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Abstract. In this paper a two grid algorithm for quasilinear elliptic problem based
on virtual element method (VEM) discretization is proposed. With this new algo-
rithm the solution of a quasilinear elliptic problem on a fine grid is reduced to the
solution of a quasilinear elliptic problem on a much coarser grid, and the solution
of a linear system on the fine grid. A priori error estimate in H1 norm is derived.
Numerical experiments are carried out to illustrate the theoretical findings.
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1 Introduction

Our main goal in this paper is to develop a two grid virtual element algorithm
for the following quasilinear elliptic equation:{

−∇(K(u)∇u) = f(x), in Ω,

u = 0, on Γ,
(1.1)

where Ω ⊂ Rd is a bounded polygonal domain with Γ = ∂Ω. The function
K(u) : R −→ [K∗,K

∗] is a twice differentiable function with 0 < K∗ < K∗ <∞
and bounded derivatives up to second order. Therefore, K(u) is Lipschitz
continuous, namely there exists a positive constant L such that

|K(u1)−K(u2)| ≤ L|u1 − u2|. (1.2)

■
Copyright© 2024 The Author(s). Published by Vilnius Gediminas Technical University
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.3846/mma.2024.17745
mailto:zhouzhaojie@sdnu.edu.cn
http://creativecommons.org/licenses/by/4.0/


78 F. Chen, M. Yang and Z. Zhou

It is well-known that for sufficiently smooth f , problem (1.1) possesses a unique
solution u; see, e.g., Douglas et al. ( [12]).

Due to the flexibility of polygonal meshes to approximate domains with
high geometrical complexity the study of polygonal methods(e.g., the polygo-
nal finite element method, extended finite element method (XFEM)) for solving
partial differential equations forms a hot topic in recent years. Among these
methods the virtual element methods have attracted lots of attentions. The vir-
tual methods can be viewed as an extension of classical finite element method to
general polygonal meshes. The VEM is inherently capable of handling hanging
nodes arising in the polygonal/polyhedral meshes and hence is more suitable
for adaptive mesh refinement. In contrast to finite element methods the basis
functions in virtual element space are not known in closed form but are so-
lutions to a partial differential equation, which are never needed to solve in
the numerical implementation. Indeed, the VEM only requires the knowledge
of a polynomial subspace of the local discrete function space to provide sta-
ble and accurate numerical methods. This can be achieved by separating the
contribution of the polynomial subspace from that of the remaining nonpolyno-
mial virtual subspace through the introduction of suitable projection operators.
Correspondingly the discrete bilinear forms in standard VEM are the sum of a
singular part maintaining consistency on polynomials and a stabilizing form en-
forcing coercivity. Since the VEM was originated in [10] lots of literatures were
devoted to construct virtual element discrete schemes for linear or nonlinear
problems, for example, elliptic problems( [1, 7]), parabolic problems( [15, 20]),
Stokes and Navier-Stokes problems ( [2, 11,13]).

The two-grid algorithms based on finite element methods were originally
introduced by Xu [17, 18] for the nonsymmetric linear and nonlinear elliptic
problems. In these algorithms, two spaces Vh and VH are employed for the finite
element discretization, with mesh size h≪ H. The idea of these algorithms is
to first solve the original nonsymmetric linear and nonlinear elliptic problems on
the coarser finite element space VH , and then find the solution uh of a linearized
elliptic problem on the finer finite element space Vh based on the coarser level
solution uH . Later on, the two-grid methods were further investigated by many
authors, for instance, Xu and Zhou [19] for eigenvalue problems, Bi et al. [3,4,8]
for the finite volume element method and the discontinuous Galerkin finite
element method for the nonlinear elliptic problems, Wu and Chen et al. [9,16]
for the mixed finite element method and [5] for mixed (Navier-)Stokes-Darcy
model. The two-grid methods have been shown to be efficient techniques for
solving nonlinear problems of various types.

In [6] the authors investigated virtual element approximation of second or-
der quasilinear elliptic problem, and proved the well posedness of the discrete
problem and optimal order a priori error estimates. In the present paper we
focus on developing a two grid virtual element algorithm for second order quasi-
linear elliptic problem and deriving a priori error analysis. To the best of our
knowledge there are no literatures devoted to develop two grid virtual element
algorithm for second order quasilinear elliptic problem. With the help of L2

projection operators Π0,h
k and Π0,H

k on different mesh partition Th and TH
we build up a two grid virtual element algorithm for second order quasilinear
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elliptic problem. With this new algorithm the solution of a quasilinear ellip-
tic problem on a fine grid is reduced to the solution of a quasilinear elliptic
problem on a much coarser grid, and the solution of a linear algebraic system
on the fine grid. This will improve computational efficiency while ensuring the
accuracy, which is verified by numerical experiments.

