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1 Introduction

In the past few decades a great deal of interest has been directed towards to
the study of the problem of determining the coefficients and right-hand sides
simultaneously in partial differential equations from some additional data. Such
problems constitute a prominent branch of the theory of differential equations
and are called inverse problems. Inverse problems arise in various fields of
human activity, such as seismology, mineral exploration, biology, medical vi-
sualization, computed tomography, Earth remote sensing, spectral analysis,
nondestructive control, etc. From historical background can be seen, that the
foundations of the theory and practice of studying inverse problems were estab-
lished and developed in the pioneering works of Tikhonov [34], Lavrentiev [25],
Ivanov [20], and their followers (see, for example, [18, 26,30,32] and references
therein).

One-dimensional nonlocal inverse problems for the various partial differen-
tial equations have been extensively studied, notably in [6,21,24,28,33]. Let us
now browse the content of some works devoted to inverse coefficient problems
for parabolic equations: in [2] an inverse problem for a 2D parabolic equation
with an integral overdetermination condition is investigated. First, the con-
sidered problem was reduced to some auxiliary problem with trivial boundary
conditions, and the existence and uniqueness of a solution to an equivalent
problem applying the contraction mapping principle is shown. Then, using the
equivalence, the existence and uniqueness theorem for the classical solution of
the original problem is proved. The authors Baglan and Kanca [3] studied a
coefficient problem for a quasi-linear 2D parabolic inverse problem with pe-
riodic boundary and integral overdetermination conditions. In the work, the
existence, uniqueness, and continuously dependence upon the data of the solu-
tion is proved by iteration method. In the paper by Huntul and Lesnic [15] the
retrieval of the timewise-dependent intensity of a free boundary and the tem-
perature in a 2D parabolic problem is solved numerically for the first time. A
stability theorem is proved based on the Green function theory and Volterra’s
integral equations of the second kind. The resulting nonlinear minimization
is numerically solved using the MATLAB optimization routine. The deter-
mination of a time-dependent perfusion coefficient of 2D heat equation with
a classical and total energy integral overdetermination condition was studied
by Ismailov et al. [17]. In [19], Ivanchov and Kinash the conditions for the
existence and uniqueness of a smooth solution to the inverse problem for the
2D heat equation with unknown leading coefficient depending on time and the
space variable is studied. In the article published by Kinash [23] an inverse
problem of identifying the time-dependent coefficient in a 2D parabolic equa-
tion is considered and the existence and uniqueness conditions for the classical
solution to this problem are established. The work [31] discusses the existence
of a positive radial solution to the generalized p(x)-Laplacian problem using the
variational methods. In the paper [35] on the basis of the formula for solving
the first initial-boundary problem for the inhomogeneous heat equation, inverse
problems of finding the initial condition and the right-hand side are studied.
For this problem, theorems of uniqueness, existence, and stability of solutions
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are proved.

Numerical aspects of inverse problems for 2D parabolic equations with va-
rious boundary conditions were studied in [8, 9], and the references therein.
Huntul et al. [11, 12, 13, 14, 16], numerically investigated the inverse problems
of reconstructing the timewise coefficients in a 2D parabolic equation.

A distinctive feature of the presented paper is the study of the inverse
problem for a 2D parabolic equation with nonlocal boundary conditions in
both space and time variables. It should be noted that in the literature, the
term ”nonlocal boundary value problems” refers to problems that contain con-
ditions relating the values of the solution and/or its derivatives either at dif-
ferent points of the boundary or at boundary points and some interior points.
The term ”nonlocal conditions” and their classification were introduced by
Dezin [10]. The applied significance of problems with nonlocal conditions is
associated with the study of processes occurring in the turbulent plasma, the
processes of diffusion, heat conductivity, moisture transfer in a capillary-porous
medium, problems of mathematical biology, as well as some inverse problems
of mathematical physics.

This article is outlined as: the 2D inverse problems have been stated in
Section 2. The unique solvability of the inverse problems is proved in Section 3.
The numerical discretization of the forward problem based on ADE scheme
is briefly presented in Section 4. The numerical procedure for solving the
inverse problems is given in Section 5. The results outcomes for benchmark
test example are discussed in Section 6. Finally, the conclusions remarks are
highlighted in Section 7.

2 Mathematical formulation of the problem

Let T > 0 be a fixed time moment and let DT = Q̄xy × [0, T ] denote a closed
bounded region in space, where Qxy is defined by the inequalities 0 < x <
1 and 0 < y < 1. We consider the problem of determining the unknown
functions u(x, y, t) ∈ C2,2,1(DT ) and a(t), b(t) ∈ C[0, T ] such that the triple
{u(x, y, t), a(t), b(t)} satisfies in DT , the following two-dimensional parabolic
equation

ut(x, y, t)− c(t) (uxx(x, y, t) + uyy(x, y, t))

