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Abstract. We consider a frictionless contact model whose constitutive law and con-
tact condition are described by means of subdifferential inclusions. For this model, we
deliver a variational formulation based on two bipotentials. Our formulation envis-
ages the computation of a three-field unknown consisting of the displacement vector,
the stress tensor and the normal stress on the contact zone, the contact being de-
scribed by a generalized Winkler condition. Subsequently, we obtain existence and
uniqueness results. Some properties of the solution are also discussed, focusing on
the data dependence.
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1 Introduction

The notion of bipotential was introduced by the pioneering work of de Saxcé
and Feng (see [10]) in 1991 in order to allow the application of the classical
variational principles to some boundary value problems arising in mechanics.
This approach is based on convex analysis, the cornerstone being an extension
of the Fenchel inequality [11]. Since then, many efforts were taken in order to
develop the theory of bipotentials, as witnessed by the large number of papers
published in this direction.
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Several works were devoted to the understanding of the bipotential ap-
proach, by studying in which conditions a law can be expressed by means of a
bipotential and also by exploring the ways to construct a class of bipotentials
(see, e.g., [5, 6]). The importance of bipotentials is illustrated by the broad
spectrum of applicability: plasticity, soil mechanics, dynamics of granular ma-
terials, viscoplasticity, elastostatics (see [4, 7, 12,13,18]).

In connection with the calculus of variations, the bipotential theory al-
lowed to deliver two-field variational formulations for many boundary value
problems. Such formulations were proposed for several models in contact me-
chanics, see [9, 16, 17, 18, 19, 20, 21, 22], where the existence and uniqueness of
the pair solutions consisting of the displacement vector and the Cauchy stress
tensor have been studied.

The advantage of the approach via bipotentials is that it facilitates the im-
plementation of new and efficient numerical algorithms in order to approximate
the solutions. The use of bipotentials in applications is particularly attractive
in numerical simulations when using the finite element method and the discrete
element method. Many contact problems have been recently addressed within
the bipotential framework, see, e.g., [8, 14,28].

The present work is a new contribution to the theory of the weak solvability
via bipotentials in contact mechanics. We study a contact model whose con-
stitutive law and contact condition are described by means of subdifferential
inclusions. We introduce two bipotentials: the first one is in connection with
the constitutive law and the second one is in connection with the contact law.
These bipotentials allow us to deliver a variational formulation whose solution
consists of the displacement vector, the stress tensor and the normal stress on
the contact zone. We study the existence and uniqueness of the solution of
the proposed variational formulation and we also study the dependence of the
solution on the data.

The novelty feature of this work is the consideration of two bipotentials in
the variational approach; note that all the existing results related to the weak
solvability via bipotentials involve only one bipotential, which is in connection
with the constitutive law. The existence and uniqueness results we get in the
present paper are the first in the literature that involve a bipotential which is
in connection with a boundary condition. The present work opens a door to
research in this direction.

The advantage of the new approach we propose is that we can compute not
only the displacement vector and the stress tensor, but also the normal stress
on the contact zone.

The rest of the paper is structured as follows. Section 2 is devoted to
some preliminaries and notations. In Section 3, we describe the model and
in Section 4 we deliver its variational formulation via two bipotentials. The
well-posedness of the model is studied in Section 5, where we establish exis-
tence and uniqueness results and we study the data dependence of the solution.
Finally, Section 6 is devoted to final comments, conclusions and outlook. For
the convenience of the reader, the symbols and notation used in the paper are
condensed into a table included in Appendix A.
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2 Preliminaries and notation

In this paper, we denote by S3 the space of second order symmetric tensors on
R3. By · and : we denote the inner product on R3 and S3, respectively, while
by means of the notation ∥ · ∥ and ∥ · ∥S3 we denote the Euclidean norm on R3

and S3, respectively. Every field in R3 or S3 is typeset in boldface. A complete
list of symbols including also the notation we use can be found at the end of
the paper.

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ . We denote by
ν the unit outward normal to Γ , which is defined almost everywhere.

In our study, we shall use the Hilbert space

L2
s(Ω)3×3 = {µ = (µij) : µij ∈ L2(Ω), µij = µji for all i, j ∈ {1, 2, 3}},

which is endowed with the inner product

(µ, τ )L2
s(Ω)3×3 =

∫
Ω

3∑
i,j=1

µij(x)τij(x) dx.

