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Abstract. In this paper, we focus on the well-posedness problem of the three-
dimensional incompressible viscous and resistive Hall-magnetohydrodynamics system
(Hall-MHD) with variable density. We mainly prove the existence and uniqueness
issues of the density-dependent incompressible Hall-magnetohydrodynamic system in
critical spaces on R3.
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1 Introduction

The concept of a magneto plasma has attracted interests of engineer and math-
ematician ever since it was first introduced by Alfvén [1]. In [1], the author
proposed the basic equations of magnetohydrodynamics (MHD) and showed
the existence of waves in magnetized plasmas. Since then, MHD has developed
into a broad and mature scientific fields, with applications ranging from solar
physics and astrophysical dynamos, to fusion plasmas and dusty laboratory
plasmas. Meanwhile, a growing interest in what is known as Hall-MHD has
appeared in recent years. The Hall-MHD theory has been used to describe and
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explain some kinds of interesting physical phenomenons. To our best knowl-
edge, the first systematic study on Hall-MHD was completed by Lighthill in [25]
and then by Campos in [4]. The overview of underlying physics associated with
Hall plasma, applications of Hall-MHD to space and laboratory plasma have
been given in [21]. For more explanation on the physical background of Hall-
MHD system, we refer to [19,22,26,27,31].

In this article, we investigate the well-posedness problem of incompress-
ible viscous and resistive Hall-MHD with variable density in critical functional
spaces (the compressible system was studied in [2] ):

Op+u-Vp=0,
poru+ pu - Vu — pAu+ Vp = (V x B) x B,
(VXB)XB'\ __
8B —V x (ux B)+hV x (f) — VAB, (1.1)
divu =divB =0,
(p7uaB)|t:0 = (pOauO7BO)7

where p = p(t,z) € Rt stands for the density, u = u(t,z) € R?, B = B(t,z) €
R3 and scalar function p = p(t,x) with ¢ > 0 and 2 € R? represent the velocity

field, the magnetic field and the scalar pressure, respectively. The parameters
(VxB)XB )

P
is the Hall term, it reflects that in a moving conductive fluid, the magnetic field

can also induce currents, and which can in turn polarize the fluid and change
the magnetic field. While the dimensionless number h measures the magnitude
of the Hall effect compared to the typical length scale of the fluid.

The mathematical researching on the Hall-MHD system has been started
only rather recently, despite its physical relevance. Let us briefly recall some
known results on it. The authors in [2] had derived the Hall-MHD equations
from a two-fluid Euler-Maxwell system, and it also provided a kinetic formu-
lation for the Hall-MHD. By a Galerkin method, authors in [2] proved the
global existence of weak solutions in the periodic domain. While for the whole
spaces R?, Chae, Degond and Liu in [5] proved the global existence of clas-
sical solutions under the smallness condition on the initial data. Dumas and
Sueur [14] established the weak-strong uniqueness property and proposed a suf-
ficient condition to guarantee the magneto-helicity identity. An analyticity of
mild solutions to the 3D incompressible Hall-MHD system was constructed by
Duan in [13] by introducing a Lei-Lin ( [24]) type functional space. Global well-
posedness in critical spaces was studied by Danchin and Tan in [11,12], in which
the proof based on an important observation on the special structure of the Hall
term. The temporal decay estimates for weak and strong solutions are given
in [6] by Chae and Schonbek, in [32] by Weng and in [34] by Zhao. The global
well-posedness under the axially symmetric coordinate are given in [16]. To
give a more complete view of current studies on the global regularity problems,
we mention some of other interesting results in [7,8,15,17,20,23, 28,29, 30, 33].

In order to derive an appropriate formulation of the system, in what follows,
we introduce some algebraic identites. Elementary calculation implies that

|BJ”

(VxB)xB:B-VB—V<2>.

1 and v are the fluid viscosity and the magnetic resistivity. AV x (
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Hence, setting IT := p + |B|?/2, equation
poru+ pu-Vu — pAu+Vp=(Vx B)x B
can be rewritten as
pou + pu - Vu — pAu+ VII = B - VB.
Hence, we conclude that system (1.1) recasts in

Op+u-Vp=0,

pou+ pu - Vu — pAu + VII = B - VB.

8B — V x (ux B) + hV x (M) — VAB, (1.2)

divu = div B =0,

(p;u, B)|t=0 = (po, uo, Bo)-
In this paper, we mainly investigate the global well-posedness of the density-
dependent Hall-MHD system (1.2) in critical spaces with respect to the scaling
introduced below. Let us make a brief scaling analysis on this system with
variable density. Firstly, we find out that the system (1.2) does not have any
scaling invariance as the classical MHD system. However, if we consider the case
B = 0, then the system (1.2) becomes the density-dependent incompressible
Navier-Stokes system:

Op+u-Vp=0,
pou + pu - Vu — pAu + VII = 0,
divu = 0,

U\t:o = Up-

(1.3)

Obviously, system (1.3) is invariant for all A > 0 under the change
(po(x), uo(x)) = (po(Az), Aug(Az))
(p(t,x),u(t,z), [I(t,z)) — (p(N2t, Ax), Mu( N2, \x), N2 IT(\*t, Ax)).