= a(t)u(x, y, t) + b(t)g(x, y, t) + f(x, y, t), (x, y, t) ∈ DT , (2.1)

with the nonlocal condition

u(x, y, 0) + δu(x, y, T ) +

∫ T

0

p(t)u(x, y, t)dt = φ(x, y), (x, y) ∈ Q̄xy, (2.2)

the boundary conditions

u(0, y, t) = ux(1, y, t) = 0, (y, t) ∈ [0, 1]× [0, T ], (2.3)

uy(x, 0, t) = u(x, 1, t) = 0, (x, t) ∈ [0, 1]× [0, T ], (2.4)
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and over-specification conditions

u(1, 0, t) = h1(t), t ∈ [0, T ], (2.5)

u(x0, y0, t) = h2(t), (x0, y0) ∈ Qxy, t ∈ [0, T ], (2.6)

where δ ≥ 0 is a given number and 0 < c(t), 0 ≤ p(t), f(x, y, t), g(x, y, t),
φ(x, y), h1(t), and h2(t) are known functions.

The method used in Theorem 2.3 from [1], is easily adapted to prove the
following theorem.

Theorem 1. Assume that δ ≥ 0, 0 < c(t) ∈ C[0, T ], 0 ≤ p(t) ∈ C[0, T ],
f(x, y, t), g(x, y, t) ∈ C(DT ), φ(x, y) ∈ C(Q̄xy), h1(t), h2(t) ∈ C1[0, T ], h(t) ≡
h1(t)g(x0, y0, t) − h2(t)g(1, 0, t) ̸= 0, 0 ≤ t ≤ T , h(t) ∈ C[0, T ], and the com-
patibility conditions

h1(0) + δh1(T ) +

∫ T

0

p(t)h1(t)dt = φ(1, 0),

h2(0) + δh2(T ) +

∫ T

0

p(t)h2(t)dt = φ(x0, y0), (2.7)

hold. Then the problem of finding a classical solution of (2.1)–(2.6) is equiva-
lent to the problem of determining the functions u(x, y, t) ∈ C2,2,1(DT ), a(t) ∈
C[0, T ] and b(t) ∈ C[0, T ] satisfying (2.1)–(2.4), and the conditions

h′
1(t)− c(t)(uxx(1, 0, t) + uyy(1, 0, t))

= a(t)h1(t) + b(t)g(1, 0, t) + f(1, 0, t), 0 ≤ t ≤ T, (2.8)

h′
2(t)− c(t)(uxx(x0, y0, t) + uyy(x0, y0, t))

= a(t)h2(t) + b(t)g(x0, y0, t) + f(x0, y0, t), 0 ≤ t ≤ T. (2.9)

3 Classical solvability of IBV problem

We seek the first component of classical solution {u(x, y, t), a(t), b(t)} of the
problem (2.1)–(2.4), (2.8) and (2.9) in the form

u(x, y, t) =

∞∑
k=1

∞∑
n=1

uk,n(t) sinλkx cos γny, (3.1)

where

uk,n(t) = 4

∫ 1

0

∫ 1

0

u(x, y, t) sinλkx cos γnydxdy,

λk =
π

2
(2k − 1), γn =

π

2
(2n− 1), k, n = 1, 2, . . . .

Applying the formal scheme of the Fourier method, from (2.1) and (2.2), we
have

u′
k,n(t) + (λ2

k + γ2
n)c(t)uk,n(t) = Fk,n(t;u, a, b), 0 ≤ t ≤ T, (3.2)

uk,n(0) + δuk,n(T ) +

∫ T

0

p(t)uk,n(t)dt = φk,n, k, n = 1, 2, . . . , (3.3)
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where

Fk,n(t;u, a, b) = fk,n(t) + a(t)uk,n(t) + b(t)gk,n(t),

fk,n(t) = 4

∫ 1

0

∫ 1

0

f(x, y, t) sinλkx cos γnydxdy,

gk,n(t) = 4

∫ 1

0

∫ 1

0

g(x, y, t) sinλkx cos γnydxdy,

φk,n = 4

∫ 1

0

∫ 1

0

φ(x, y) sinλkx cos γnydxdy.

Solving problem (3.2), (3.3), we find

uk,n(t) =
exp (−

∫ t

0
µ2
k,nc(s)ds)

1 + δ exp (−
∫ T

0
µ2
k,nc(s)ds)

(
φk,n −

∫ T

0

p(t)uk,n(t)dt

)

+

∫ t

0

Fk,n(τ ;u, a, b) exp
(
−
∫ t

τ

µ2
k,nc(s)ds

)
dτ

−
δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

) ∫ T

0

Fk,n(τ ;u, a, b)e
−

t∫
τ

µ2
k,nc(s)ds

dτ, (3.4)

where µ2
k,n = λ2

k + γ2
n. Substituting the expressions uk,n(t) (k, n = 1, 2, . . .)

described by (3.4) into (3.1), gives

u(x, y, t) =

∞∑
k=1

∞∑
n=1

{
exp

(
−
∫ t

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

) (φk,n −
∫ T

0

p(t)uk,n(t)dt

)

+

∫ t

0

Fk,n(τ ;u, a, b) exp
(
−
∫ t

τ

µ2
k,nc(s)ds

)
dτ −

δ exp
(
−
∫ T

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)
×
∫ T

0

Fk,n(τ ;u, a, b) exp
(
−
∫ t

τ

µ2
k,nc(s)ds

)
dτ

}
sinλkx cos γny. (3.5)