By ε : H1(Ω)3 → L2
s(Ω)3×3 we denote the deformation operator, a linear

and continuous operator given by

ε(u) = (εij(u)), εij(u) =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)
i, j ∈ {1, 2, 3};

see, e.g., [27] (p. 85).
The linear and continuous Sobolev trace operator for vector-valued func-

tions is denoted by γ : H1(Ω)3 → L2(Γ )3; see, e.g., Theorem 6.13 in [1].
Another useful Hilbert space is

V = {v ∈ H1(Ω)3 : γ v = 0 a.e. on Γ1},

where Γ1 ⊂ Γ such that meas(Γ1) > 0. This space is endowed with the inner
product

(·, ·)V : V × V → R, (u,v)V = (ε(u), ε(v))L2
s(Ω)3×3 ;

see, e.g., [27] (pp. 86-87). We also note that ε(V ) = {ε(v) : v ∈ V } and

ε(V )⊥ = {τ ∈ L2
s(Ω)3×3 : (τ ,σ)L2

s(Ω)3×3 = 0 for all σ ∈ ε(V )}

are closed subspaces of L2
s(Ω)3×3. Moreover, L2

s(Ω)3×3 = ε(V ) ⊕ ε(V )⊥, see,
for instance, Theorem 1.16 in [27].

We mention the following Green formula, which will be used in our varia-
tional approach:∫
Ω

σ : ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · γ v dΓ for all v ∈ H1(Ω)3, (2.1)

with σ a regular enough function. For the above formula see, e.g., [27] (p. 89).
Next, we recall some elements of convex analysis.

Math. Model. Anal., 29(1):109–124, 2024.
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Definition 1. Let (X, (·, ·)X) be a Hilbert space and let φ : X → (−∞,∞].
The subdifferential of φ at a point u ∈ dom(φ) is the (possibly empty) set

∂φ(u) = {ζ ∈ X : φ(v)− φ(u) ≥ (ζ, v − u)X for all v ∈ X}.

For the above definition we refer, for instance, to [24] (p. 128). The next
theorem can be found in many books, see, e.g., [24] (p. 45).

Theorem 1. Let (X, (·, ·)X) be a Hilbert space and let φ : X → (−∞,∞] be a
proper, convex, lower semicontinuous functional. Then:

i) for each u, v ∈ X, we have φ(u) + φ∗(v) ≥ (u, v)X ;

ii) for each u, v ∈ X we have the equivalences

v ∈ ∂φ(u) ⇔ u ∈ ∂φ∗(v) ⇔ φ(u) + φ∗(v) = (u, v)X .

Herein, φ∗ denotes the Fenchel conjugate of φ,

φ∗ : X → (−∞,∞], φ∗(v) = sup
w∈X

{(v, w)X − φ(w)}.

Also, we shall need the following minimization theorem.

Theorem 2. Let X be a real reflexive Banach space and let K ⊂ X be a
nonempty, closed, convex and unbounded subset of X. Suppose φ : K → R is
coercive, convex and lower semicontinuous. Then φ is bounded from below on
K and attains its infimum in K. If φ is strictly convex then φ has a unique
minimizer.

Minimization results can be found in many books, see, for instance, [24,27].
Since the variational approach we adopt in this paper is based on the bipo-

tential theory, we mention below the following definition, which can be found
in [6].

Definition 2. Let (X, (·, ·)X) be a Hilbert space. A bipotential is a function
B : X ×X → (−∞,∞] with the following three properties:

i) B is convex and lower semicontinuous in each argument;

ii) for each x, y ∈ X we have B(x, y) ≥ (x, y)X ;

iii) for each x, y ∈ X we have the equivalences

y ∈ ∂B(·, y)(x) ⇔ x ∈ ∂B(x, ·)(y) ⇔ B(x, y) = (x, y)X .

Finally, we consider a concept of convergence of sets originating from Mosco’s
theory; see, e.g., [23] for more details on this topic.

Definition 3. Let X be a Hilbert space. Let (Kn)n ⊂ X be a sequence of
nonempty subsets and K ⊂ X, K ̸= ∅.