The paper is organized as follows. In next section, we give some preliminary
knowledge about VEM and the discrete scheme for (1.1). In Section 3, a two
grid discrete scheme is proposed and a priori error estimate in H1 norm is
proved. In Section 4, numerical example is carried out to verify our theoretical
analysis.

2 Virtual element approximation

2.1 Preliminaries

Let Th be a family of decompositions of the domain Ω into star-shaped polyg-
onals E and hE denote the diameter of element E, i.e., the maximum distance
between any two points on element E and h = sup

E∈Th

hE . ∂E denotes the edges

of E ∈ Th. We make the following assumptions about the regularity of the
grid( [10]).

� Every element E is star-shaped with respect to every point of a disk Dρ

of radius ρhE ;

� Every edge s of E has length hs ≥ ρhE ;

The virtual element space ( [7]) is defined by

Vh := {vh ∈ H1
0 (Ω) : vh|E ∈ V E

h ,∀E ∈ Th},

where

V E
h :=

{
vh ∈ H1(E) ∩ C0(∂E) : ∆vh ∈ Pk(E), vh|s ∈ Pk(s) ∀ s ⊂ ∂E,

(vh, p)0,E = (Π∇
k,Evh, p)0,E , ∀ p ∈ Pk(E)/Pk−2(E)

}
and Π∇

k,E is a projected operator defined as follows.

Definition 1. (See [10]) The projection operator Π∇
k,E : H1(E) → Pk(E) is

defined as follows:

(∇(Π∇
k,Evh − vh),∇p)0,E = 0,∀vh ∈ H1(E), p ∈ Pk(E),∫

∂E

(vh −Π∇
k,Evh)ds = 0, if k = 1,∫

E

(vh −Π∇
k,Evh)ds = 0, if k ≥ 2.

Obviously, we have Π∇
k,Ep = p, ∀p ∈ Pk(E).

Math. Model. Anal., 29(1):77–89, 2024.
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Definition 2. (See [7]) The L2 projection operator Π0
k,E : L2(E) → Pk(E) is

defined by

(Π0
k,Evh − vh, p)0,E = 0,∀vh ∈ L2(E), p ∈ Pk(E).

With slight abuse of notation the symbol Π0
k will also be used to denote the

global operator obtained from the piecewise projections. For the error analysis
we also need the following lemmas.

Lemma 1. (See [7]) There exists a positive constant C such that, for all E ∈ Th
and all smooth enough functions w ∈ Hs(E) defined on E, it holds:

∥w −Π0
k,Ew∥m,E ≤ Chs−m

E |w|s,E , m = 0, 1, 1 ≤ s ≤ k + 1.

Lemma 2. (See [7])Let u ∈ H1
0 (Ω) ∩ Hs+1(Ω) with 1 ≤ s ≤ k. Under the

assumption on the decomposition Th, there exist a uI ∈ Vh such that

∥u− uI∥+ h|u− uI |1 ≤ Chs+1|u|s+1,

where C is a positive constant which only depends on the polynomials degree k
and mesh regularity.

Lemma 3. (See [7]) (Approximation using polynomials) Suppose that the as-
sumption on the decomposition Th is satisfied and let s be a positive integer
such that 1 ≤ s ≤ k + 1. Then for any w ∈ Hs(E) there exists a polynomial
wπ ∈ P k(E) such that

∥w − wπ∥0,E + hE∥w − wπ∥1,E ≤ ChsE |w|s,E .

2.2 Virtual element discrete scheme

The weak form of (1.1) is defined as follows

a(u;u, v) = (f, v), ∀v ∈ H1
0 (Ω).

Here

a(u;u, v) =

∫
Ω

K(u)∇u · ∇vdx, ∀u, v ∈ H1
0 (Ω).

The corresponding virtual element discrete scheme of (1.1) is defined by

ah(uh;uh, vh) = (f,Π0
k−1vh), ∀vh ∈ Vh. (2.1)

Here

ah(uh;uh, vh) :=
∑
E∈Th

aEh (uh;uh, vh), (f,Π
0
k−1vh) :=

∑
E∈Th

(f,Π0
k−1,Evh)0,E .

The bilinear form aEh is any bilinear form on Vh defined as the sum of element-
wise contributions aEh satisfying the following polynomial consistency property
and the stability property.

