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Abstract. In this paper, we investigate the convergence of the Peaceman-Rachford
Alternating Direction Implicit method for the system of difference equations, approx-
imating the two-dimensional elliptic equations in rectangular domain with nonlocal
integral conditions. The main goal of the paper is the analysis of spectrum structure
of difference eigenvalue problem with nonlocal conditions. The convergence of itera-
tive method is proved in the case when the system of eigenvectors is complete. The
main results are generalized for the system of difference equations, approximating the
differential problem with truncation error O(h4).
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1 Introduction

Boundary value problems for differential equations with various types of non-
local conditions are currently being studied quite intensively in the theory of
differential equations and numerical analysis.

The study of numerical methods for elliptic equations with nonlocal condi-
tions is strongly influenced by two causes. Firstly, over the past few decades,
new mathematical models with nonlocal conditions have been developed for
applications in physics, thermoelasticity, ecology, biotechnology, etc. Secondly,
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investigating the problems of pure mathematics, several scientific articles have
been published on the generalization of classical boundary conditions for elliptic
equations [6, 10].

The first results on the solution of a two-dimensional elliptic equation with
a nonlocal condition were obtained in [14, 15, 23, 25]. This condition was later
named the Bitsadze–Samarskii nonlocal condition. These papers began to in-
vestigate iterative methods for system of difference equations with nonlocal
conditions. We note one characteristic feature of such systems. Due to the
nonlocal condition, the matrix of the system of difference equations is not
symmetric. But quite often it has some nice properties, for example, all the
eigenvalues of the matrix are positive.

Many articles are devoted to the estimation of the error of the finite dif-
ference method and the convergence of elliptic equations with various types
of nonlocal conditions [2, 7, 15, 28, 29, 30]. The alternating direction method
for system of difference equations with nonlocal conditions is examined in the
papers [20,21,27]. In many cases, the matrix of system of difference equations
has properties which are typical to M-matrices. Therefore, the theory of M-
matrices can be applied to the study and solution of problems with nonlocal
conditions [11,19,22,27]. The works [1,12,13,24] are devoted to high-precision
finite difference methods for the simplest elliptic equations with nonlocal con-
ditions.

We consider the nonlocal boundary value problem for two-dimensional Pois-
son equation in rectangular domain

∂2u

∂x2
+

∂2u

∂y2
= −f(x, y), (x, y) ∈ Ω = {0 < x < 1, 0 < y < 1}, (1.1)

with the following integral and Dirichlet boundary conditions∫ ξ1

0

u(x, y)dx = νa(y),

∫ 1

ξ2

u(x, y)dx = νb(y), (1.2)

u(x, 0) = νc(x), u(x, 1) = νd(x), (1.3)

where 0 < ξ1 < 1, 0 < ξ2 < 1. Let us consider, all three cases that are possible:
ξ1 < ξ2, ξ1 = ξ2 and ξ1 > ξ2.

The purpose of this article is to study the Peaceman-Rachford Alternating
Direction Implicit (ADI) method for a system of difference equations approx-
imating a differential problem (1.1)–(1.3). To the best of the authors’ knowl-
edge, iterative methods for the system of difference equations in the case of
nonlocal conditions (1.2) have not been studied.

To examine the convergence conditions for the ADI method, we analyze
in sufficient detail the structure of the spectrum of the corresponding differ-
ence problem. The structure of the spectrum for a differential problem with
other types of nonlocal conditions is considered in many papers (see, for exam-
ple, [16, 17, 20, 21, 23, 26]. As in previous our papers [20, 21, 27], we proved the
convergence of ADI method in the case of the system of eigenvectors is com-
plete. But in the present paper we take some comments and examples about
the convergence of ADI method without this condition.
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The further structure of this paper is as follows. The difference problem
corresponding to the differential problem is formulated in Section 2, where the
ADI method is also introduced. The structure of the spectrum of difference
problems is discussed in Section 3. The convergence of the ADI method is
demonstrated in Section 4. In Section 5, a higher order finite difference method
is considered. In Section 6, numerical results are provided to verify the accuracy
and efficiency of the proposed algorithms. The last Section 7 presents comments
and conclusions.

2 Difference problem

Consider a uniform mesh in x and y with step size h = 1/N (1 < N ∈ N):

ωh
x := {xi = ih, i = 0, N}; ωh

y := {yj = jh, j = 0, N}, ωh := ωh
x × ωh

y .

We use the following notation

δ2xUi j :=
Ui−1,j − 2Uij + Ui+1,j

h2
, δ2yUi j :=

Ui,j−1 − 2Uij + Ui,j+1

h2
.