The global existence of solutions in critical space was obtained in [9] with small
data. Secondly, if the velocity vanished in (1.2), then the magnetic fields B
governed by the following Hall equation:

(e
One can check that (1.4) are invariant for all A > 0 by the rescaling

p(t,z) — p(\2t, Ax), B(t,z) — B(A\*t, \x),
under the assumption that the data By is rescaled by

Finally, we get an intuitively conclusion that, when the hall effect constant
h > 0, without considering the Lorentz force in the momentum equations, u
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and VB have the same regularity level. Whilst, when the hall effect constant
h =0, (1.2) is nothing but an inhomogeneous resistive MHD system in which
u and B share the same regularity. Based on these observations, we can choose
our suitable working spaces such that v and VB, u and B have the same scaling
invariance property, respectively.

In the present paper, we consider the perturbation of the equation near
equilibrium state (1,0,0). Denote a = 1/p—1. For fluids with positive density,
we can write the perturbation system as:

Oia+u-Va=0,
Owu+u-Vu—p(l+a)Au+ (1+a)VII = (1+a)B- VB,
0B —-vAB -V x (ux B)+hV x ((a+1)(V x B) x B) =0,
divu =divB = 0.

For the Hall equation, considering the curl of Hall, we introduce an additional
unknown denoted by J = V x B. By an elementary computation, we have
AB = -V x J, and then the magnetic B can be rewritten as

B=curl 'J:=(-A)"'V x J,

where the —1 order homogeneous Fourier multiplier curl ™' is defined in the
sense of Fourier transformation

i€ x J(€)

€17
Altogether, in what follows we consider the following perturbation Cauchy
problem:

F(eurl 1) (€) ==

Oia+u-Va=0,
u+u-Vu—p(l+a)Au+ (1+a)VII =(1+a)B-VB,

8B —vAB =V x (ux B) — hV x ((a+1)(J><B),

O —VvAJ =V xV x ((u x curl “1J) — h(a +1)(J x curl_lJ)),
divu =divB =0,

(a,u, B, J)|t=0 = (ao, uo, Bo, Jo),

(1.5)

where ag = 1+ p%) and Jy = V x By. In this paper, we study the case of positive

general coefficients u,v, h, for data ag € 32%17 (ug, Bo) € 32%,1 and Jy € 32%,1
(the definition of the homogeneous and non-homogeneous Besov spaces will be
given in the next section). Motivated by the paper [9] that dedicated to the
incompressible Navier-Stokes equations, we then define our working spaces.
Firstly, we introduce a local version in the form of non-homogeneous Besov
spaces:

X(T):={f €C(0.T}: B},). V[ €L 0.T:Bj,), divf=0}
for T > 0, and its norm is defined by

1 llxery = 171

1
Lee (07T3B22,1 )

+IV2l

1 .
L'(0,T;B,)

Math. Model. Anal., 29(2):288-308, 2024.
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To prove the global existence result, we define
Ei={f €C(R;B,), V2feL R B3, divf=0)
if T = oo and the norm of F is given by

Iflle = I1fII 3 VAL

. 1.
Lo (RT:B2,) L1(R+;B2))

Now we can state our main result.

3
Theorem 1. Assume that initial data ag € B3 with 1+ ag bound away from

1 1
zero. Let (ug, By) € B2271 with divug = divBy =0 and Jy .=V X By € B2271.
Then there exists a positive time T > 0 and a unique local solution (p,u, B) for
Cauchy problem (1.2) with a := % —1,J:=V x B and

a€C(0,T]; Bf,), (u,B,J)€X(T) and VII € L'0,T; BZ,).

Besides, the following estimate is valid

+ + |

ol 3.+ 160 B Dlixcry < (Janlg + o, B Tl ).

where C' is an absolute constant depending only on u,v and h.
If in addition, for some small constants ¢ > O which depending only on p, v,
and h such that
llaoll .3+ Il (w0, Bo, Jo) 3 < e,

.1
2
2,1 B3

then the Cauchy problem (1.2) admits a unique global solution (p,u, B) with
a€C®R*;BS,), (wB,J)eE and VII e L'RY;BE,).
Furthermore, the following estimate is valid

lall - + | (u, B, J)||p < 2c.

.3
Leo(RT5B3 )
Remark 1. In contrast with the original Hall-MHD system (1.2), our proof will
focus on the extend perturbation system (1.5).

Remark 2. We mention here that on the local well-posedness part of the main
theorem, the smallness assumption on ag is not a necessary condition. The
method was first introduced by R. Danchin in [10] when dealing with the well-
posedness of the barotropic viscous fluids in critical spaces. And in [18], Fang
and the third author in this paper, together with Zhang constructed an impor-
tant estimate on the linearized momentum equation which we will used in this
article.

The rest parts of this paper are structured as follows. In the second sec-
tion, we recall the definition of Besov spaces and give some estimates for the
linearized equations. In Section 3, we concentrate on the existence part of
Theorem 1.
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2 Preliminaries

In this section, we briefly introduce the Littlewood-Paley decomposition, the
definition of the homogeneous Besov space and some related analysis tools. For
more details, we refer readers to [3].