Assumption: For every E ∈ Th the form aEh is bilinear and symmetric in
its second and third arguments and satisfies the following properties:
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� Polynomial consistency: For all p ∈ Pk(E) and for all vh ∈ V E
h ,

aEh (z; p, vh) =

∫
E

K(Π0
k,Ez)∇p ·Π0

k−1,E∇vhdx, ∀z ∈ L2(E). (2.2)

� Stability: There exist positive constants α∗ and α∗ independent of h and
the mesh element E such that

α∗a
E(zh; vh, vh) ≤ aEh (zh; vh, vh) ≤ α∗aE(zh; vh, vh), ∀zh, vh ∈ V E

h . (2.3)

Remark 1. We remark that the following error analysis is valid whenever the
assumption above is satisfied. In the numerical tests a particular choice of local
bilinear forms( [6]) is given below:

ah(uh;uh, vh) :=
∑
E∈Th

aEh (uh;uh, vh) =
∑
E∈Th

(∫
E

K(Π0
k,Euh)

×Π0
k−1,E∇uh ·Π0

k−1,E∇vhdx+ SE(uh;uh −Π0
k,Euh, vh −Π0

k,Evh)
)
.

Here

SE(uh;uh −Π0
k,Euh, vh −Π0

k,Evh)

:= KE(Π
0
0,Euh)h

d−2
E

NE∑
r=1

dofr(uh −Π0
k,Euh)dofr(vh −Π0

k,Evh),

where NE is the number of degrees of freedom on the element E and dofr(uh−
Π0

kuh) denotes the value of the rth local degree of freedom defining uh−Π0
kuh

in V E
h .

According to [6] we have the existence of a solution uh of (2.1).

Lemma 4. Let f ∈ L2(Ω) be given and assume that (1.2) holds. ChooseM > 0
such that ∥f∥ ≤ MK∗α∗. Then there exists a solution uh ∈ B = {vh ∈
Vh; ∥∇vh∥ ≤M} of (2.1).

Moreover, according to [6] the following error estimates hold.

Lemma 5. Suppose that u is the solution of (1.1) and u ∈ Hs(Ω)∩W 1,∞(Ω),
s ≥ 2. Assuming that f ∈ Hs−1(Ω) and K(u) ∈ W s−1,∞(Ω), with Ω convex.
Let uh ∈ Vh be the solution of (2.1). Then there exists a constant C independent
of h such that, for h sufficiently small,

∥u− uh∥+ h∥∇(u− uh)∥ ≤ Chr, r = min(s, k + 1).

3 Two grid virtual element discrete scheme and error
analysis

In this section, we present a two-grid virtual element algorithm for the quasi-
linear elliptic problem and derive the corresponding error estimate.

Math. Model. Anal., 29(1):77–89, 2024.
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Let Th and TH be two mesh partition with elements E, Ẽ and mesh pa-
rameter h,H(h ≪ H), respectively. The corresponding virtual element spaces

are associated with Vh and VH . For the sake of clarity we denote by Π0,h
k and

Π0,H
k the L2 projection with different mesh partition Th and TH . Then the two

grid virtual element algorithm for (1.1) is defined as follows:

� Step 1: Solving the following nonlinear problem on a coarse grid

aH(uH ;uH , vH) = (f,Π0,H
k−1vH), ∀vH ∈ VH . (3.1)

� Step 2: Solving the following linear problem on a fine grid

ãh(uH ;Uh, vh) = (f,Π0,h
k−1vh), ∀vh ∈ Vh. (3.2)

Here ãh(uH ;Uh, vh) :=
∑

E∈Th

aEh (uH ;Uh, vh). In the bilinear form aEh (uH ;Uh, vh)

the coefficient in each element takes the form K((Π0,H
k uH)|E).

In above algorithm we utilize the virtual element method to solve the quasi-
linear elliptic problem on a coarse space VH , and obtain a rough approximation
uH ∈ VH . Then we use it to linearize the corresponding system on the fine
space Vh, and solve the resulting linearized problem to obtain Uh ∈ Vh. Since
the dim(VH)≤ dim(Vh), the computational cost for uH is relatively small. This
implies that the work for solving the quasilinear problem is not much difficult
than solving a linear problem.

Theorem 1. Let Uh be the solution of the two grid virtual element discrete
scheme (3.1)–(3.2). Then under the assumption of Lemma 5 we can derive

∥u− Uh∥1 ≤ C(hr−1 +Hr), r = min(s, k + 1).