Let us replace the differential problem (1.1)–(1.3) with the following difference
problem on the mesh ωh

− δ2xUij − δ2yUij = Fij , i, j = 1, N − 1, (2.1)

h
(U0j + Urj

2
+

r−1∑
i=1

Uij

)
= µa

j , j = 1, N − 1, (2.2)

h
(Usj + UNj

2
+

N−1∑
i=s+1

Uij

)
= µb

j , j = 1, N − 1, (2.3)

Ui0 = µc
i , UiN = µd

i , i = 1, N − 1, (2.4)

The integral conditions (1.2) are approximated by the trapezoidal rule. For
simplicity, we assume that the values ξ1 and ξ2 are such that ξ1 = rh and
ξ2 = sh, r, s ∈ N, 0 < r < N , 0 < s < N . Assume that N , r and s are even
numbers. Note, that it is not a strong restriction, as we can always halve the
step size h.

The existence and uniqueness of the solution of the differential problem
(1.1)–(1.3) are investigated in [4,5]. The error estimate and convergence of the
solution of the finite difference method are presented in [8, 9].

The corresponding difference scheme for this problem under the condition
that the desired solution belongs to the Sobolev space W s

2 (1 < s ≤ 3) has been
investigated in [9].

The system (2.1)–(2.4) has N(N − 1) equations (2.1)–(2.3) and the same
number of unknowns Uij , i = 0, N − 1, j = 1, N − 1. First of all, for theoretical
study we will write the system (2.1)–(2.4) in a more compact matrix form

A1U+A2U = Φ, (2.5)

Math. Model. Anal., 28(4):715–734, 2023.
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where A1,A2 are (N − 1)2 order matrices and

U :=(U11, . . . , UN−1,1, U12, . . . , UN−1,N−1)
T ,

Φ :=(Φ11, . . . , ΦN−1,1, Φ12, . . . , ΦN−1,N−1)
T

are (N−1)2-vectors. For this purpose, we will express for each j = 1, N − 1 the
unknowns U0j and UNj from nonlocal conditions (2.2)–(2.3) through remaining
unknowns Uij , i = 1, N − 1:

U0j =− Urj − 2
r−1∑
i=1

Uij + 2h−1µa
j , j = 1, N − 1, (2.6)

UNj =− Usj − 2

N−1∑
i=s+1

Uij + 2h−1µb
j , j = 1, N − 1. (2.7)

Putting expressions (2.6)–(2.7) into Equation (2.1) as i = 1 or i = N−1, we get
new system of equations, the order of which and the number of the unknowns
Uij , i, j = 1, N − 1 are equal to (N − 1)2:

h−2(2

r−1∑
i=1

Uij + Urj + 2U1j − U2j)− δ2yU1j = Φ1j := F1j + 2h−3µa
j , (2.8)

− δ2xUij − δ2yUij = Φij := Fij , i = 2, N − 2,

h−2(−UN−2,j + 2UN−1,j + Usj + 2

N−1∑
i=s+1

Uij)− δ2yUN−1,j

= ΦN−1,j := FN−1,j + 2h−3µb
j , (2.9)

where j = 1, N − 1. The system (2.8)–(2.9) together with (2.6)–(2.7) and
boundary conditions (2.4) is equivalent to the system (2.1)–(2.4).

Next, we will consider the system (2.8)–(2.9), (2.4). We will write the
system (2.1)–(2.4) in the matrix form (2.5). For this purpose let us define
matrices of order (N − 1):

Λ =
1

h2


2 −1
−1 2 −1 · · · 0

. . .
. . .

. . .

−1 2 −1
−1 2

 , (2.10)

C =
1

h2



1 2 · · · r − 1 r r + 1 · · · s − 1 s s + 1 · · · N − 1

2 2 · · · 2 1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
...

... · · ·
...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 1 2 · · · 2


.
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Note that only the first and the last row of matrix C are non-zero. Here we
indicate the column numbers on top of the matrix. Let us denote

Λx := Λ+C, Λy := Λ.

The system (2.1)–(2.4) can be written in matrix form (2.5) using matrices

A1 := Iy ⊗Λx =


Λx

Λx

. . .

Λx

, (2.11)

A2 := Λy ⊗ Ix =


2Iy −Iy
−Iy 2Iy −Iy

. . .
. . .

. . .

−Iy 2Iy −Iy
−Iy 2Iy

 ,

where Ix and Iy are the identity matrices of order (N−1) (in our case of square
domain Ix = Iy).

Our main goal is to study the ADI method for solving a system of difference
equations. We write the ADI method for system (2.5):

Un+1/2 −Un

τ1n
+A1U

n+1/2 +A2U
n =Φ,

Un+1 −Un+1/2

τ2n
+A1U

n+1/2 +A2U
n+1 =Φ. (2.12)

where τ1n, τ
2
n, n = 0, 1, . . . are iteration parameters. We give a explicit formula

for determining iteration parameters in Section 4.