Homogeneous Littlewood-Paley decomposition relies upon a dyadic parti-
tion of unity: let ¢,y € S(RT) be two radial functions valued in the interval
[0,1] and supported in C = {¢ € R*: 2 < [¢| <} and B={( e R®: [¢] < 3}
respectively such that

Zap ) =1 in RN\{0}, x(& —&-th g =1 in R

JjE€EZ j>0

One can easily prove that V u € S'(R%), u=3_ ., Aqu.

A number of functional spaces may be characterized in terms of Littlewood-
Paley decomposition. First, let us give the definition of non-homogeneous Besov
spaces.

DEFINITION 1. For s € R, (p,7) € [1,+00]?, and u € §'(R3), we set
1/r
I, = (3 21gul
q>—1

with the usual modification if » = 4c0. We then define the non-homogeneous

Besov space
By (R%) = {u € S'(R?), |lullz;, < oo}.

Similar to Definition 1, we can also define the homogeneous dyadic blocks Aq
and homogeneous Besov spaces. Let ¢ be a smooth function satisfying

Suppcpc{gﬁmég}, Zip “9¢) =1 for &#0.

Then the homogeneous dyadic blocks can be defined as follows:

Aju=@(279D)u = he(y)u(z —y)dy for all ¢ € Z.
R3
And we have the formal decomposition

u=3 A VueS®)/PRY,

qEL

where P[R?] is the set of polynomials. Then homogeneous Besov spaces can be
defined through the homogeneous decomposition.

DEFINITION 2. For s € R, (p,r) € [1,+00]?, and u € §'(R?), we set

. 1/
lull gy, = (3227 1Aqullz. )

qEL

Math. Model. Anal., 29(2):288-308, 2024.
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with the usual modification if » = +oo0.
—For5<%ors:%ifrzl,wedeﬁne

B (R?) = {u € S'(R?), ||ul

B;,r < OO}

—Ifk:eNand%—l—k;§3<%—I—k‘—&—lors:%—i—k—l—lifr:l,thenB;J(]R?’)

is defined as the subset of distributions u € &'(R3) such that 9%u € B;;k (R3)
whenever |§| = k.

We also need the following mixed time-space norm, which was introduced
by J. Chemin [3].

DEFINITION 3. Let T > 0,s € R and 1 < p,r,q < oo. For any tempered
distribution u on (0,T) x R3, we set
lullzs 5. = 1@ 1A ull g o) sezllerca.

We finished this section by recalling two key estimates for the linearized
transport and momentum equations. The linearized transport equation read

as
{ 8, f + div (vf) = F,
f|t:0 = fO-

The following result ( [3], Theorem 3.14) suffices for our purposes.

Proposition 1. Let v be a solenoidal vector field such that Vv belongs to

3 3
L'Y(0,T; B3,). Suppose that fo € By, F € L'(0,T; B3 ;) for all s > 3. There
exists a constant C, and such that the following inequality holds true,

t
By, + / eCV<T>||F<T>||B;,1dT) ,

25ty < < (1o
t
with V(t):/ Vo) s dr
0 322,1

Moreover, f belongs to C([0,T]; B3 ;).

When the density close to a constant, we are led to study the following
linearized momentum equations:

Oy + v - Vu — ubAu + bVII = f,
divu = 0, (2.1)
u|t:O = Uop,

where b := a+1 is bounded below by a positive constant b. That is, inﬂg3 b(z) >
e

b. Before stating our result, let us introduce the following notation:

Ar =1 +Q2N°a||VbHB% , for a € (0,1).

2,1
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Proposition 2. ( [18]) Let s € (—=%,3) and 0 < o < 1. Also we assume
s—1

3
a < *5=ifs>1andag € B3,. Let ug be a divergence-free vector field with
coefficients in Bs;l forr € [1,00], and f be a time-dependent vector field with

coefficients in L%(B;;l). w,v are two divergence-free time-dependent vector

fields such that Vv € Ll(o,T;Bil) and u € C([0,T); B5,") N LA(Bsth). In
addition, assume that (2.1) is fulfilled for some distribution I1. Let Ny be a
positive integer such that by, =1+ Sn,a satisfies

inf by, > 0.5b.
z€R3

Denoting p := inﬂ£3(a + 1), then there exists a constant C' = C(s, p, u) such
© e H®
that if additionally,

1 1
CA  la— S < min{-b, —
Fila— Swal_ | < minlgh Tk
the following estimate holds for k = |s — 1|/,
Hu||i%<>(B§;1) +H||“||Z1T(B§’tl) + HVHHZlT(B;;l)

< €™V (jjuo|

pit + ARl gy + ATy gg-e)):

with V(1) = [y(IVo(r)]| 3 +22N0ljal|*y )dr.
BQ

3
B2
2, 2,1

3 Proof of Theorem 1

In this section, we are going to prove Theorem 1. For presentation clarity, we
divide the proof into the following several subsections.
3.1 Local well-posedness result

Step 1. Linearized equations of (B,J). As the first step, we give the
a priori estimate of the following system

{ OB+v-VB—vAB=F,

O] +v-VJ—vAJ =G. (3.1)

The result is stated by the following proposition.