Proof. Let uI ∈ Vh, ψ = Uh − uI . Set c∗ := K∗α∗. By (2.1), (3.2) we derive

c∗∥Uh − uI∥21 ≤ ãh(uH ;Uh − uI , Uh − uI) = ãh(uH ;Uh, ψ)− ãh(uH ;uI , ψ)

= (Π0,h
k−1f, ψ)−ãh(uH ;uI , ψ) = (Π0,h

k−1f − f, ψ)+a(u;u, ψ)−ãh(uH ;uI , ψ)

= (Π0,h
k−1f−f, ψ)+a(u;u, ψ)−

∑
E∈Th

aEh (uH ;uπ, ψ)−
∑
E∈Th

aEh (uH ;uI − uπ, ψ),

where uπ ∈ Pk(E) is the polynomial approximation of u given by Lemma 3.
Then, using the polynomial consistency leads to

c∗∥Uh − uI∥21 ≤ (Π0,h
k−1f − f, ψ)−

∑
E∈Th

aEh (uH ;uI − uπ, ψ)

+
∑
E∈Th

∫
E

(K(u)−K((Π0,H
k uH)|E))∇u · ∇ψdx+

∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇u
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· ∇ψdx−
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇uπ ·Π0,h

k−1,E∇ψdx = (Π0,h
k−1f − f, ψ)

−
∑
E∈Th

aEh (uH ;uI − uπ, ψ) +
∑
E∈Th

∫
E

(K(u)−K((Π0,H
k uH)|E))∇u · ∇ψdx

+
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇(u− uπ) · ∇ψdx

+
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇uπ · (∇ψ −Π0,h

k−1,E∇ψ)dx :=

5∑
i=1

Ti. (3.3)

Next, we will bound the various terms Ti, i = 1, . . . , 5. Using Lemma 1 we have

T1 = (Π0,h
k−1f − f, ψ −Π0,h

0 ψ) ≤ Chr−1∥f∥r−2∥∇ψ∥.

Nextly, we easily obtain

T2 ≤ C(∥u− uπ∥1 + ∥u− uI∥1)∥∇ψ∥ ≤ Chr−1∥u∥r∥∇ψ∥.

Using the fact that K(u) is Lipsitchz continuous and the stability of Π0,H
k in

L2 norm leads to

T3 ≤ C(∥u−Π0,H
k u∥+ ∥u− uH∥)∥∇u∥L∞∥∇ψ∥ ≤ CHr∥∇ψ∥.

Also, using the fact that K(u) is bounded along with Theorem 3.2, we obtain

T4 ≤ C∥u− uπ∥1∥∇ψ∥ ≤ Chr−1∥u∥r∥∇ψ∥.

Finally, we can rearrange the last term as follows

∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇uπ · (∇ψ −Π0,h

k−1,E∇ψ)dx

=
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇(uπ − u) · (I −Π0,h

k−1,E)∇ψdx

+
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇u · (I −Π0,h

k−1,E)∇ψdx

=
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇(uπ − u) · (I −Π0,h

k−1,E)∇ψdx

+
∑
E∈Th

∫
E

(K((Π0,H
k uH)|E)−K(u))∇u · (I −Π0,h

k−1,E)∇ψdx

+
∑
E∈Th

∫
E

(K(u)∇u) · (I −Π0,h
k−1,E)∇ψdx

Math. Model. Anal., 29(1):77–89, 2024.
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=
∑
E∈Th

∫
E

K((Π0,H
k uH)|E)∇(uπ − u) · (I −Π0,h

k−1,E)∇ψdx

+
∑
E∈Th

∫
E

(K((Π0,H
k uH)|E)−K(u))∇u · (I −Π0,h

k−1,E)∇ψdx

+
∑
E∈Th

∫
E

(I −Π0,h
k−1,E)(K(u)∇u) · ∇ψdx := S1 + S2 + S3.

In view of the stability of Π0,h
k−1 and the boundedness of K(u) we deduce

S1 ≤ C∥∇(uπ − u)∥∥∇ψ∥ ≤ Chr−1∥u∥r∥∇ψ∥.

By the fact that K(u) is Lipsitchz continuous and the stability of Π0,H
k we have

S2 ≤ C(∥u−Π0,H
k u∥+ ∥u− uH∥)∥∇u∥L∞∥∇ψ∥ ≤ CHr∥u∥r∥∇ψ∥.

For S3 we have

S3 ≤ C∥(I −Π0,h
k−1)(K(u)∇u)∥)∥∇ψ∥ ≤ Chr−1∥u∥r∥∇ψ∥.

Collecting above estimates yields

T5 ≤ C(hr−1 +Hr)∥∇ψ∥.