3 The structure of the spectrum of the difference problem

Proof of the convergence of the method (2.12) is based on the structure of the
spectrum of the one-dimensional eigenvalue problems. We consider two differ-
ence eigenvalue problems. First of these is problem with nonlocal boundary
conditions:

−vi−1 − 2vi + vi+1

h2
=ηvi, i = 1, N − 1, (3.1)

v0 + vr
2

+

r−1∑
i=1

vi =0, (3.2)

vs + vN
2

+

N−1∑
i=s+1

vi =0. (3.3)

Math. Model. Anal., 28(4):715–734, 2023.
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The second problem is classical problem:

− wj−1 − 2wj + wj+1

h2
= µwj , j = 1, N − 1, (3.4)

w0 = 0, wN = 0. (3.5)

In problem with nonlocal conditions we express v0 and vN from (3.2)–(3.3)
and substitute into (3.1). So we get

Λxv = ηv, v = (v1, . . . , vN−1)
T . (3.6)

We can write the problem (3.4)–(3.5) in matrix form

Λyw = µw, w = (w1, . . . , wN−1)
T . (3.7)

The problem (3.7) has known solution

µl =
4

h2
sin2

πlh

2
, l = 1, N − 1,

wl =(wl
1, . . . , w

l
N−1)

T , wl
j = sin(πljh), j, l = 1, N − 1. (3.8)

We will find eigenvalues and eigenvectors of the problem (3.6). As far as we
know, this problem has not been investigated.

Lemma 1. The eigenvalues of the problem (3.6), which satisfy conditions

0 < ηk <
4

h2
,

can be expressed in the form

ηk =
4

h2
sin2

αkh

2
, k = 1, N − 3, (3.9)

where αk is root of any of equations

sin
α(1− ξ2)

2
= 0, sin

αξ1
2

= 0, sin
α(1− ξ1 + ξ2)

2
= 0.

Eigenvectors vk can be expressed as

vki = c1 cos(αkih) + c2 sin(αkih), (3.10)

where (c1, c2) is nontrivial solution of system

c1h
sin(αξ1)

2 tan αh
2

+ c2h
1− cos(αξ1)

2 tan αh
2

= 0, (3.11)

c1h
sinα− sin(αξ2)

2 tan αh
2

+ c2h
cos(αξ2)− cosα

2 tan αh
2

= 0.

in the case α = αk.
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Proof. The inequality ∣∣∣∣∣1− ηh2

2

∣∣∣∣∣ < 1

is satisfied for 0 < η < 4/h2 in Equation (3.1). So let us denote

cos(αh) = 1− ηh2

2
, 0 < α <

π

h
,

where α is a new parameter instead of η. Then general solution of Equa-
tion (3.1) can be written in form of (3.8). This solution must obey conditions
(3.2) and (3.3). Putting the expression (3.10) into (3.2) and (3.3) after some
elementary rearragements we get (3.11).

Eigenvectors are defined by (3.10). So, vi ̸≡ 0, namely c21+c22 ̸= 0. It means
that determinant D of the system (3.11) must be equal to zero. After some
calculations we have

D = 4 sin
α(1− ξ1 + ξ2)

2
sin

αξ1
2

sin
α(1− ξ2)

2
= 0.

So, the statement of Lemma follows from here.
For even numbers r, s and N (rh = ξ1, sh = ξ2, Nh = 1)

- equation sin αξ1
2 = 0 has r

2 − 1 different roots,

- equation sin α(1−ξ2)
2 = 0 has N

2 − s
2 − 1 different roots,

- equation sin α(1−ξ1+ξ2)
2 = 0 has N

2 − r
2 + s

2 − 1 different roots.

There are N − 3 roots.

αk =
2πk

ξ1
, k = 1, 2, . . . ,

r

2
− 1, (3.12)

αk =
2πk

1− ξ2
, k = 1, 2, . . . ,

N

2
− s

2
− 1, (3.13)

αk =
2πk

1− ξ1 + ξ2
, k = 1, 2, . . . ,

N

2
− r

2
+

s

2
− 1. (3.14)

⊓⊔

Remark 1. In each of the formulas (3.12)–(3.14), the roots are different. How-
ever, the eigenvalue (3.9)

ηk =
4

h2
sin2

αkh

2
, k = 1, N − 3,

can be multiple if some of the roots of different formulas coincide. For example,
in the case ξ1 = 1 − ξ2 the equations (3.12) and (3.13) have the same roots.
In this case, the eigenvalues are multiples, and the system of eigenvectors may
not be complete.

Math. Model. Anal., 28(4):715–734, 2023.
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Lemma 2. In the case of even numbers r, s and N

η =
4

h2
(3.15)

is the eigenvalue of the problem (3.6) of multiplicity 2 with two linearly inde-
pendent corresponding eigenvectors v1 and v2:

v1i = (−1)iih, v2i = (−1)i, i = 1, N − 1. (3.16)

Proof. The general solution of Equation (3.1) in the case η = 4/h2 is

vi = (−1)i(c1 + c2ih), i = 1, N − 1. (3.17)

Putting this expression into conditions (3.2) and (3.3) we have that these con-
ditions are satisfied with all values of c1 and c2, if N , r and s are even. So,
it is possible to choose constants c1 and c2 such that two linearly independent
eigenvectors are defined by formula (3.17), corresponding to eigenvalue (3.15).
In particularly, those are vectors (3.16). ⊓⊔

Corollary 1. It follows from Lemmas 1 and 2 that all N − 1 eigenvalues of the
difference eigenvalue problem (3.6) are positive. Depending on ξ1 and ξ2 the
system of eigenvectors may be complete or not.