Proposition 3. Assume that (B,J) is a pair solution of (3.1) on [0,T] with
initial data (Bo, Jo). Let —1<s <2, 0<a <1 and V[/(t)zfé5 HV?](T)HB% dr.
2,1

Then the following estimate holds
T
IBOl: + 1Ol +v [ (1B sz + 1700 )ar

< 0D (|13

3531 + ”JO”B;;l =+ ”B”LlT(B;jl*"‘) =+ ||J“L1T(B§§1*a)
T
+ [ WPl s + 1G0T g 2)ar)

Math. Model. Anal., 29(2):288-308, 2024.
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Proof. Applying the operator A; to the first equation and the second equation
in (3.1), taking the inner product with A;B, A;J, respectively, we then obtain

1d
5 1A BI3: + V|V A; B

< Clllo, 8] VBI85 Bllea + 18 Fll 28 Blle (3:2)
1d

5 7181 + VIV AT 7

< Cllfo, Al - VI 2| A T2 + 185Gl 2 [ A T 2 (3-3)

According to Bernstein inequality, there exists a kg > 0 such that for all j > 0,
we have

ko2’ |A;Bl L2 < IVA;Bll2, ko2 |1A;B 12 < [[VA; Bl 2.

Thus, for j > 0, we have

1d ,
5 AT BIZ + v 1A Bl
< C(Ilv,A;]- VBlr2 + [|A;F|r2) [|A; B[ 2, (3.4)
1d ,
5 g2 + vro2 [ A, T|I7:
<C(Ilv,A;]- VL2 + 18;Gllz2) 1A T 22 (3.5)
On the other hand, for j = —1, by (3.2) and (3.3), we have
d
ZIB-1llze < ClIBlles (IF-llzz + ll[v, Aa] - VBl 12), (3.6)
d
I 7lze < CllTall (1G-llez + ll[v, Aa] - VTl 2), (3.7)
where By = A;B if j = —1 and the other terms are the same. Adding

vko2 2| B_1]|2, and vko272||J_1]|3. on the both sides of (3.6) and (3.7), re-
spectively, then we get

d _
= (1Bl + 132 ) + o2 2 (I Bole + 11132 )

<02 2 (| Boillde + 191132 ) + CIF e | B e (3.5)

+[[[v, A1 - VB 2| Btz + Cl|G 1|2 || J-1] 2
+ v, Aoa] - V|2 || J-1]| L2

Combining (3.4), (3.5) with (3.8), integrating over [0,7], we deduce that for
all j > —1,

T
[A; B> + AT L2 + V223/ (1A B2 + 14571 L2) di
0

T
< C (A Bolls + 18702+ € [ (IF s + 165 1

+vo1; ([ABllee A1 Jl|z2) + [[[v; A - VBI| L2 + [[[v; A - VJHLZ)dt
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where §; ; stands for the Kronecker symbol on 7Z2. By commutator estimates
(Lemma 2.100 in [3]) and elementary computations, for some « € (0,1), we
have

1Bl zee (5571) + 1| 25 (m571) + V(HBHZlT(B;;l) + ||U||Z1T(B;t1))
<c(|1Bl pit) + C(IBllgy (pyri-e + 1y gy
+C/ IVl3 ||B\ B 1>d7+0/ IF| B ) T.

Then the Gronwall s Lemma implies that

Bs—l + ||J0‘

s+ 1]

ome]

T
1BOls + 17O +v [ (1B g + 170y )ar

C
<Ce w(T) (”BOHB;;l + HJOHB;;"I1 + ‘|B||L1T(B§f§1‘“) + HJHLlT(B;f;l‘“)

T
+ [ e OUPOl e + 1G0T ag2)ar)

This finish the proof of this proposition. 0O

Step 2: A priort estimates.
Let (ur, VII1) solves the non-stationary Stokes system

Oyup, — pAuyp + VIl =0,
divuy, =0,
ur|t=o = uo,
and let By, := e"*2 By, Jr, := "2 Jj.
1 5
One can directly derive that (ur, Br) € C([0,T]; B3 ,) N L'(0,T; B ;) and
1
VI, € LY0,T; B3 ). Also we can directly verify that

ur |- +||BL] - + 1L~ 1

e HLOC(B ) i ||L°°(B 2) I HLOO(BQ‘{l)
<C +||B + || J .
< (HuoHB;1 [ 0|| 1+l O||B§,1)

2 21

Moreover, assume that 1" has been chosen so small as to satisfy

“”“LHLIT(B§1> V||BL||L1T(B§1) + V||JL||L1T(B§1) <A
where A will be determined later. -
Let u=u—ur,B=B—By,J =J -V x By,VIIl =VII — VI, where
(a,u, B, VII,J) satisfies (1.5) on [0, T] x R®. Suppose that a € C*([0, T); Bil),
5