Furthermore, taking into account h(t) ̸= 0 and substituting the expressions
represented by (3.1) into (2.8) and (2.9), and using and (3.4), we get

a(t) = [h(t)]−1
{
(h′

1(t)− f(1, 0, t))g(x0, y0, t)− (h′
2(t)− f(x0, y0, t))g(1, 0, t)

+ c(t)

∞∑
k=1

∞∑
n=1

((−1)k+1g(x0, y0, t)− g(1, 0, t) sinλkx0 cos γny0)

×
[

exp
(
−
∫ t

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)(φk,n −
∫ T

0

p(t)uk,n(t)dt
)

+

∫ t

0

Fk,n(τ ;u, a, b)e
−

t∫
τ

µ2
k,nc(s)ds

dτ
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−
δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

) ∫ T

0

Fk,n(τ ;u, a, b)e
−

t∫
τ

µ2
k,nc(s)ds

dτ
]}

, (3.6)

b(t) = [h(t)]−1

{
(h′

2(t)− f(x0, y0, t))h1(t)− (h′
1(t)− f(1, 0, t))h2(t)

+ c(t)

∞∑
k=1

∞∑
n=1

(
h1(t) sinλkx0 cos γny0 − (−1)k+1h2(t)

)
×
[

exp
(
−
∫ t

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)(φk,n −
∫ T

0

p(t)uk,n(t)dt
)

+

∫ t

0

Fk,n(τ ;u, a, b)e
−

t∫
τ

µ2
k,nc(s)ds

dτ

−
δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

)
1 + δ exp

(
−
∫ T

0
µ2
k,nc(s)ds

) ∫ T

0

Fk,n(τ ;u, a, b)e
−

t∫
τ

µ2
k,nc(s)ds

dτ

]}
. (3.7)

Thus, the solution of problem (2.1)–(2.4), (2.8), (2.9) was reduced to the
solution by systems (3.5)–(3.7) with respect to unknown functions u(x, y, t),
a(t), and b(t).

The following lemma plays an important role in studying the uniqueness of
the solution to problem (2.1)–(2.4), (2.8), (2.9). But we omit the proof of the
following lemma to avoid a lengthy digression.

Lemma 1. If {u(x, y, t), a(t), b(t)} is any solution of (2.1)–(2.4), (2.8), (2.9),
then the functions

uk,n(t) = 4

∫ 1

0

∫ 1

0

u(x, y, t) sinλkx cos γnydxdy, k, n = 1, 2, . . . ,

satisfy the system (3.4) on the interval [0, T ].

It is clear that, if

uk,n(t) = 4

∫ 1

0

∫ 1

0

u(x, y, t) sinλkx cos γnydxdy, k, n = 1, 2, . . .

is a solution to system (3.4), then the functions

u(x, y, t) =

∞∑
k=1

∞∑
n=1

uk,n(t) sinλkx cos γny,

a(t) and b(t) will also be solution of system (3.5)–(3.7).
From Lemma 1 it follows:

Corollary 1. Suppose that system (3.5)–(3.7) has a unique solution. Then the
problem (2.1)–(2.4), (2.8), (2.9) couldn’t have more than one solution, in other
words, if problem (2.1)–(2.4), (2.8), (2.9) has a solution, then it is unique.
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In order to study the problem (2.1)–(2.4), (2.8), (2.9), we consider the
following spaces. Let us consider the functional space B3

2,T , introduced in the

study by Khudaverdiyev and Veliyev [22], such that B3
2,T denotes a set of all

functions of the form

u(x, y, t) =

∞∑
k=1

∞∑
n=1

uk,n(t) sinλkx cos γny,

λk =
π

2
(2k − 1), γn =

π

2
(2n− 1), k, n = 1, 2, . . . ,

considered in domain DT . Moreover, the functions uk,n(t) (k, n = 1, 2, . . .)
contained in last double sum are continuously differentiable on [0, T ], and the
norm in the space B3

2,T is defined as follows

∥u(x, y, t)∥B3
2,T

=

{ ∞∑
k=1

∞∑
n=1

(µ3
k,n∥uk,n(t)∥C[0,T ])

2

} 1
2

< +∞.

Let E3
T denote the space consisting of the topological product B3

2,T ×
C[0, T ] × C[0, T ], which is the norm of the element z = {u, a, b} described
by the formula

∥z∥E3
T
= ∥u(x, y, t)∥B3

2,T
+ ∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ].

It is known that [22,27] the spaces B3
2,T and E3

T are Banach spaces.
Let us now consider the operator

Φ(u, a, b) = {Φ1(u, a, b), Φ2(u, a, b), Φ3(u, a, b)}

in the space E3
T , where

Φ1(u, a, b) =ũ(x, y, t) ≡
∞∑

n=1

∞∑
k=1

ũk,n(t) cosλkx sin γny,

Φ2(u, a, b) =ã(t), Φ3(u, a, b) = b̃(t),

and the functions ũk,n(t) (k, n = 1, 2, ...), ã(t), and b̃(t) are equal to the right-
hand sides of (3.5), (3.6) and (3.7), respectively.