The sequence (Kn)n converges to K in the sense of Mosco ( Kn
M−→ K) if:
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i) for each sequence (µn)n such that µn ∈ Kn for each n ∈ N and µn ⇀ µ in
X, we have µ ∈ K;

ii) for every µ ∈ K, there exists a sequence (µn)n ⊂ X such that µn ∈ Kn for
each n ∈ N and µn → µ in X.

Everywhere in this paper we shall use the notation “
M−→” to refer to the

convergence in the sense of Mosco according to Definition 3. The notation
“⇀” refers to the convergence in the weak topology. For the convenience of the
reader, recall that a sequence (µn)n in a normed space X converges weakly to
µ in X (and we write µn ⇀ µ) if φ(µn) → φ(µ) for every linear and continuous
functional φ : X → R.

3 The model and working hypotheses

Our study is concerned with the following mechanical model.

Problem 1. Find u : Ω → R3 and σ : Ω → S3 such that

Divσ(x) + f0(x) = 0 in Ω, (3.1)

σ(x) ∈ ∂ω(ε(u)(x)) in Ω, (3.2)

u(x) = 0 on Γ1, (3.3)

σ(x)ν(x) = f2(x) on Γ2, (3.4)

−σν(x) ∈ ∂ψ(uν(x)), στ (x) = 0 on Γ3. (3.5)

Herein, Ω ⊂ R3 is a bounded domain with smooth boundary Γ , partitioned in
three measurable parts, Γ1, Γ2 and Γ3, such that meas(Γ1) > 0.

We denote by u = (ui) the displacement field, by ε(u) = (εij(u)) the
infinitesimal strain tensor and by σ = (σij) the Cauchy stress tensor.

The body, which occupies the domain Ω, is acted upon by forces of density
f0, the behavior of the material being modeled by a constitutive law expressed
as a subdifferential inclusion. The body is mechanically constrained on the
boundary: on Γ1 it is clamped and hence, the displacement field vanishes here,
surface tractions of density f2 act on Γ2, while on Γ3 it is in frictionless contact
with an obstacle, the contact being modeled by a subdifferential inclusion in-
volving the normal components of the displacement vector and Cauchy vector,
defined by the formulas uν = u · ν, σν = (σν) · ν. Also, by uτ = u − uνν,
στ = σν − σνν, we denote the tangential components of the displacement
vector and Cauchy vector on the boundary.

Problem 1 is a contact model mathematically described by means of a
boundary value problem governed by two subdifferential inclusions. Contact
models governed by subdifferential inclusions have been recently studied by
other authors within the framework of variational-hemivariational inequalities,
see, e.g., [15, 29, 30]. In Problem 1 we have convex subdifferentials and this
feature of the subdifferentials allows us to adopt an approach based on the
theory of bipotentials.

In order to study this model we make the following assumptions:

Math. Model. Anal., 29(1):109–124, 2024.
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(A1) f0 ∈ L2(Ω)3 and f2 ∈ L2(Γ2)
3.

(A2) The constitutive function ω : S3 → R is convex and in addition, there
exist α1, β1 such that 1 > β1 ≥ α1 > 0 and β1∥τ∥2S3 ≥ ω(τ ) ≥ α1∥τ∥2S3
for all τ ∈ S3.

(A3) The function ψ : R → R is convex and in addition, there exist α2, β2
such that 1 > β2 ≥ α2 > 0 and β2 x

2 ≥ ψ(x) ≥ α2 x
2 for all x ∈ R.

Remark 1. Taking into consideration the properties of the functions ω and ψ
considered in assumptions (A2)–(A3), it follows that ω and ψ are continuous
(see, e.g., Proposition 2.17 in [2]).

Remark 2. The Fenchel conjugates of ω and ψ, denoted by ω∗ and ψ∗, are
convex (see, e.g., [3]). Moreover, it can be proved by similar arguments to
those presented in [16] that

(1− β1)∥τ∥2S3 ≤ ω∗(τ ) ≤ 1

4α1
∥τ∥2S3 for all τ ∈ S3,

(1− β2)x
2 ≤ ψ∗(x) ≤ 1

4α2
x2 for all x ∈ R.

Thus, since ω∗ : S3 → R and ψ∗ : R → R are finite and convex, then according
to Proposition 2.17 in [2] they are continuous.