(u,B,J) € C’l([O,T];BQ%J)ﬁL1 (B3,) and VII € L*(0,T; 82 1)- We can deduce
that (a, @, B, J, VII) satisfies the following system

Owa+ (i +ug)-Va=0,

ovu+ (a+ur) Vi —pla+ 1A+ (a+ 1)VII = H+ 1,

3tB+(uch) VB —-vAB =F,
+(a—hJ)-VJ—vAJ =G,

( 4, B, J)|=0 = (0,0,0,0),

Math. Model. Anal., 29(2):288-308, 2024.
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where

H=—(u+ur)Vuy + palugp —aVIl,, G=VXxF+M(u,J),
I=(a+1)(B-VB+B-VB+B- VB, + By VBy),
F=—(ur—hJy)-VB+aJ-VB+B-V(u—hJ)—hB-V(aJ),
821} . VBg - 831} . B2
M(u,J) = | d3v- VB! —dv- B3 (3.9)
81U'VB2732’U~31

and v = u — hj; Assume that the following inequalities are fulfilled for some
suitable A\, Ny, Uy and T":

lall - .5 ) < 2llaoll 5 .
B3,

L¥(B3,)
A5 o~ Swall g <min{gsb, oo, (3.10)
T *VIzB2,) T 4C7 ACp*~ '
u, B, J B,J viI < \Up.
6B e +ul@BI, s 49T, s <D

Then, we are going to prove that they are actually satisfied with strict inequali-
ties. Since the left sides of (3.10) depend continuously on the time variable and
are satisfied with strict inequalities when ¢ = 0, a basic bootstrap argument
insures that (3.10) are indeed satisfied for small T'. For convenience, we denote

Uy = ol + 1Bl + 1003

U0 =By + el @B, g + IV,
B =B Dl +ABDI, o

U = gl i F IV s VBl n T, g

Firstly, we prove (3.10); holds with strict inequality. From Propositions 1, we
can get that

, cCV(T) < LCGit300)
ol 3, <77 Ploollg, < 7= ol
where
_ T
V@) = [ (9al,y + [Fuly )
0 B22,1 B22,1
By choosing that A sufficiently small and satisfying
) < g, (3.11)

we then conclude that (3.10); holds with strict inequality on [0, 7).
According to the estimate (3.14) in [3] (page 134), we get that

—43 _
||AjaHL§?(L2) < ||Aja0||L2 —|—CC]‘2 J2A0||V(U—|—UL)H Lood
LT(Bz,l)
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3 . By the definition

where the ¢! norm of ¢; equals to 1 and Ag = 1 + ||ag|
2,1

of Besov norm, we see that
3
= D 23| Ag(a— Snoa) | ng (22)

qg>—1
= 3
< Z Z 272||AgAjal g (r2)
J=No |q—j|<2
<O T (Al Ao+ 5T0)e)
N K
J=No |q—j|<2

<C Z 273 || A a0l 2 +CA0( + Uo)

a—SNa - 3
la = Sxoal 4

Jj=No
3
Since ag € By, and Ap < 2Ag, we can select Ny sufficiently large such that
>, 1
i . —(k+1)
OJZN 298| Ajal| 12 < (240) mln{mb Tt }
=INo

Thus, (3.10)2 holds with strict inequality provide
1

A ) < (240)7 ¢+ mi { b, } 12

C 0( + Uo < (240) min | 7=b, 16,uH (3.12)

Finally, we set T sufficiently small such that 4C2%*No Ha0|| *, T < log2, which
B2 1
V(T) < 4, where V(T) is defined in Propo-

combination with (3.11) implies ¢
sition 2. Thus, from Proposition 2, we obtain that

= < .
U(T) < 4CAT(|| (@ +ur)Vur + uaAuLH sk + Haan”L}(Bél)

1)B-VB L 1 B 1
@+ DB-VBI, 2 +le+DB-VBLl,

+ H(a+ 1)BL . VBHL%,(BZ%I)
< Jad \V4
gfa)) 4CA ( ( )H uL|| sl

+|(a+1)By - VB
[(a+1)Br - L||L1 )

+ pAr||al 3
L’lf' 2,1 T 22 )

2 5 2 1
+ M||a0\|B§1|\UL||L1T(B§1)+ (||GHB§1+ VE*(T)

2aoll 5 +1) (2ET) + ) + 2)a
0 BQ%I v V2 0 32%1

lall 5 )
LT (B2,1)

o 1
20pAETIT S ||

If we assume A < 354, then we have
U(t) < 32C>\(Uo + (L4 llaoll 3 ) (AUS + 1+ )\/uﬁo)>

2,1
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al Ko 27T
+6MDN°MEO+WWﬂB%) T3 Ny

H 2,1
< Co(Ug 4+ 1A + Co2NooT AUy + CoN2UZ, (3.13)
where Cj is a general constant depending only on ||a0||B 3, pand p.