If the data for the problem (2.1)–(2.4), (2.8) and (2.9) meets the following
four conditions

(C1) φ(x, y), φx(x, y), φxx(x, y), φy(x, y), φxy(x, y), φyy(x, y) ∈ C(Q̄xy),
φxxy(x, y), φxyy(x, y), φxxx(x, y), φyyy(x, y) ∈ L2(Qxy),
φ(0, y) = φx(1, y) = φxx(0, y) = 0, 0 ≤ y ≤ 1,
φy(x, 0) = φ(x, 1) = φyy(x, 1) = 0, 0 ≤ x ≤ 1;

(C2) f(x, y, t), fx(x, y, t), fxx(x, y, t),fy(x, y, t),fxy(x, y, t),fyy(x, y, t)∈C(DT ),
fxxy(x, y, t), fxyy(x, y, t), fxxx(x, y, t), fyyy(x, y, t) ∈ L2(DT ),
f(0, y, t) = fx(1, y, t) = fxx(0, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T ,
fy(x, 0, t) = f(x, 1, t) = fyy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T ;
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(C3) g(x, y, t),gx(x, y, t),gxx(x, y, t),gy(x, y, t),gxy(x, y, t),gyy(x, y, t)∈C(DT ),
gxxy(x, y, t), gxyy(x, y, t), gxxx(x, y, t), gyyy(x, y, t) ∈ L2(DT ),
g(0, y, t) = gx(1, y, t) = gxx(0, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T ,
gy(x, 0, t) = g(x, 1, t) = gyy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T ;

(C4) δ≥0, 0≤p(t)∈C[0, T ], 0<c(t)∈C[0, T ], hi(t)∈C1[0, T ] (i=1, 2),
h(t)≡h1(t)g(x0, y0, t)− h2(t)g(1, 0, t) ̸= 0, 0 ≤ t ≤ T , h(t) ∈ C[0, T ],

then we obtain

∥ũ(x, y, t)∥B3
2,T

≤ A1(T ) +B1(T )∥a(t)∥C[0,T ]∥u(x, y, t)∥B3
2,T

+ C1(T )∥b(t)∥C[0,T ] +D1(T )∥u(x, y, t)∥B3
2,T

, (3.8)

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T )∥a(t)∥C[0,T ]∥u(x, y, t)∥B3
2,T

+ C2(T )∥b(t)∥C[0,T ] +D2(T )∥u(x, y, t)∥B3
2,T

, (3.9)

∥b̃(t)∥C[0,T ] ≤ A3(T ) +B3(T )∥a(t)∥C[0,T ]∥u(x, y, t)∥B3
2,T

+ C3(T )∥b(t)∥C[0,T ] +D3(T )∥u(x, y, t)∥B3
2,T

, (3.10)

where

A1(T ) =
√
11∥φxxx(x, y)∥L2(Qxy) +

√
11∥φxyy(x, y)∥L2(Qxy)

+
√
11∥φxxy(x, y)∥L2(Qxy) +

√
11∥φyyy(x, y)∥L2(Qxy)

+ (1 + δ)
√
11T (∥fxxx(x, y, t)∥L2(DT ) + ∥fxyy(x, y, t)∥L2(DT )

+ ∥fxxy(x, y, t)∥L2(DT ) + ∥fxxx(x, y, t)∥L2(DT ) + ∥fyyy(x, y, t)∥L2(DT )),

B1(T ) =
√
11(1 + δ)T,

C1(T ) = (1 + δ)
√
11T (∥gxxx(x, y, t)∥L2(DT ) + ∥gxyy(x, y, t)∥L2(DT )

+ ∥gxxy(x, y, t)∥L2(DT ) + ∥gxxx(x, y, t)∥L2(DT ) + ∥gyyy(x, y, t)∥L2(DT )),

D1(T ) =
√
11T∥p(t)∥C[0,T ],

A2(T ) = ∥[h(t)]−1∥C[0,T ]

× {∥(h′
1(t)− f(1, 0, t))g(x0, y0, t)− (h′

2(t)− f(x0, y0, t))g(1, 0, t)∥C[0,T ]

× {∥(h′
1(t)− f(1, 0, t))g(x0, y0, t)− (h′

2(t)− f(x0, y0, t))g(1, 0, t)∥C[0,T ]

+ ∥c(t)(|g(x0, y0, t)|+ |g(1, 0, t)|)∥C[0,T ]

×

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2 [

∥φxxx(x, y)∥L2(Qxy) + ∥φxyy(x, y)∥L2(Qxy)

+ ∥φxxy(x, y)∥L2(Qxy) + ∥φyyy(x, y)∥L2(Qxy)

+ (1 + δ)
√
T (∥fxxx(x, y, t)∥L2(DT ) + ∥fxyy(x, y, t)∥L2(DT )

+ ∥fxyy(x, y, t)∥L2(DT ) + ∥fxxy(x, y, t)∥L2(DT )