Examples of functions ω satisfying (A2) are the constitutive maps:

� ω : S3 → R, ω(τ ) = 1
2Eτ : τ , where E : S3 → S3 is a fourth order tensor

with the following properties:

i) Eσ : τ = σ : Eτ for all σ, τ ∈ S3;
ii) there exists mE ∈ (0, 2) such that Eτ : τ ≥ mE∥τ∥2S3 for all τ ∈ S3;
iii) there exists cE ∈ [mE , 2) such that ∥Eτ∥S3 ≤ cE∥τ∥S3 for all τ ∈ S3.

� ω : S3 → R, ω(τ ) = 1
2Eτ : τ + ξ

2∥τ − PKτ∥2S3 , where E is the fourth
order tensor with the properties presented in the previous example, ξ is
a positive coefficient of the material, small enough, and PK : S3 → K
is the projection operator on the set K, which is a closed convex subset
of S3 such that 0S3 ∈ K; for more details, see [16] and also the useful
reference [26].

For an example of function ψ, let us consider the function

ψ : R → R, ψ(x) = k0x
2/2, 0 < k0 < 2. (3.6)

Obviously, ψ is convex. Moreover, it satisfies the chain of inequalities in (A3)
with α2 = β2 = k0/2. Notice that ψ is also differentiable and thus, according
to a standard result in convex analysis, ∂ψ(x) = {ψ′(x)} = {k0 x}.

Therefore, by considering in the boundary condition (3.5) the function ψ
defined in (3.6) we can write

−σν(x) ∈ ∂ψ(uν(x)) ⇐⇒ σν(x) = −k0 uν(x) on Γ3,

which is the Winkler contact law. This law describes in a simplified man-
ner the interaction between a deformable body and the soil, having extensive
applications in civil engineering; for more details, see, e.g., [25] (pp. 83-84).
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4 Variational formulation via two bipotentials

In order to deliver a variational formulation for our model, let u,σ be regular
enough functions which verify Problem 1. Taking into account (3.1), (3.3),
(3.4) and (3.5), by using the Green formula (2.1), for all v ∈ V we can write∫

Ω

σ(x) : ε(v)(x) dx−
∫
Γ3

σν(x) vν(x) dΓ =

∫
Ω

f0(x) · v(x) dx

+

∫
Γ2

f2(x) · γ v(x) dΓ. (4.1)

In order to simplify the writing, in the rest of this paper we use the following
notation:

L = L2
s(Ω)3×3 × L2(Γ3) = {µ = (µ, µ) : µ ∈ L2

s(Ω)3×3, µ ∈ L2(Γ3)}.

Let us define the following set:

Λf ={µ = (µ, µ) ∈ L :

∫
Ω

µ(x) : ε(v)(x) dx −
∫
Γ3

µ(x) vν(x) dΓ = (f ,v)V

for all v ∈ V },

where by f ∈ V we denote the unique element obtained from the Riesz rep-
resentation theorem applied to the linear and continuous mapping V ∋ v 7→∫
Ω
f0(x) · v(x) dx+

∫
Γ2

f2(x) · γ v(x) dΓ :

(f ,v)V =

∫
Ω

f0(x) · v(x) dx+

∫
Γ2

f2(x) · γ v(x) dΓ for all v ∈ V.

Notice that, according to (4.1), we have

σ = (σ, σν) ∈ Λf . (4.2)

Next, by (3.2) and Theorem 1 (applied to X = S3 and φ = ω) we can write

σ(x)∈∂ω(ε(u)(x))⇔ω(ε(u)(x))+ω∗(σ(x))=σ(x) : ε(u)(x) a.e. in Ω. (4.3)

We are now in the position to associate to the constitutive map ω the function
B1 : S3 × S3 → R defined by

B1(σ,µ) = ω(σ) + ω∗(µ) for all σ,µ ∈ S3.

On the other hand, by (3.5) and Theorem 1 (applied to X = R and φ = ψ) we
can write

−σν(x)∈∂ψ(uν(x))⇔ψ(uν(x))+ψ
∗(−σν(x))=−σν(x)uν(x) a.e. onΓ3. (4.4)

We associate to the map ψ the function B2 : R× R → R defined by

B2(x, y) = ψ(x) + ψ∗(y) for all x, y ∈ R.

Math. Model. Anal., 29(1):109–124, 2024.
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We emphasize that, due to the convexity and lower semicontinuity of the func-
tions ω and ψ, we can easily use Theorem 1 to prove that B1 and B2 are
bipotentials. We define now the function

b : V ×L→ R, b(v,µ) =

∫
Ω

B1(ε(v)(x),µ(x)) dx+

∫
Γ3

B2(vν(x),−µ(x)) dΓ.