2,1
Next, we turn to the a priori estimate of B and J. From Proposition 3,
setting v = u — hJ, denoting

T
wer = [ (19l g +0Iva) g )

we have
CW g
E(T) < ( . r ) L )d )
@) <O (B, s a)+/<|\ <r>||32%1+||0<7>||32;1> r
géecwm( 5B HBII R e HJII
LE@l) L B;‘l) LBl . 2

T
[ Ol I9BIy +
0 1

B2 3
2, 21 B2

IVBLll s + 1M (u, By )dr
1 2,1

2

T
[l I9BI g + 1l s VBl + 1B 19l )dr
21 21 2,1 21

2,1 2 1

T
+/ (1Bl g IVucll s + 1Bl g IVJI_y + 1Bl g IVJell 3 )dr
0 21 21 B2,1 B3, 21

1 3
2 2
B3 2,

1Bl s | g [Vucll g +1Bell g IVJ]_y )dr
2 2 2,1 2 2,1

B
a3 + 1B

(IBell g IV el g +lucll g IVBI

2

+lucll 53 ||VBLH )
1

3 1 3
B2 B2 2
2 2 21 2 1

2
2

(HBH s IVucll s + Bl g IV7Il g + 1Bl 5 VL] 3 )dr
B3, B3, B3, B3,

3 3
2 2
21 2,

(HBLH

X
I
T — —
+/ Jr|| s VBl s + Joll 2 VB s +||B|| s ||Vl =
3 (Il 221|| | 1 [ ||B§1H HBZ1 | ||3221|| [ 221)

H1Bell g IVl g +IBull s IV s )dr).
1 B2,1 B 1 21

3 llall s 3
B2 2 2
B3 B3 B3, 2,

Here, we roughly define that C = CAy. If we choose A sufficient small such
that

Mo < 9, (3.14)
then there exist an absolute constant C; such that
E(T) < CiNT3AUE + AUy + A + AU2). (3.15)

Here, we omit the details of the estimate for M (u, B) in (3.9) since it is similar
to the terms in F' or G. Combining (3.15) with (3.13), we have

U(T)+E(T) < CoUgh+Co2NoT AUy +Co N U2 +Cr AT ENUZ+ AU+ A+AUZ).
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Hence, selecting Uy = 16(Co + C1)(Up + 1), for fixed A which determined by
(3.11)—(3.14), and in addition we can choose T, A small enough such that

~ 2
T <1, C1\Uy<1/32, Co2MNooT < 1/4, 402%™ |lag||” s T <log2. (3.16)
322,1
Then we can find that (3.10)3 holds with strict inequality.
Step 3: Constructing approximate solutions and uniform estimates.

It is based on Friedrichs’ method: consider the spectral cut-off operator E,,
defined by

]:(Enf>(€) = 1{n*1§|§|§n}(€)]:(f)(§)'

We want to solve the following truncated system:

oa =E,(-E,u-E,Va),

ou—Au=E,(E,1+a)E,B-E, VB —E,u-VE,u
+E,a(E,Au—E,VII)), (3.17)

0B —AB =V xE,(E,(u—(1+a)V x B) xE,B),

O J—AJ = VX VXE, (E, (u—(1+a)V xcurl 'J)xE,curl ~'.J),

supplemented with initial data (E,aq, E,ug, E,Bo, E,Jo).

Then we can conclude that the ordinary differential equations have a unique
solution (a™,u™, B™) in the space C'([0,77); L2), where L2 is L? functional
space with Fourier transforms supported in the ball with center 0 and radius
n. T is the maximum existence time of (a™,u™, B™). Then using the elliptic
equation we can get the existence of VII™ € C*([0,T}); L?). Being spectrally

supported in the annulus {n~! < |¢] < n}, one can also deduce that the solution
belongs to C*([0,T};); Bs ;) for all s € R. Hence, setting J" =V x B" ,we see

that a™,u™, B", J" belong to the space Bzé,1 for all T < T7% and fulfill:

oa™ = E,(—u™ - Va"),

du™ — Au"™ — Ep(a"Au"™) = E,((1+a™)B™ - VB"
—u™ - Vu™ — a"Vp)),

8,B" — AB" =V x E,((u" — J") x B"),

O J" — AJ" =V x E,,(V x (u™ — J") x curl 1 J™).

Now, we want to prove that 7,¥ may be bounded from below by the supremum
T of all the times satisfying (3.17), a™ and (u™, B™, J™) is uniformly bounded
3
in C([0,T]; Bs ;) and X(T), respectively. Since E, is an L* orthogonal pro-
jector, it has no effect on the a priori estimates which were obtained in the
above steps. Hence, the a priori estimates applies to our approximate solu-
tion (a™,u™, B™,J") which independent of n. And the estimate in (3.10) to
(a™,u™, B™, J") ensue that it is bounded in L>(0,7T; L?). So, the standard con-
tinuation criterion for ordinary differential equations implies that T is greater
than any time 7T satisfying (3.16) and for all n > 1,
la™l_ x <2laoll 5 .
L’IO"O(B221) B22,1
1 1
el S
10 ot

H(an’Bn’jnH~ 3 +||(anvénvjn“~l 3 S)\ﬁo
L7 (B3) L1(B$1)

A5 la”™ — Swga™ |

3 < min{
L (B3)
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Step 4: Compactness argument.
Till now we have proved that o™ and (u”, B", J") is uniformly bounded in

C([o,TY; BQ% 1) and X(T), respectively. The lower bound of T is determined in
last step. A standard compactness argument based on the Ascoli’s theorem
implies that (a™, u™, B™, J") tends to (a,u, B, J) which satisfies (1.5).