4 The convergence of the ADI method

Let us write the iterative method (2.12) as a matrix equation

Un+1 = SnU
n +Ψ, (4.1)

where
Sn = (I+ τ2nA2)

−1(I− τ2nA1)(I+ τ1nA1)
−1(I− τ1nA2), (4.2)

where I = Iy ⊗ Ix is the identity matrix of order (N − 1)2. We will prove that
spectral radius ϱ(Sn) < 1.

Lemma 3. A1 and A2 are commuting matrices

A1A2 = A2A1.

Proof. It is easy to check that

A1A2 = A2A1 = Λy ⊗Λx =
1

h2


2Λx −Λx O
−Λx 2Λx −Λx

. . .
. . .

. . .

−Λx 2Λx −Λx

O −Λx 2Λx

 .

Using eigenvectors vk, wl, k, l,= 1, N − 1 of the eigenvalue problems (3.1)–
(3.3) and (3.4)–(3.5) we define vectors

Ukl = wl ⊗ vk, where Ukl
ij = vki w

l
j , i, j = 1, N − 1. (4.3)

⊓⊔
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Lemma 4. Matrices A1, A2, A1+A2, A1A2 and A2A1 have the same system
of eigenvectors (not necessarily full) Ukl = wl ⊗ vk.

Proof. It follows from definition of A1 and Ukl by formulas (2.11) and (4.3)
that

A1U
kl = ηkU

kl. (4.4)

Furthermore, η and v are eigenvalue and eigenvector of matrix Λx; µ and w are
eigenvalue and eigenvector of matrix Λy. So, from properties of tensor product
we obtain that

(A1 +A2)U
kl = (Iy ⊗Λx +Λy ⊗ Ix)(w

l ⊗ vk) = (µk + ηl)U
kl. (4.5)

According to Lemma 1

(A1A2)U
kl = (A2A1)U

kl = (Λy ⊗Λx)U
kl = µkηlU

kl.

It follows from (4.4) and (4.5) that

A2U
kl = ηlU

kl. ⊓⊔

Remark 2. We note that the system of eigenvectorswl, l = 1, . . . , N−1 is always
complete. So, if the system of eigenvectors vk, k = 1, . . . , N − 1 is complete,
then the system of eigenvectors Ukl = wl ⊗ vk is complete, too. It is follows
from properties of tensor product.

Now, we can prove the statement on convergence of the iterative method.

Theorem 1. If τ1n = τ2n =: τn, where τn ∈ [β1, β2], β1 > 0, β2 < ∞, and
the system of eigenvectors of the problem (3.6) is complete, then ADI method
converges.

Proof. Let be U∗ the solution of the difference problem (2.1)–(2.4). We denote
the error of iterative method as

Zn := U∗ −Un.

From (4.1) and Remark 2 follows that

Zn+1 = SnZ
n =

n∏
j=0

Sn−jZ
0 =

N−1∑
k,l=1

ckl ·
n∏

j=0

Sn−jU
kl.

Hence, for any vector norm we have

∥Zn+1∥ ≤ ϱ
( n∏

j=0

Sn−j

) N−1∑
k,l=1

|ckl|∥Ukl∥. (4.6)

Let us estimate the factor ϱ(
∏n

j=0 Sn−j) and prove that it tends to 0 when
n → ∞. It means that the ADI method converges.

Math. Model. Anal., 28(4):715–734, 2023.
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Since A1 and A2 commute and have the same system of eigenvectors, then

λ
( n∏

j=0

Sn−j

)
=

n∏
j=0

λ(Sn−j), ϱ
( n∏

j=0

Sn−j

)
=

n∏
j=0

ϱ(Sn−j).

From Lemma 4 and (4.2), it follows that an eigenvalue of matrix Sn

λ(Sn) =

(
1− τnλ(A1)

)(
1− τnλ(A2)

)(
1 + τnλ(A1)

)(
1 + τnλ(A2)

) . (4.7)

If taking concrete values τn and λ(A1), the inequality 1− τnλ(A1) ≥ 0 is true,
then ∣∣∣∣1− τnλ(A1)

1 + τnλ(A1)

∣∣∣∣ = 1− τnλ(A1)

1 + τnλ(A1)
≤ 1− β1λ(A1)

1 + β1λ(A1)
= ϱ1 < 1,

here ϱ1 depends only on β1 and λ(A1) but does not depend on n. Analogously,
if 1− τnλ(A1) ≤ 0 then∣∣∣∣1− τnλ(A1)

1 + τnλ(A1)