Note that by assumptions (A2)–(A3), keeping in mind Remark 2 we can see
that ω(ε(v)(·)) ∈ L1(Ω) for all v ∈ V, ω∗(µ(·)) ∈ L1(Ω) for all µ ∈ L2

s(Ω)3×3,
ψ(vν(·)) ∈ L1(Γ3) for all v ∈ V and ψ∗(−µ(·)) ∈ L1(Γ3) for all µ ∈ L2(Γ3).
Therefore, b is well defined.

Since B1 and B2 are bipotentials, we can write∫
Ω

B1(ε(v)(x),µ(x)) dx ≥
∫
Ω

µ(x) : ε(v)(x) dx for all v ∈ V, µ ∈ L2
s(Ω)3×3,

(4.5)∫
Γ3

B2(vν(x),−µ(x)) dΓ≥−
∫
Γ3

µ(x) vν(x) dΓ for all v ∈ V, µ ∈ L2(Γ3).

(4.6)

By adding (4.5) and (4.6) we obtain

b(v,µ) ≥
∫
Ω

µ(x) : ε(v)(x) dx−
∫
Γ3

µ(x) vν(x) dΓ for all v ∈ V, µ ∈ L. (4.7)

Also, by using (4.3) and (4.4) we deduce that

b(u,σ) =

∫
Ω

σ(x) : ε(u)(x) dx−
∫
Γ3

σν(x)uν(x) dΓ. (4.8)

From (4.7) with µ = σ and (4.8), for all v ∈ V we can write

b(v,σ)− b(u,σ) ≥
∫
Ω

σ(x) : ε(v − u)(x) dx−
∫
Γ3

σν(x)(vν − uν)(x) dΓ,

and by using (4.2) we are led to

b(v,σ)− b(u,σ) ≥ (f ,v − u)V . (4.9)

On the other hand, from (4.7) with v = u and (4.8) we can write for all µ ∈ L
that

b(u,µ)− b(u,σ) ≥
∫
Ω

µ(x) : ε(u)(x) dx−
∫
Γ3

µ(x)uν(x) dΓ

−
∫
Ω

σ(x) : ε(u)(x) dx+

∫
Γ3

σν(x)uν(x) dΓ,

which implies

b(u,µ)− b(u,σ) ≥ (f ,u)V − (f ,u)V = 0 for all µ ∈ Λf . (4.10)

Keeping in mind (4.9) and (4.10) we are led to the following weak formulation
of Problem 1.
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Problem 2. Find u ∈ V and σ = (σ, σν) ∈ Λf such that

b(v,σ)− b(u,σ) ≥ (f ,v − u)V for all v ∈ V,

b(u,µ)− b(u,σ) ≥ 0 for all µ ∈ Λf .

Any solution (u,σ) of Problem 2 is called weak solution of Problem 1.

5 Well-posedness results

We begin this section with an existence and uniqueness result.

Theorem 3. Under assumptions (A1)–(A3), Problem 2 has at least one solu-
tion. If, in addition, at least one of the functionals ω and ψ is strictly convex
and at least one of the functionals ω∗ and ψ∗ is strictly convex, then Problem 2
has a unique solution.

Proof. We emphasize that Problem 2 can be reformulated as follows: find
u ∈ V and σ = (σ, σν) ∈ Λf such that

J(v)− J(u) ≥ (f ,v − u)V for all v ∈ V, (5.1)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Λf , (5.2)

where

J : V → R, J(v) =

∫
Ω

ω(ε(v)(x)) dx+

∫
Γ3

ψ(vν(x)) dΓ (5.3)

J∗ : L→ R, J∗(µ) =

∫
Ω

ω∗(µ(x)) dx+

∫
Γ3

ψ∗(−µ(x)) dΓ.

By defining the functional Jf : V → R, Jf (v) = J(v)− (f ,v)V , we can see
that (5.1) is equivalent to the minimization problem

Jf (v)− Jf (u) ≥ 0 for all v ∈ V.

It is easy to observe that Jf is convex, lower semicontinuous and coercive,
due to the properties of ω and ψ considered in (A2)–(A3). Therefore, using
Theorem 2 we deduce that Jf has at least one minimum on V .