+ ∥fxxx(x, y, t)∥L2(DT ) + ∥fyyy(x, y, t)∥L2(DT ))]},

B2(T ) = ∥[h(t)]−1∥C[0,T ]∥c(t)(|g(x0, y0, t)|+ |g(1, 0, t)|)∥C[0,T ]
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×

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

(1 + δ)T,

C2(T ) = ∥[h(t)]−1∥C[0,T ]∥c(t)(|g(x0, y0, t)|+ |g(1, 0, t)|)∥C[0,T ]

×

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

(1 + δ)
√
T (∥gxxx(x, y, t)∥L2(DT ) + ∥gxyy(x, y, t)∥L2(DT )

+ ∥gxxy(x, y, t)∥L2(DT ) + ∥gxxx(x, y, t)∥L2(DT ) + ∥gyyy(x, y, t)∥L2(DT ))]},

D2(T ) = ∥[h(t)]−1∥C[0,T ]

× ∥c(t)(|g(x0, y0, t)|+ |g(1, 0, t)|)∥C[0,T ]

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

T∥p(t)∥C[0,T ],

A3(T ) = ∥[h(t)]−1∥C[0,T ]

× {∥(h′
2(t)− f(x0, y0, t))h1(t)− (h′

1(t)− f(1, 0, t))h2(t)∥C[0,T ]

+ ∥c(t)(|h1(t)|+ |h2(t)|)∥C[0,T ]

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

×
[
∥φxxx(x, y)∥L2(Qxy) + ∥φxyy(x, y)∥L2(Qxy) + ∥φxxy(x, y)∥L2(Qxy)

+ ∥φyyy(x, y)∥L2(Qxy) + (1 + δ)
√
T (∥fxxx(x, y, t)∥L2(DT )

+ ∥fxyy(x, y, t)∥L2(DT ) + ∥fxxy(x, y, t)∥L2(DT )

+ ∥fxxx(x, y, t)∥L2(DT ) + ∥fyyy(x, y, t)∥L2(DT ))]},

B3(T ) = ∥[h(t)]−1∥C[0,T ]∥c(t)(|h1(t)|+ |h2(t)|)∥C[0,T ]

×

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

(1 + δ)T,

C3(T ) = ∥[h(t)]−1∥C[0,T ]∥c(t)(|h1(t)|+ |h2(t)|)∥C[0,T ]

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

× (1 + δ)
√
T (∥gxxx(x, y, t)∥L2(DT ) + ∥gxyy(x, y, t)∥L2(DT )

+ ∥gxxy(x, y, t)∥L2(DT ) + ∥gxxx(x, y, t)∥L2(DT ) + ∥gyyy(x, y, t)∥L2(DT ))]},

D3(T ) = ∥[h(t)]−1∥C[0,T ]∥c(t)(|h1(t)|+ |h2(t)|)∥C[0,T ]

×

( ∞∑
k=1

∞∑
n=1

µ−2
k,n

) 1
2

T∥p(t)∥C[0,T ].

From inequalities (3.8)–(3.10), we conclude

∥ũ(x, y, t)∥B3
2,T

+ ∥ã(t)∥C[0,T ] + ∥b̃(t)∥C[0,T ] ≤ A(T ) +B(T )

× ∥a(t)∥C[0,T ]∥u(x, t)∥B3
2,T

+ C(T )∥b(t)∥C[0,T ] +D(T )∥u(x, t)∥B3
2,T

,

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T ),
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C(T ) = C1(T ) + C2(T ) + C3(T ), D(T ) = D1(T ) +D2(T ) +D3(T ).

Thus, the following theorem is valid.

Theorem 2. Let the conditions (C1)–(C4) and(
B(T )(A(T ) + 2) + C(T ) +D(T )

)
(A(T ) + 2) < 1 (3.11)

be fulfilled. Then, problem (2.1)–(2.4), (2.8), (2.9) has a unique solution in the
ball K = KR(∥z∥E3

T
≤ R = A(T ) + 2) of the space E3

T .

Remark 1. Inequality (3.11) is satisfied for sufficiently small values of T .

Proof. Consider the following operator equation

z = Φz, (3.12)

in the space E3
T , for which z = {u, a, b} and the components Φi(u, a, b) (i =

1, 2, 3) of operator Φ(u, a, b) defined by the right side of Equations (3.5), (3.6),
(3.7), respectively. Then we obtain that for any z, z1, z2 ∈ KR the following
inequalities hold

∥Φz∥E3
T
≤ A(T ) +B(T )∥a(t)∥C[0,T ]∥u(x, t)∥B3

2,T

+ C(T )∥b(t)∥C[0,T ] +D(T )∥u(x, t)∥B3
2,T

, (3.13)

∥Φz1−Φz2∥E3
T
≤ B(T )R(∥u1(x, y, t)−u2(x, y, t)∥B3

2,T
+∥a1(t)−a2(t)∥C[0,T ])

+ C(T )∥b1(t)− b2(t)∥C[0,T ] +D(T )∥u1(x, y, t)− u2(x, y, t)∥B3
2,T

. (3.14)

So, by (3.11), from estimates (3.13) and (3.14) it is clear that the operator
Φ acts in the ball K = KR, and is contractive. Therefore, the operator Φ
has a unique fixed point in the ball K = KR, which is a unique solution
of Equation (3.12), i.e., {u, a, b} is a unique solution of the systems (3.5)–
(3.7) in the ball K = KR. Thus, we obtain that the function u(x, y, t), as
an element of the space B3

2,T is continuous and has continuous derivatives
ux(x, y, t), uxx(x, y, t), uy(x, y, t), uxy(x, y, t), uyy(x, y, t) in DT .