∣∣∣∣ = τnλ(A1)− 1

1 + τnλ(A1)
≤ β2λ(A1)− 1

1 + β2λ(A1)
= ϱ2 < 1,

where ϱ2 depends only on β2 and λ(A2) but does not depend on n.
The second factor in the formula (4.7) is estimated similarly∣∣∣∣1− τnλ(A2)

1 + τnλ(A2)

∣∣∣∣ ≤ ϱ0 < 1,

where ϱ0 depends on β1, β2 and λ(A2) but does not depend on n. Finally we
get from (4.7)

ϱ(Sn) = max |λ(Sn)| ≤ ϱ̃ < 1,

where ϱ̃ depends on β1, β2, λ(A1) and λ(A2) but does not depend on n.
Because ϱ̃ < 1 then

n∏
j=0

ϱ(Sn−j) ≤ ϱ̃n+1 → 0, n → ∞. ⊓⊔

Remark 3. If parameters of ADI method τ1 and τ2 does not depend on n, then
Theorem 1 is correct even without the assumption of completeness of the system
of eigenvectors. We have that when τ1n = τ2n ≡ τ > 0, then the iterative method
is stationary

Un+1 = SUn +Ψ, (4.8)

where

S = (I+ τA2)
−1(I− τA1)(I+ τA1)

−1(I− τA2).

A necessary and sufficient condition for the convergence of a stationary process
(4.8) with any initial data U0 is ϱ(S) ≤ 1.
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It is known that when applying the ADI method, optimal parameters τ1n
and τ2n are usually used.

For obtaining optimal set of iteration parameters in the case of commuting
operators we suppose that eigenvalues of A1 and A2 satisfy inequalities

δ1 ≤ λ(A1) ≤ ∆1, δ2 ≤ λ(A2) ≤ ∆2,

Following [18, Ch.X, §4], the set of ADI parameters by Jordan gives

τn1 =
qwn + κ
1 + wnp

, τn2 =
qwn − κ
1− wnp

, n = 1,m,

where m is number of iterations

m = m(ε) ≈ 1

π2
ln
4

ε
ln

4

η
,

and we use notation

t =

√
(∆1 − δ1)(∆2 − δ2)

(∆1 + δ2)(∆2 + δ1)
, κ =

(∆1 − δ1)∆2

(∆2 + δ1)∆1
, κ =

∆1 −∆2 + (∆1 +∆2)p

2∆1∆2
,

η =
1− t

1 + t
, p =

κ− t

κ+ t
, q = κ +

1− p

∆1

and

wn =
(1 + 2θ)(1 + θσ)

2θσ/2(1 + θ1−σ + θ1+σ)
, n = 1,m,

where

θ :=
1

16
η2(1 +

1

2
η2), σ := σn =

2n− 1

2m
, n = 1,m.

Such algorithm for the optimal choice of parameters τ1n and τ2n is proposed
for the case of symmetric matrices A1 and A2, that is, when the system of
eigenvectors for the finite difference scheme is complete.

Let’s briefly discuss what such a choice of parameters means in the case
when the system of eigenvectors is incomplete (for problem (2.1)–(2.4).

From the definition of the ADI method (2.12), it follows that

Zn = Sn−1Z
n−1 =

n−1∏
j=0

Sn−1−jZ
0, (4.9)

where Zn = U∗ − Un and U∗ is the exact solution of the finite difference
problem.

Without details, we note that the choice of optimal parameters τ1n and τ2n
is based on the solution of the minimax problem, namely the finding of the
minimum value of the spectral radius of the matrix

∏n−1
j=0 Sn−1−j . Since for

a symmetric matrix the spectral radius can be considered as the norm of the
matrix, then in the case of symmetric matrices A1 and A2, it follows from (4.9)

∥Zn∥ ≤ ϱ
( n−1∏

j=0

Sn−1−j

)∥∥∥Z0
∥∥∥ → 0, n → ∞. (4.10)
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However, if the system of eigenvectors of the finite difference problem (2.1)–
(2.4) is incomplete, then (4.10) does not follow from (4.9). In this case, we can
use the following statement from linear algebra [3].

Let A be an arbitrary square matrix. If ε > 0 is given, then there is matrix
norm ∥A∥∗ such that

∥A∥∗ ≤ ϱ(A) + ε.

It means, particularly, that from inequality ϱ(A) + ε < 1 follows ∥A∥∗ < 1.
These arguments, in our opinion, are not proof of the convergence of the ADI

method with optimal parameters. But, at least, this is a strong motivation for
the corresponding numerical experiment with optimal parameters in the case
when the system of eigenvectors is incomplete.