On the other hand, we observe that

µ = (ε(f), 0L2(Γ3)) ∈ L (5.4)

is an element of Λf . Therefore, the set Λf is nonempty. Using standard ar-
guments we can deduce that Λf is also closed and convex. Moreover, Λf is
unbounded. In order to prove this, we construct a sequence (µn)n ⊂ L as
follows:

µn = µ+ nτ for all n ≥ 0,

with µ defined in (5.4) and τ = (τ , 0L2(Γ3)), where τ ̸= 0 is an element of

ε(V )⊥.

Math. Model. Anal., 29(1):109–124, 2024.
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Since τ ∈ ε(V )⊥, we have∫
Ω

(
ε(f)(x) + nτ (x)

)
: ε(v)(x) dx−

∫
Γ3

(0 + 0) vν(x) dΓ = (f ,v)V

and we can see that µn ∈ Λf for all n ≥ 0. Furthermore, ∥µn∥L → ∞ as
n→ ∞. Therefore, Λf is unbounded.

Keeping in mind Remark 2, it is easy to observe that J∗ is convex and lower
semicontinuous. Note that also by Remark 2, for all µ = (µ, µ) ∈ L we can
write

J∗(µ) =

∫
Ω

ω∗(µ(x)) dx+

∫
Γ3

ψ∗(−µ(x)) dΓ ≥ (1− β1)∥µ∥2L2
s(Ω)3×3

+ (1− β2)∥µ∥2L2(Γ3)
≥ min{1− β1, 1− β2}

(
∥µ∥2L2

s(Ω)3×3 + ∥µ∥2L2(Γ3)

)
= min{1− β1, 1− β2}∥µ∥2L

and see that the functional J∗ is coercive. We apply now Theorem 2 and find
that J∗ admits al least one minimum on Λf . Hence, Problem 2 admits the pair
solution whose first component is the minimizer of Jf on V and whose second
component is the minimizer of J∗ on Λf . If at least one of the functionals ω
and ψ is strictly convex and at least one of the functionals ω∗ and ψ∗ is strictly
convex, then Jf and J∗ have unique minimizers and Problem 2 admits a unique
solution. ⊓⊔

We want to investigate now some properties of the solution.

Proposition 1. Consider (A1)–(A3). Let f ∈ V be given datum and let (u,σ)
be a solution of Problem 2.

i) There exists c1 > 0 independent of the datum such that

∥u∥V ≤ c1∥f∥V .

ii) There exists c2 > 0 independent of the datum such that

∥σ∥L ≤ c2∥f∥V .

Proof. To prove i), we note that (A2) and (A3) imply that the functional J
defined in (5.3) vanishes in 0V . Thus, we consider v = 0V in (5.1) to write∫

Ω

ω(ε(u)(x)) dx+

∫
Γ3

ψ(uν(x)) dΓ ≤ (f ,u)V .

Note that assumptions (A2)–(A3) also show that
∫
Ω
ω(ε(u)(x)) dx ≥ α1∥u∥2V

and
∫
Γ3
ψ(uν(x)) dΓ ≥ 0. Thus, we are led to

α1∥u∥2V ≤ ∥f∥V ∥u∥V .

As a result, ∥u∥V ≤ c1 ∥f∥V , where c1 = 1/α1.
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To prove ii), we take in the inequality (5.2) the element
µ = (ε(f), 0L2(Γ3)) ∈ Λf defined in (5.4) to write∫
Ω

ω∗(ε(f)(x)) dx+

∫
Γ3

ψ∗(0) dΓ −
∫
Ω

ω∗(σ(x)) dx−
∫
Γ3

ψ∗(−σν(x)) dΓ ≥ 0.

We emphasize that Remark 2 implies
∫
Ω
ω∗(ε(f)(x)) dx ≤ 1

4α1
∥f∥2V . Hence,

since
∫
Γ3
ψ∗(0) dΓ = 0, we obtain that

1

4α1
∥f∥2V ≥

∫
Ω

ω∗(σ(x)) dx+

∫
Γ3

ψ∗(−σν(x)) dΓ.

Using again Remark 2, we can write

1

4α1
∥f∥2V ≥ (1− β1)∥σ∥2L2

s(Ω)3×3 + (1− β2)∥σν∥2L2(Γ3)

≥ min{1− β1, 1− β2}∥σ∥2L.