Hence, it is easy to show that ut(x, y, t) is also continuous in the region
DT . Furthermore, it is not hard to verify that Equation (2.1) and condi-
tions (2.2)–(2.4), (2.8), (2.9) are satisfied in the usual sense. Consequently,
{u(x, y, t), a(t), b(t)} is a solution of problem (2.1)–(2.4), (2.8), (2.9), and by
Lemma 1 this solution is unique in the ball K = KR. ⊓⊔

In summary, from Theorem 1 and Theorem 2 we conclude the following main
result.

Theorem 3. Assume that the hypotheses of Theorem 2 and compatibility con-
ditions (2.7) hold. Then problem (2.1)–(2.6) has a unique classical solution in
the ball K = KR of space E3

T .
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4 Numerical solution of the direct problem

The discretization of the forward problem (2.1)–(2.4) is considered in this sec-
tion when a(t), b(t), c(t), g(x, y, t), φ(x, y) and f(x, y, t) are given functions,
and the solution u(x, y, t) is to be identified. We divide the domain QT into
a mesh of the equal length by M1, M2, N , and ∆x = 1/M1, ∆y = 1/M2,
∆t = T/N . To represent the forward problem, we denote un

i,j := u(xi, yj , tn),
where xi = i∆x, yj = j∆y, tn = n∆t, an := a(tn), b

n := b(tn), p
n := p(tn),

cn := c(tn), g
n
i,j := g(xi, yj , tn), f

n
i,j := f(xi, yj , tn) for i = 0,M1, j = 0,M2,

n = 0, N . The ADE scheme [4,5,29] is used to discretize Equation (2.1), which
is an unconditionally stable method, as follows.

Let zni,j and vni,j be the solutions of the following equations:

zn+1
i,j = Anzni,j+Bn(zni+1,j+zn+1

i−1,j)+Cn(zni,j+1 + zn+1
i,j−1)+Dn(bngni,j + fn

i,j),

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N,

vn+1
i,j = Anvni,j+Bn(vn+1

i+1,j+vni−1,j)+Cn(vn+1
i,j+1+vni,j−1)+Dn(bngni,j + fn

i,j),

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N,

where

An =
1− λn

1 + λn
, Bn =

(∆t)cn

(∆x)2(1 + λn)
, Cn =

(∆t)cn

(∆y)2(1 + λn)
,

Dn =
∆t

1 + λn
, λn = ∆t

(
cn

(∆x)2
+

cn

(∆y)2
− an

2

)
.

The conditions (2.2)–(2.4) are given as:

z0i,j+δzTi,j+

∫ T

0

pnz(x, y, t)dt = v0i,j+δvTi,j+

∫ T

0

pnv(x, y, t)dt = φ(xi, yj),

i = 0,M1, j = 0,M2. (4.1)

In Equation (4.1), the integral is calculated using trapezoidal rule as follows:∫ T

0

pnz(xi, yj , t)dt ≈
1

2N

(
p0z0i,j + 2

N−1∑
n=0

pnzni,j + pT zTi,j

)
,

i = 0,M1, j = 0,M2,

and similar expression is used for
∫ T

0
pnv(x, y, t)dt,

zn0,j =znxM1,j
= vn0,j = vnxM1,j

= 0, j = 0,M2, n = 1, N, (4.2)

znyi,0
=zni,M2

= vnyi,0
= vni,M2

= 0, i = 0,M1, n = 1, N. (4.3)

In expressions (4.2) and (4.3), the derivative of znxM1,j
, znyi,0

is approximated,
for simplicity, using forward finite differences as

znxM1,j
=

zn+1
M1+1,j − zn+1

M1,j

∆x
, znyi,0

=
zn+1
i,1 − zn+1

i,0

∆y
,
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and similar expression is used for vnxM1,j
and vnyi,0

. These values are then re-
placed into the simple arithmetic mean approximation

un+1
i,j =

zn+1
i,j + vn+1

i,j

2
.

5 Numerical solution of the inverse problem

The numerical solution of (2.1)–(2.6) is obtained by minimizing

F (a, b) =

N∑
n=1

[
u(1, 0, tn)− h1(tn)

]2
+

N∑
n=1

[
u(x0, y0, tn)− h2(tn)

]2
, (5.1)

where tn = n∆t, ∆t = T/N , N is the number of time steps and u(x, y, t)
solves numerically using the ADE scheme [4, 5, 29] the direct problem (2.1)–
(2.4) for given a(t) and b(t). The minimization of (5.1) is accomplished using
the lsqnonlin subroutine in MATLAB, which does not require supplying by the
user the gradient of the objective function. This routine attempts to find the
minimum of a sum of squares by starting from the initial guesses and marching
to the next iterate according to a trust region reflective search method [7].