5 The higher-order method

Now, we will consider the difference problem approximating the differential
problem (1.1)–(1.3) with truncation error O(h4). So, let us replace the differ-
ential problem with the following difference problem

− (δ2xUij + δ2yUij +
h2

6
δ2xδ

2
yUij) = F̃ij ,

F̃ij = Fij +
h2

12

(
δ2x + δ2y

)
Fij , i, j = 1, N − 1, (5.1)

h

3

(
U0j + Urj + 4

r/2∑
i=1

U2i−1,j + 2

r/2−1∑
i=1

u2i,j

)
= µa

j , j = 1, N − 1, (5.2)

h

3

(
Usj + UNj + 4

N/2∑
i=s/2+1

U2i−1,j + 2

N/2−1∑
i=s/2+1

U2i,j

)
= µb

j , j = 1, N − 1, (5.3)

Ui0 = µc
i , UiN = µd

i , i = 1, N − 1, (5.4)

In this case one dimensional eigenvalue problem with nonlocal boundary con-
ditions is

− vi−1 − 2vi + vi+1

h2
= ηvi, i = 1, N − 1, (5.5)

h

3

(
v0 + vr + 4

r
2∑

i=1

v2i−1 + 2

r
2−1∑
i=1

v2i

)
= 0, (5.6)

h

3

(
vs + vN + 4

N
2∑

i=s+1

v2i−1 + 2

N
2 −1∑

i=s+1

v2i

)
= 0. (5.7)

We rewrite the eigenvalue problem (5.5)–(5.7) in equivalent matrix form. For
this we express the values v0 ir vN from the condition (5.6)–(5.7). Putting these
expressions into Equation (5.5) we can rewrite problem (5.5)–(5.7) as follows

Λxv = ηv. (5.8)
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Similarly, as in Section 2, we have Λx = Λ+C/h2, where Λ is defined in (2.10)
and C is equal to


1 2 3 · · · r − 1 r r + 1 · · · s − 1 s s + 1 · · · N − 2 N − 1

4 2 4 · · · 4 1 0 · · · 0 0 0 · · · 0 0
...

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...
...

0 0 0 · · · 0 0 0 · · · 0 1 4 · · · 2 4

.

We note, that two eigenvalue problems (5.5)–(5.7) and (5.8) are equivalent.

Lemma 5. The eigenvalues of the problem (5.5)–(5.7), which satisfy inequality
0 < ηk < 4/h2 can be expressed as

ηk =
4

h2
sin2

αkh

2
, k = 1, N − 3,

where αk is root of any of equations

sin
α(1− ξ2)

2
= 0, sin

αξ1
2

= 0, sin
α(1− ξ1 + ξ2)

2
= 0.

Proof. The proof is analogous to the proof of Lemma 1. Putting general
solution of Equation (5.5)

vi = c1 cos(αih) + c2 sin(αih), i = 1, N − 3, 0 < α <
π

h
,

into the Equations (5.6)–(5.7) we get a system of equations

h

3
c1 sin(αξ1)

2 + cos(αh)

sin(αh)
+

h

3
c2(1− cosαξ1)

2 + cos(αh)

sin(αh)
= 0, (5.9)

h

3
c1
(
sinα− sin(αξ2)

)2 + cos(αh)

sin(αh)
+

h

3
c2
(
1− cos(αξ1)

)2 + cos(αh)

sin(αh)
= 0.

The system (5.9) is analogous to (3.11), only instead of a multiplier 1
2 tan

αh
2 ̸= 0

there is another multiplier (2 + cos
(
αh)

)
/ sin(αh) ̸= 0. The condition D = 0

in both cases means that

sin
α(1− ξ1 + ξ2)

2
sin

αξ1
2

sin
α(1− ξ2)

2
= 0.

So, the statement of lemma follows from here. ⊓⊔

Corollary 2. The eigenvalues of the problem (5.5)–(5.7) satisfying the inequal-
ities 0 < ηk < 4/h2 are the same as for the problem (3.1)–(3.2) when the
trapezoidal formula is used to approximate the integral condition.

Lemma 6. In the case of even numbers n, s and N

η =
4

h2
cosh2

αh

2
,
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where α is root of equation
cosh(αh) = 2,

is the eigenvalue of the problem (5.5)–(5.7) of multiplicity 2 with two linearly
independent corresponding eigenvectors v1 and v2:

v1i = (−1)i cosh(αih), v2i = (−1)i sinh(αih), i = 1, N − 1,

where α is connected with η by formula

cosh(αh) =
ηh2

2
− 1.

Proof. In the case η > 0, the general solution of the Equation (5.5) is

vi = (−1)i
(
c1 cosh(αih) + c2 sinh(αih)

)
, i = 1, N − 1.

After substitution this expression into conditions (5.6) and (5.7), we get the
system of equations

h

3
c1 sinh(αξ1)

−2 + cosh(αh)

sinh(αh)
+

h

3
c2
(
− 1 + cosh(αξ1)

)−2 + cosh(αh)

sinh(αh)
= 0,

h

3
c1
(
sinhα− sinh(αξ2)

)−2 + cosh(αh)

sinh(αh)

+
h

3
c2
(
coshα− cosh(αξ2)

)−2 + cosh(αh)

sin(αh)
= 0.

