1.9184 1.8722 1.8406 1.8159

Example 2. We consider the boundary value problem given by d2x(s)

ds2
+

x(s)2 + |x(s)|
4

= 0,

x(0) = 1/4 and x(1) = 1/4.
(4.4)

It is known [20], that solving the previous boundary value problem, given by
(4.4), is equivalent to solving a Fredholm integral equation of the form:

x(s) =
1

4
+

∫ 1

0

G(s, t)H(x(t)) dt,

where the kernel G is the Green function in [0, 1]× [0, 1]:

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

So, we take the Fredholm nonlinear integral equation given by

[H(x)](s) = x(s)− 1

4
− 1

4

∫ 1

0

G(s, t)(x(t)2 + |x(t)|), dt, s ∈ [0, 1],

where G is the Green’s function, and x is the solution to be obtained.
Next, we use the quadrature of Gauss-Legendre for discretizing the problem,

obtaining the following nonlinear system:

xj =
1

4
+

1

4

n∑
i=1

pji (x
2
i + |xi|) j = 1, 2, . . . , n, (4.5)

with the corresponding weighs qj and nodes tj , j = 1, 2, . . . , n,

pij = qiG(tj , ti) =

{
qi(1− tj)ti, i ≤ j,

qi(1− ti)tj , i > j,
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where xj = x(tj), with j = 1, . . . , n.
That is, the nonlinear system (4.5) in Rn is expressed as follows:

H(x) ≡ x− (1/4, . . . , 1/4)− P x̄ = 0, H : Rn → Rn, H = (H1, H2, . . . ,Hn),

where the matrix P = (pij)
n
i,j=1 and x̄ =

(
x2
1 + |x1|, x2

2 + |x2|, . . . , x2
n + |wn|

)T
.

In order to compare numerical results obtained by our family (2.1), we use
the family of secant-type iterative schemes given in [12]:

w−1, w0 given in Ω, λ ∈ [0, 1],

un = λwn + (1− λ)wn−1, n ≥ 0,

wn+1 = wn − [un, wn;H]
−1

H(wn),

(4.6)

with λ ∈ [0, 1]. Notice that, if λ = 0 we have the secant method while if λ = 1
and H is differentiable one has Newton’s method.

Table 3. Numerical results with different values of parameter µ for (2.1).

Method Kurchatov (2.1) (2.1)

µ = 1 µ = 0.1 µ = 0.05

k 6 5 5
∥xn+1 − xn∥ 1.9789e-51 1.1557e-30 1.1557e-30
∥H(xn+1)∥ 6.2180e-59 6.6046e-59 6.6046e-59

Table 4. Numerical results with different values of parameter λ for (4.6).

Method Secant like (4.6) Secant like (4.6) Secant like (4.6)

λ = 0 λ = 0.5 λ = 0.8

k 7 6 6
∥xn+1 − xn∥ 2.5456e-37 1.1028e-27 4.5699e-32
∥H(xn+1)∥ 5.2687e-59 2.1741e-45 1.0203e-52

The results in Tables 3 and 4 respectively obtained for (2.1) and (4.6) have
been obtained with the same digits and stopping criteria conditions that in
Example 1, starting with x0 = ( 15 , ...,

1
5 )

T and x−1 = ( 12 , ...,
1
2 )

T . The number
of iterations needed k and the asymptotic error show the competitiveness of
our family (2.1).

5 Conclusions

In this work, we focus on integral equations of Fredholm-type of the second
kind, that is with Nemytskii operator non differentiable. We obtain a restricted
fixed point result for the nonlinear operator that defines the problem which
does not use successive approximations of linear convergence, instead of it we
use iterative schemes of second order of convergence. The global convergence of
these methods is obtained by using auxiliary points. Finally, we deal with some
numerical experiments where we illustrate the obtained theoretical results.
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