6 Numerical results

The approximation solutions for a(t), b(t) and u(x, y, t) are constructed in this
section. We use

RMSE(a) =

[
T

N

N∑
n=1

(
aNumerical(tn)− aExact(tn)

)2]1/2
, (6.1)

RMSE(b) =

[
T

N

N∑
n=1

(
bNumerical(tn)− bExact(tn)

)2]1/2
, (6.2)

for measuring the accuracy. Now, we choose T = 1, for simplicity. The lower
bound for a(t), b(t) is selected as −102 while 102 for the upper bound.

To measure the errors in this data, the h1(tn), h2(tn), in (5.1) is substituted
by perturbed data hϵ1

1 (tn), h
ϵ1
2 (tn), as follows:

hϵ1
1 (tn) = h1(tn) + ϵ1n, hϵ2

2 (tn) = h2(tn) + ϵ2n, n = 1, N, (6.3)

where ϵ1n and ϵ2n are are random variables with mean zero and with S.D. The
standard deviations σ1 and σ2 are taken as:

σ1 = max
t∈[0,T ]

|h1(t)| × p, σ2 = max
t∈[0,T ]

|h2(t)| × p, (6.4)

where p represents the noise.
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Let us investigate the problem proposed in Equations (2.1)–(2.6) with un-
known functions a(t) and b(t), with:

δ = 0, p(t) = 0, φ(x, y) = −x5(x− 2)5(y2 − 1)5, u(0, y, t) = ux(1, y, t) = 0,

c(t)=
1+t

300
, uy(x, 0, t) = u(x, 1, t) = 0, g(x, y, t) = x3y3(x−1)3(y−1)3et,

f(x, y, t) =
1

30
etx3

[
− 30(1+t)(x−1)3(y−1)3y3 − 30(x− 2)5x2(y2 − 1)5

+ 30t(x− 2)5x2(y2 − 1)5 + (1 + t)(x− 2)3(−1 + y2)3(x3(4− 36y2)

+ 8(y2 − 1)2 − 18x(y2 − 1)2 + x4(9y2 − 1) + x2(5 + 18y2 + 9y4))
]
,

h1(t) = u(1, 0, t) = −et, (6.5)

h2(t) = u(x0, y0, t) = −59049et/1048576, x0 = 0.5, y0 = 0.5,

where

h(t) = h1(t)g(x0, y0, t)− h2(t)g(1, 0, t) =
59049e2t

4294967296
̸= 0, ∀t ∈ [0, 1].

It is shown that the criteria of Theorem 1 is fulfilled, indicating that a unique
solution is observed. The analytical solution is considered as

u(x, y, t) = −x5(x− 2)5(y2 − 1)5et, (x, y, t) ∈ DT , (6.6)

a(t) = t, b(t) = 1 + t, t ∈ [0, 1]. (6.7)

First, when a(t), b(t) is supplied by (6.7) the accuracy of (2.1)–(2.4) is tested us-
ing the data (6.5). Figure 1 shows the analytical (6.6) and estimated u(x, y, t),
as well as absolute errors, for various grid sizes.

Also, the RMSE defined by

RMSE(h1) =

[
1

N

N∑
n=1

(
hnumerical
1 (tn)− hexact

1 (tn)
)2]1/2

, (6.8)

RMSE(h2) =

[
1

N

N∑
n=1

(
hnumerical
2 (tn)− hexact

2 (tn)
)2]1/2

, (6.9)

indicated in Table 1 for estimated h1(t), h2(t), shows more clearly their de-
creases as the grid size becomes smaller.

Table 1. The RMSE values ((6.8) and (6.9)) for h1(t) and h2(t), with M1 = M2 = 10 and
with various N ∈ {10, 20, 40, 80} for forward problem.

M1 = M2 = 10 RMSE(h1) RMSE(h2)

N = 10 0.001002 0.001953
N = 20 3.0359E-3 0.001116
N = 40 7.4728E-4 2.7236E-3
N = 80 1.0135E-4 5.7539E-4
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Figure 1. The analytical (6.6) and approximate u(x, y, 1), with absolute errors for
∆x = ∆y = 1

10
and (a) ∆t = 1

10
, (b) ∆t = 1

20
and (c) ∆t = 1

40
, for forward problem.

Now, we investigate the IP. We fix M1 = M2 = 10 and N = 40 and start the
investigation for reconstructing the functions a(t), b(t) and u(x, y, t) in absence
of noise in the measured data (6.3). The initial guesses for a and b are chosen
as follows:

a0(tn) = a(0) = 0, b0(tn) = b(0) = 1, n = 1, N.