It follows that

D =
h2

9

(
−2 + cosh(αh)

sinh(αh)

)2 ∣∣∣∣ sinh(αξ1) −1 + cosh(αξ1)
sinhα− sinh(αξ2) coshα− cosh(αξ2)

∣∣∣∣
=

h2

9

(
−2 + cosh(αh)

sinh(αh)

)2

4 sinh
α(1− ξ1 + ξ2)

2
sinh

α(ξ2 − 1)

2
sinh

αξ1
2

= 0.

So, D = 0 if cosh(αh) = 2 or α = arccosh 2
h . Then it follows that

η =
4

h2
sinh2

αh

2
. (5.10)

Now, we can conclude that there are two linearly independent vectors v1, v2:

v1i = (−1)i cosh(αih), v2i = (−1)i sinh(αih), i = 1, N − 1,

corresponding to eigenvalue η, defined by (5.10). ⊓⊔

Corollary 3. All N − 1 eigenvalues of the difference eigenvalue problem (5.5)–
(5.7)

ηk =
4

h2
sin2

αkh

2
, k = 1, N − 3

from Lemma 5 and

ηN−2 = ηN−1 =
4

h2
cosh2

αh

2
from Lemma 6 are positive.
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Now, we can formulate the alternating direction method for the system
(5.1)–(5.4). We rewrite this system in the matrix form

(A1 +A2 −
h2

6
A1A2)U = Φ, (5.11)

where A1 = I ⊗Λx, A2 = Λy ⊗ I and Φ = Φ(F, µa, µb, µc, µd, h). The newly
defined matricesA1 andA2 have all the same properties as the matrices defined
by system (2.1)–(2.3). In other words, Lemmas 3 and 4 are true for the matrices
of the system of Equations (5.1)–(5.4).

Since the matrices A1 and A2 commute, the system (5.11) can be written
in another form

(I− κA2)A1U+ (I− κA1)A2U = Φ, (5.12)

where κ = h2/12. Further, we rewrite system (5.12) in equivalent form

Ā1U+ Ā2U = Φ̄, (5.13)

where

Āk = Ak(I− κAk)
−1, k = 1, 2,

Φ̄ = (I− κA1)
−1(I− κA2)

−1Φ,

(see [21] for details).
Now, we write Peaceman-Rachford alternating direction method for the

system (5.13):

Un+1/2 −Un

τ1n
+ Ā1U

n+1/2 + Ā2U
n = Φ̄,

Un+1 −Un+1/2

τ2n
+ Ā1U

n+1/2 + Ā2U
n+1 = Φ̄. (5.14)

We will notice that if all eigenvalues of the matrices A1 and A2 are positive,
then all eigenvalues of the matrices Ā1 and Ā2 are also positive for sufficiently
small values of h. Thus, it follows from Lemmas 5 and 6 that for method (5.8)
the statements proven in Theorem 1 and Remark 3 are valid.

6 Numerical experiments

In the section, some numerical examples will be computed to verify the nu-
merical accuracy and efficiency of difference schemes that we presented in the
work. Truncation error analysis provides a widely applicable framework for an-
alyzing the accuracy of finite difference schemes. We consider three illustrative
examples. The first example deals with the second order difference scheme.
The second and third examples demonstrate empirical verification of the trun-
cation error for higher order difference scheme with or without a known exact
solution, respectively.
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We consider a model problem

∂2u

∂x2
+

∂2u

∂y2
= eπx sin(πy) +

x2y2

2
, (x, y) ∈ Ω = {0 < x < 1, 0 < y < 1},∫ ξ1

0

u(x, y)dx =
1

6π
(ξ31y

2π + 6 sin(πy)eπξ1 − 6 sin(πy)),∫ 1

ξ2

u(x, y)dx = − 1

6π
(ξ32y

2π − y2π + 6 sin(πy)eπξ2 − 6 sin(πy)eπ),

u(x, 0) = 0, u(x, 1) = x2/2,

where 0 < ξ1 < 1, 0 < ξ2 < 1. The exact solution is

u = eπx sin(πy) + x2y2/2.

We consider the uniform grids with the different mesh sizes h = 1/2k, k =
3, . . . , 7 and analyze the convergence and the accuracy of the computed solution
of the second and the fourth order difference schemes. Test problems were
solved with the different values of the parameters ξ1, ξ2.

We compute the maximum norm of the error of the numerical solution with
respect to the exact solution, which is defined as

εh = max
j=1,··· ,n

max
i=1,··· ,n

∣∣u(xi, yj)− uij

∣∣ .
We define a number p as p = ε2h/εh, which theoretically must be approximately
p ≈ 4 for the second order difference scheme and p ≈ 16 for the fourth order
difference scheme.

Example 1. The computational results for ADI method (2.12) are reported in
Table 1. We can clearly observe a second-order convergence in the maximum
norm for all presented choices of ξ1 and ξ2. From the last two columns of Table
1 it is clear that the number of iterations of the ADI method is quite accurately
proportional to the value of log(1/h)). When we were planning a numerical
experiment, this is what we wanted to check (see the last paragraph of Section
4). Please note that ξ1 and ξ2 are chosen so that ξ1 = 1 − ξ2, that is, the
difference problem has multiple eigenvalues (see Corollary 1).