Thus, ∥σ∥L ≤ c2∥f∥V with c2 = 1/(2
√
α1 min{1− β1, 1− β2}). ⊓⊔

In our study on the data dependence we shall need the following lemma.

Lemma 1. Let (fn)n ⊂ V be a sequence such that fn → f in V . Then,

Λfn
M−→ Λf .

Proof. Let us check the conditions in Definition 3. To start, we prove that for
every sequence (µn)n such that µn ∈ Λfn for each n ∈ N and µn = (µn, µn)⇀
µ = (µ, µ) in L, we have µ ∈ Λf .

Let µn ∈ Λfn be such that µn ⇀ µ in L. As∫
Ω

µn(x) : ε(v)(x) dx −
∫
Γ3

µn(x) vν(x) dΓ = (fn,v)V for all v ∈ V,

by passing to the limit for n→ ∞, we obtain∫
Ω

µ(x) : ε(v)(x) dx −
∫
Γ3

µ(x) vν(x) dΓ = (f ,v)V for all v ∈ V,

which concludes that µ ∈ Λf .
We prove now that for every µ = (µ, µ) ∈ Λf , there exists a sequence (µn)n

such that µn ∈ Λfn for each n ∈ N and µn → µ in L.
Let µ = (µ, µ) ∈ Λf be arbitrarily fixed. Let us construct a sequence (µn)n

as follows: for each positive integer n,

µn = µ− (ε(f), 0L2(Γ3)) + (ε(fn), 0L2(Γ3)) = (µ− ε(f) + ε(fn), µ).

Since for all v ∈ V it holds∫
Ω

(
µ(x)− ε(f)(x) + ε(fn)(x)

)
: ε(v)(x) dx−

∫
Γ3

µ(x) vν(x) dΓ = (fn,v)V ,
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it is easy to observe that µn ∈ Λfn for each positive integer n. Moreover, since
fn → f in V we deduce that µn → µ in L. ⊓⊔

In what follows, we will see how the weak solution of Problem 1 behaves
when we modify the data. The behavior is illustrated by the following theorem.

Theorem 4. We admit assumptions (A1)–(A3), and, in addition, we assume
that at least one of the functionals ω and ψ is strictly convex and at least one
of the functionals ω∗ and ψ∗ is strictly convex. The operator

S : V → V × L, S(f) = (u,σ)

associated to Problem 2 is demicontinuous.

Proof. Let (fn)n ⊂ V be a convergent sequence to f in V . Let n be a positive
integer and let (un,σn) be the unique solution of Problem 2 corresponding to
fn. We denote by (u,σ) the unique solution of Problem 2 corresponding to f .

Since (fn)n ⊂ V is a convergent sequence, there exists M > 0 such that

∥fn∥V ≤M for all n ∈ N.

Using Proposition 1 for the data fn, we obtain that
(
(un,σn)

)
n
is a bounded

sequence in V × L. Thus, there exists a subsequence
(
(un′ ,σn′)

)
n′

and an

element (ũ, σ̃) ∈ V × L such that

(un′ ,σn′)⇀ (ũ, σ̃) in V × L as n′ → ∞,

which implies that

un′ ⇀ ũ in V, σn′ ⇀ σ̃ in L.

Since
J(v)− J(un′) ≥ (fn′ ,v − un′)V for all v ∈ V,

we can take the limsup as n′ → ∞ to obtain that

J(v)− J(ũ) ≥ (f ,v − ũ)V for all v ∈ V. (5.5)

On the other hand, we know that the following inequality holds

J∗(µn′)− J∗(σn′) ≥ 0 for all µn′ ∈ Λfn′ .

We want to prove that

J∗(µ)− J∗(σ̃) ≥ 0 for all µ ∈ Λf .

For this purpose, let µ ∈ Λf . Notice that applying Lemma 1 we have

Λfn′
M−→ Λf . (5.6)
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Therefore, there exists (µ̃n′)n′ ⊂ L such that µ̃n′ ∈ Λfn′ for each n′ ∈ N and

µ̃n′ → µ in L. Hence, we can write

J∗(µ̃n′)− J∗(σn′) ≥ 0,

and passing to the limsup as n′ → ∞ in the above inequality, since J∗ is up-
per semicontinuous and weakly lower semicontinuous (being convex and lower
semicontinuous), we get

J∗(µ)− J∗(σ̃) ≥ 0. (5.7)

In addition, as σn′ ⇀ σ̃ and σn′ ∈ Λfn′ for each n′ ∈ N, we have from (5.6)

that σ̃ ∈ Λf .