3.2 Uniqueness results

In this subsection, we study the problem of uniqueness for a solution with
critical regularity. We shall prove the following proposition.

Proposition 4. Let (a1, u1, B1,VII, J1) and (as,us, B2, VI, J3) be two so-

lutions of the density-dependent incompressible Hall-MHD system (1.5) with
3

the same initial data and such that a; € C([0,T]; B3 ) and (u;, B;, J;) € X(T)

for i =1,2. Then, (a1,u1,B1,VI) = (ag,us, Bo,VII3) on [0,T] for some

T > 0.

Proof. We remark that the L norm of a; and as is conserved. The equations
for

((5@, 6u,6B,6Vp, 6J) = (a1 — az,U1 — UQ,Bl — BQ,VHl - VHQ, Jl — JQ)

can be written as

Oida + us - Véa = —du - Vay,

Orou + ug - Vou — (1 + aq) (uAdu — Vop) = 6Hy + §Ho,
0,08 — vAIB = /G,

00J —vASJ = 6L,

(3.18)

where denote

0H; = —du - Vug + pdalAus — 6aVils,

5H2 = 6CLB1 . VBl + (1 + QQ)CSB . VBl + (1 + ag)BQ . V(SB,

0G :=Vx ((5u7h5aJl)xB1+(uz —h(1+a2)Js) x 6B — h(1+ a2)dJ x Bg)
and 6L = V X dG. As usual, when proving uniqueness, the presence of a

transport equation is responsible for the loss of one derivative in the estimates
involving da. This induces us to bound da x (du,dB,dJ) X dVp in the space

C([0,T); B3,) x Fp® x LL(B, 1), where

1 1 3
Fp? =C([0,T); B, 7 ) N Ly(B3,))-

Hence, arguing as in Step 2 of the proof gives for all ¢ € [0,7T], we apply
Propositions 1 and 2 to system (3.18). Indeed, from Proposition 1, for all
t € (0,7, we have

I6a(®)] 3 < e Pllar — Sngarll 2 [6ul

L1 3 3
322,1 Lfc(Bz2,1) L%(Bzz,l)
n n 1—n
+ eV Shpar]l g tEeul® (el T,
L (B’Ll ) Ly 2,12) L}(B22,1)
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where V(¢ fo |VuQ|| 3 dr and 7 € (0,1). By choosing Ny sufficiently large

and using Young S mequahty7 we have

—_

16a(®)]] .

53 < guloull,

c2MoT||6ul| . - (3.19)
L (B

Do
}‘3 Nl

OO

1

Next, denoting

oU(t) = ||du(t _1 + ulldu s +||Vé 1,
(O = 18] g+ louly g+ 190,

the estimate for linear momentum equations, Proposition 2, guides us to get

CV(T) gk
() < OV DA (107, o3 +I0Hall, oy +redrelldul g ).

2 2
2,1 2,1

with Ay = 1+ 52No%||ay || and a € (0,1). By interpolation, the last term

B}
can be bounded by

19wl , < Cllduf®, )II5UII

3_ 3 -
2 [e3 92
Li(B 2,1 ) t( 21 Lfl(3221)

Young’s inequality and the uniform bound of the solution imply that
t
Ut gc/ (5H 1 |I6H|| 1+ |ou ,l)dT. (3.20)
y<0 [ (W0l oy + 15ty + o],y

According to the expressions of §H; and d Ha, by using the para-product and
remainder estimations in Besov spaces ( [3], Chapter 2), one has

Jotal -y <O (16l IVl 5 -+l sl g el g 97T, )
B2,1 21 BQI BZI 21
[0Ha|| 1 < (Hﬁall ||31||2§ + (1 + [la| g)||5BH 1HVBlll 53
B2,1 2 B2,1 2
1 VB s 6B ,,).
+ (Ut ol VBl 5 1551,y

Plugging the above inequalities into (3.20), and by using the Young’s inequality
n (3.19), we get that

t
1 <
||5a||Z%O(B§ )+5U_c/0 (lull 5 +lluzll

2,1

o} 5} +HIVIL| 2%1) U(r)dr

+ HBQHB% YU (T)dr + C2NoTsU (1), (3.21)

5
2
B2

t
v [y + 18
0 322,1
The standard estimates of the heat equation in [3] gives for all ¢ € [0, T7,
GBIy + 16BN, 4 < |6G.oL)] (322

By 1 Lt(Bz,1) 2(3
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For the right hand side, by using the para-product and remainder estimations
in Besov spaces, we have