The cost function (5.1) is depicted in Figure 2(a), where a monotonically
decreasing convergence is achieved in 5 for a prescribed tolerance of O(10−32).
The exact (6.7) and estimated functions a(t) and b(t) are portrayed in Fig-
ures 2(b) and 2(c). It is observed that the numerical outcomes are accurate
with RMSE(a) =1.3012E-4 and RMSE(b) =0.009159. It should be noted that
in case of exact data, i.e., p = 0, no regularization was needed to penalise the
cost function (5.1). Nevertheless, for higher noise the instability in recovering
the functions a(t) and b(t) will become obvious and regularization would need
to be applied.

Next, we associate 0.1%, 1% noise with the simulated data (2.5) and (2.6),
as in Equation (6.4). It is significant to note that the IP is not well posed
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Figure 2. The cost function (5.1), and the analytical exact curves (6.7) and
approximate a(t), b(t), with p = 0.

therefore, we anticipate that the cost function needs to be regularized for the
sake of stability and accuracy in results.

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

1.5

2

a(
t)

Exact solution

p=0.1%, β=0

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

a(
t)

Exact solution

p=0.1%, β=10
-9

p=0.1%, β=10
-8

0 0.2 0.4 0.6 0.8 1

t

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

b(
t)

Exact solution

p=0.1%, β=0

0 0.2 0.4 0.6 0.8 1

t

0.8

1

1.2

1.4

1.6

1.8

2

b(
t)

Exact solution

p=0.1%, β=10
-9

p=0.1%, β=10
-8

Figure 3. The analytical exact curves (6.7) and approximate a(t), b(t), for
p = 0.1%, with β ∈ {0, 10−9, 10−8}.

Figures 3 and 4 show visuals of the reconstructed terms a(t), b(t). From
Figures 3(a), 3(c) and 4(a), 4(c) it is clear that, as expected, we obtain inac-
curate and unstable solutions with RMSE(a) = 0.2686 and RMSE(b) = 0.3231
for p = 0.1%, and RMSE(a) = 1.3429 and RMSE(b) = 1.8279 for p = 1%,
respectively, as the problem is noise sensitive and ill-posed. Hence, regulariza-
tion process is crucial for stable solutions. For this, we penalise the cost func-
tion F (5.1) by adding penalty term β to it, where β > 0 is the Tikhonov’s
regularization parameter to be selected. Then, the Tikhonov functional recasts
as

Fβ(a, b) = F (a, b) + β

(
N∑

n=1

(
an − an−1

∆t

)2

+

N∑
n=1

(
bn − bn−1

∆t

)2
)
.
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Figure 4. The analytical exact curves (6.7) and approximate a(t), b(t), for p = 1%,
with β ∈ {0, 10−8, 10−7}.

The regularization parameter β is chosen to be 10−9, 10−8 for p = 0.1%
noise (see Figures 3(b) and 3(d) obtaining RMSE(a) ∈ {0.0537, 0.0269} and
RMSE(b) ∈ {0.0629, 0.0320}, and β ∈ {10−8, 10−7} for p = 1% noise (see
Figures 4(b) and 4(d) obtaining RMSE(a)∈ {0.1343, 0.1074} and RMSE(b)∈
{0.1587, 0.1265}, which provide stable and comparitively accurate approxima-
tions for the time dependent functions a(t) and b(t). Although not presented,
it is illustrated that the regularized cost function Fβ versus no. of iterations
monotonically decreasing convergence is observed. Other details about the
RMSE ((6.1) and 6.2)), and the iterations, with and without regularization are
listed in Table 2. Eventually, from Figures 2–4 and Table 2, it is observed that
the MATLAB simulation results are fairly stable and accurate.

Table 2. RMSE values and iterations with p∈{0.1%, 1%}, β∈{0, 10−9, 10−8, 10−7, 10−6}.

p β RMSE(a) RMSE(b) Iter

0.1%

0
10−9

10−8

10−7

0.2686
0.0537
0.0269
0.0372

0.3231
0.0629
0.0320
0.0418

40
20
20
20

1%

0
10−8

10−7

10−6

1.3429
0.1343
0.1074
0.1263

1.8279
0.1587
0.1265
0.1402

90
30
30
30

7 Conclusions

In the work, the classical solvability of a nonlinear inverse boundary value prob-
lem for a 2D parabolic equation with nonlocal conditions was studied. First,
the considered problem was reduced to an auxiliary inverse boundary value

Math. Model. Anal., 29(1):90–108, 2024.



106 Y.T. Mehraliyev, M.J. Huntul and E.I. Azizbayov

problem in a certain sense and its equivalence to the original problem is shown.
Then using the Fourier method and contraction mappings principle, the exis-
tence and uniqueness theorem for auxiliary problem is proved. Further, on
the basis of the equivalency of these problems, the existence and uniqueness
theorem for the classical solution of the original inverse coefficient problem is
established. Moreover, the discretization of the forward problem was solved
based on the ADE technique. The non-linear optimization problem was nu-
merically solved by the MATLAB lsqnonlin routine. The investigated problem
was ill-posed, therefore, the Tikhonov regularization was applied in order to
tackle the stability. The approximation results show that ADE is an accurate,
stable and robust regularization method for reconstructing the timewise lowest
and force terms from knowledge of additional measurements.
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