Therefore, keeping in mind (5.5) and (5.7) we deduce that (ũ, σ̃) is a solu-
tion of Problem 2 corresponding to f . But since (u,σ) is the unique solution
of Problem 2 corresponding to f , we deduce that ũ = u, σ̃ = σ and

un′ ⇀ u as n′ → ∞; σn′ ⇀ σ as n′ → ∞.

Thus, the weak limits are independent of the subsequences. Consequently, the
entire sequences (un)n and (σn)n are weakly convergent to u and σ, respec-
tively. Then,

(un,σn)⇀ (u,σ).

Therefore, S(fn)⇀ S(f), which concludes that S is demicontinuous. ⊓⊔

6 Final comments, conclusions and outlook

In order to highlight the relevance of our study we briefly comment on some
possible variational formulations under appropriate hypotheses. Firstly, we
emphasize that by following a classical approach we can arrive to the primal
variational formulation of Problem 1,

u ∈ V, J(v)− J(u) ≥ (f ,v − u)V for all v ∈ V,

with J defined in (5.3). Such a variational formulation allows to compute the
displacement field u.

On the other hand, by introducing a single bipotential which is in connection
with the constitutive law, if instead of (A3) we assume that ψ is a seminorm
then with a similar technique to that used in [21] we can deliver for Problem 1
a two-field variational formulation of the form below

b1(v,σ)− b1(u,σ) + jψ(v)− jψ(u) ≥ (f ,v − u)V for all v ∈ V,

b1(u,µ)− b1(u,σ) ≥ 0 for all µ ∈ Λ,

where

� jψ : V → R, jψ(v) =
∫
Γ3
ψ(vν(x)) dΓ ;

� b1 : V × L2
s(Ω)3×3 → R, b1(v,µ) =

∫
Ω
B1(ε(v)(x),µ(x)) dx with B1

defined in (4.5);
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� Λ = {µ ∈ L2
s(Ω)3×3 : (µ, ε(v))L2

s(Ω)3×3+jψ(v) ≥ (f ,v)V for all v ∈ V }.

This second variational formulation allows the computation of the pair (u,σ).
In the present paper, the working hypotheses allow us to introduce two

bipotentials. Using this approach, we are able to find not only the displacement
vector u and the stress tensor σ but also the normal stress σν on the contact
zone.

Our work represents a first step in the direction of the weak solvability via
bipotentials which are in connection with boundary conditions. It would be
interesting to explore this new path by formulating via bipotentials arising from
the boundary conditions other mathematical models. Also, finding appropriate
numerical algorithms in order to approximate the weak solutions is a very
challenging task.
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Appendix A

List of symbols

N set of positive integers, R set of real numbers
R3 3-dimensional Euclidean space
S3 space of second order symmetric tensors on R3

(·, ·)H inner product in the Hilbert space H
· inner product on R3, : inner product on S3

∥ · ∥B norm in the Banach space B
∥ · ∥ Euclidean norm on R3, ∥ · ∥S3 Euclidean norm on S3
Ω a bounded domain in R3 (i.e. an open, bounded, connected set)
Γ boundary of the domain Ω
Ω closure of Ω in R3, i.e. Ω = Ω ∪ Γ
Γi a part of the boundary, i ∈ {1, 2, 3}

meas(Γi) surface measure of Γi
ν unit outward normal vector to Γ
u displacement vector
uν normal component of the vector u, i.e. uν = u · ν
uτ tangential component of the vector u, i.e. uτ = u− uνν
σ Cauchy stress tensor
σν normal component of the Cauchy vector σν, i.e. σν = σν · ν
στ tangential part of the Cauchy vector σν, i.e. στ = σν − σνν
Div divergence operator for tensors
γ trace operator for vector-valued functions
∂ψ subdifferential of the function ψ

⇀ weak convergence,
M−→ Mosco convergence

a.e. almost everywhere
PK projection operator on a nonempty convex subset K
⊕ direct sum

(x, y) pair of components x and y
A⊥ orthogonal complement of a subset A of a Hilbert space
∅ empty set
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