160G, 3 <C(H5 I s IBIL, s +ldall__ o (Il 4
Li(B, i Lg(By #) L{ (B3 1) Ly (B3 1) L (B31)
: B
ABU Ly o+ (il + 1l 5 JISBI_
F ool g Bl s 1871 o) (3.23)
(B 1) 21 t, 21
Similarly, by using the identity B = curl™'.J, we still have
19L11 2, -2 <C(II5 ull, 1 Bl s +ldall__ 5 Mz,
(By f L} (BZ,) Ly (B2,) Ly (B3 Ls (B D
B 0B
Bl 1)+ Ozl 1 ) ”zgow;)
1 B ). 24
FOtlaal 0 Bl L 1971 (3.24)

Hence, combining (3.21)—(3.23) with (3.24), we finally obtain that

L 4 (6B,

2,1 t 32,12) L3 ( B2 1)

ldall. 1+ + 86U+ [[(6B,6J)|-
Ly (BZ)) Lo (

1
< — 1 1 1
< (18l _ 0+ 80 1EBED_ oy +1EB.EDI, )

2,1 t 2,1

by choosing T sufficiently small. This ensures that on [0, 7],
(6a,déu,6B,8J) =0

This finish the proof of the uniqueness of the solution. 0O

3.3 The global estimates for small initial data

In the above section, we have proved that there exists a unique local solution
3

(a,u, B, J) of (1.5) in C([0,T]; B3 ;) x X(T'). We have used the L? estimate for

VII. That is the reason why we work on the non-homogeneous Besov space.

We rewrite it as follows:

bV |isg, < ClIQLIsg, +llall 3 IV, -
2,1

While fortunately, the assumption on ag in Theorem 1 can avoid the L? estimate
of VII. More precisely, the second term can be absorbed by the left hand
side due to the smallness condition on a. Thus using the same method as in
Theorem 1, we obtain that there exists a unique local solution (a,u, B, J) of
(1.5) in

C([0,7); B ) x X(T)

for all T < T*, where T* is the maximum existence time of (a, u, B, J). Denote

= llao|| .2 o3 + ||(uo, Bo, Jo) We are going to prove the existence of a

I3 -
2 2
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positive M such that, if « is small enough, the following bound holds

fal._ .5 +I(uw,B J)|| s < Ma. (3.25)
L (B2,) B;l)le (B3,)

This estimate is the direct product of the following proposition.

Proposition 5. If

” ” 3 +||(U,B,J)H~ +||VHH 1 S2Ma, T € (OaT*)a
LOO(B L%C(B l)ﬁL (B 1) L%(BQZI)

then, we have

lall._ s + @B
L (B ») LE (B 21)QLT(32,1

o

+||VH|| 1 < Ma,
) L3 (B3 y)

when « is small enough.

Proof. First, from Proposition 3.1, we obtain

< Cre”Dlay|

3 < .
221) 322,
where V(T fo IVul . 53 dt. If we assume « small enough such that
2
e?Ma < 92 then we have
lall_ . .8 < Ma
LF (B31)

for M = 4C;. For the estimate of (u, B, J), we first rewrite the equations of
them as

Ou+u-Vu—pAu+ VII = R,

0B —-vAB =1L,

0y —vAJ =G,

where
R =palAu—u-Vu—aVIl + (1+a)B-VB,
L=Vx(uxB)—Vx(h(l+a)JxB),
G =V x (V x ((u—h(1+a)J) x curl"1.J)).

According to the standard estimates of the linear Stokes equations and heat
equations, we obtain that

1(w, B, DI 3 3 HIVI]

. . L1
L%O(B22,1)0L%“(B22,1) L%"(BZQI)

(3.26)
< O(lltwo, Bo, )l 3 + (R, LG

L} B«fn)

ES
2
2,1

31)

by term. In fact, by the continuity law of the product in Besov space, firstly,
we have

1R, gp ) < OMa(lduly, oo 19T, o0 +IBI2, s )
Ly (B3 1) Lk LL(BZ,) L2(B2 1)

< COM?a® + C'M30¢3,

In the rest part of this section, we are going to bound ||(R, L M)|| L (5 1 term
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ILN oy <AV xux B V(I xB)| | s
Ly (B3y) Ly (B3y) Ly (B3y)

<OMa(llull, o 181, o1+ 10, g IBI, o1 ) < OM?a®
2(B3)) Ly (B3, L (B B3'y)

and

1
161, ) < IV % (= b1t )y x ™), s

<O(IVuly g3 IV, gp Jlewt I o
T 2,1 1

+ (Il 10, s )||chr1 VI, Ly < OM%a?,
L2 (32 ) %(32 B221)

Plugging the estimates on R, L and M into (3.26), noting that B = curl 1J,
we have

[(u, B, I~ .3 3 IV

.1 S CQ (Ot + OQMQOZ2 + 02M30t3>
L%C(B22,1)OL%“(B22,1) L%F(B;,l)

holds for some positive constant Co. When M = 4C5 and « satisfies
CiMa < 1/4, C3M?*a? < 1/4.

Then, we finish the proof of Proposition 5 for M = max{4C1,4Cs}. O

3.4 Proof of global existence result

Now we can give the proof of the global existence. From the standard continu-
ation method and Proposition 5, we easily obtain that (3.25) holds. Combining
the local existence, if T is finite, then the lifespan of the solution is greater
than T*. Hence T* = oo and we finish the proof of Theorem 1.
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