Example 2. The outputs for the different values of the pairs of parameters
(ξ1, ξ2), respectively, together with the experimental convergence order for
higher-order difference scheme (5.1)–(5.4) are shown in Table 2. We demon-
strate a fourth-order convergence in the maximum norm for all choices of ξ1
and ξ2.

In the next example, we check that the empirically observed convergence
rates in experiments coincide with the theoretical value of it found from trun-
cation error analysis.
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Table 1. Accuracy of the solution and the number of the iterations for the ADI method
(2.12).

ξ1 ξ2 h εh p number of iter. log(1/h)

0.25 0.75 1/23 0.3809 17 2.079
1/24 0.09801 3.8863 22 2.773

Case 1/25 0.02468 3.9712 27 3.466
0 < ξ1 < ξ2 < 1 1/26 0.006182 3.9922 33 4.159

1/27 0.001546 3.9987 38 4.852

0.5 0.5 1/23 0.4385 15 2.079
1/24 0.1128 3.8874 20 2.773

Case 1/25 0.02841 3.9704 25 3.466
0 < ξ1 = ξ2 < 1 1/26 0.007116 3.9924 31 4.159

1/27 0.001780 3.9978 36 4.852

0.75 0.25 1/23 0.4484 13 2.079
1/24 0.1154 3.8856 18 2.773

Case 1/25 0.02906 3.9711 23 3.466
0 < ξ2 < ξ1 < 1 1/26 0.007278 3.9929 29 4.159

1/27 0.001820 3.9989 34 4.852

Table 2. Accuracy of the solution and the number of the iterations for the ADI method
(5.14).

ξ1 ξ2 h εh p number of iter. log(1/h)

0.25 0.75 0.125 3.006 · 10−3 24 2.079
1/24 1.903 · 10−4 15.7961 31 2.773

Case 1/25 1.193 · 10−5 15.9514 37 3.466
0 < ξ1 < ξ2 < 1 1/26 7.463 · 10−7 15.9855 44 4.159

1/27 4.638 · 10−8 16.0910 51 4.852

0.5 0.5 1/23 3.009 · 10−3 21 2.079
1/24 1.903 · 10−5 15.8119 28 2.773

Case 1/25 1.193 · 10−5 15.9514 35 3.466
0 < ξ1 = ξ2 < 1 1/26 7.461 · 10−7 15.9898 41 4.159

1/27 4.738 · 10−8 15.7472 48 4.852

0.75 0.25 1/23 3.010 · 10−3 19 2.079
1/24 1.903 · 10−5 15.8171 26 2.773

Case 1/25 1.193 · 10−5 15.9514 32 3.466
0 < ξ2 < ξ1 < 1 1/26 7.462 · 10−7 15.9877 39 4.159

1/27 4.674 · 10−8 15.9649 46 4.852

Example 3. We solve this problem as test problem without a known solution.
We use Runge’s rule for a practical error estimate for higher-order method.
We performed numerical experiments with the scheme and compared results
with the ones demonstrated in Table 2. As expected, there is a fourth-order
convergence in the maximum norm for all choices of ξ1 and ξ2. The results are
recorded in Table 3.

Math. Model. Anal., 28(4):715–734, 2023.
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Table 3. Accuracy of the solution and the number of the iterations for the ADI method
(5.14) using Runge rule for error estimate.

ξ1 ξ2 h εh p number of iter. log(1/h)

0.25 0.75 1/24 1.87737299 · 10−4 31 2.773
1/25 1.18900520 · 10−5 15.7894 37 3.466

Case 1/26 7.45593983 · 10−7 15.9471 44 4.159
0 < ξ1 < ξ2 < 1 1/27 4.66591776 · 10−8 15.9796 51 4.852

0.5 0.5 1/24 1.87922737 · 10−4 28 2.773
1/25 1.18929493 · 10−5 15.8012 35 3.466

Case 1/26 7.45647480 · 10−7 15.9498 41 4.159
0 < ξ1 = ξ2 < 1 1/27 4.66055705 · 10−8 15.9991 48 4.852

0.75 0.25 1/24 1.87955101 · 10−4 26 2.773
1/25 1.18934557 · 10−5 15.8032 32 3.466

Case 1/26 7.45651475 · 10−7 15.9504 39 4.159
0 < ξ2 < ξ1 < 1 1/27 4.66640055 · 10−8 15.9792 46 4.852

7 Conclusions

We have proven that for the second order and the fourth-order difference
schemes, the spectrum of difference problem consists only from positive eigen-
values. The convergence of the ADI method is proven with an additional as-
sumption that the system of eigenvectors of difference problem is complete. A
numerical experiment showed that the ADI method with optimal parameters
practically converges in all studied cases. In addition, it converges as quickly
as in the case with Dirichlet conditions.
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