Inserting the estimates of T1 ∽ T5 into (3.3) leads to the following result

∥Uh − uI∥1 ≤ Chr−1 + CHr.

Then we obtain

∥u− Uh∥1 ≤ ∥u− uI∥1 + ∥uI − Uh∥1 ≤ Chr−1 + CHr.

⊓⊔

4 Numerical experiments

In this section, we will verify the theoretical analysis by numerical experiment
using the two-grid algorithm. Numerical experiment is carried out on an Intel
Xeon-6138 CPU. The square mesh, lloyd mesh (see [14]) and non-convex poly-
gon mesh are used, which are shown in Figure 1, respectively. Since the basis
functions are unknown inside the elements, the H1 errors are computing using
the local projector Π0

k by the following way:

H1 norm error: eh,1 =

√ ∑
E∈Th

|u−Π0
kUh|2H1(E),

where u is the exact solution and Uh is the numerical solution. In the first
step of two-grid algorithm, the fixed-point iterative method is employed to
solve quasilinear discretization equation. The finer mesh is generated by the
software PolyMesher( [14]).
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Figure 1. Three meshes:(a) square, (b) lloyd, (c) non-convex.

Example 1. Consider the following test problem on the unit square Ω = [0, 1]×
[0, 1] proposed by [3] with the exact solution

u(x, y) = sin(3πx)sin(3πy), K(u) = 1 + 1/(1 + u2).

The source function f is determined by u and K(u). We report the numer-
ical results of two-grid algorithm with k = 1 on different meshes. Moreover,
Theorem 3.1 suggests that the optimal rate of convergence in the two-grid
method can be achieved by employing H = O(

√
h). Therefore, in the numer-

ical experiments we set H = O(
√
h). The calculation formula of convergence

order is as follows:

Rate = log(ehi,1/ehj ,1)/log(hi/hj),

where ehi
, ehj

represent the errors on the same type of grid with maximum
diameter hi, hj respectively.

10
-2

10
-1

10
0

mesh size parameter

10
-3

10
-2

10
-1

10
0

10
1

10
2

re
la

ti
v
e

 H
1
 e

rr
o

r 
b

e
tw

e
e

n
 u

 a
n

d
 U

h

Square

Lloyd

Nonconvex

Slope is 1

Figure 2. The convergence curves of eh,1 on three meshes.

The H1 error eh,1 and convergence order of some numerical results are
reported in Tables 1–3 for a set of combination of h and H on square, lloyd and
non-convex polygon meshes. The convergence curves of eh,1 on three meshes
are shown in Figure 2. We can observe that the convergence curves are parallel
to the line with slope 2. This implies that the two grid algorithm developed in
Section 3 have the optimal convergence rate for different meshes.

Math. Model. Anal., 29(1):77–89, 2024.
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Table 1. Error table for Example 1 on square meshes.

H h eh,1 RateH Rateh

0.1768 0.0221 5.0114e-1 \ \
0.1414 0.0141 3.2647e-1 2.0801 0.9602
0.1010 0.0072 1.6901e-1 1.9567 0.9783
0.0884 0.0055 1.2981e-1 1.9767 0.9884
0.0786 0.0044 1.0254e-1 2.0013 1.0006

Table 2. Error table for Example 1 on lloyd meshes.

H h eh,1 RateH Rateh

0.3548 0.0983 1.6721e0 \ \
0.1899 0.0249 4.6645e-1 2.0420 0.9292
0.1555 0.0169 3.0917e-1 2.0609 1.0703
0.0954 0.0067 1.2036e-1 1.9309 1.0119
0.0776 0.0042 7.8033e-2 2.1019 0.9190
0.0688 0.0033 6.1338e-2 2.0065 1.0021

Table 3. Error table for Example 1 on non-convex meshes.

H h eh,1 RateH Rateh

0.1822 0.0228 5.1466e-1 \ \
0.1458 0.0146 3.3951e-1 1.8642 0.9321
0.0911 0.0057 1.3813e-1 1.9134 0.9567
0.0810 0.0045 1.0971e-1 1.9557 0.9779
0.0729 0.0036 8.9380e-2 1.9453 0.9727

Table 4. Comparison between two-grid algorithm and fixed-point iterative method for
Example 1.

Mesh H h parameter Two-grid algor. Fixed-point iter.

square 0.1414 0.0141
eh,1 3.2647e-1 2.5649e-1
time 19.0560s 76.8149s

lloyd 0.1555 0.0169
eh,1 3.0917e-1 2.5405e-1
time 21.6075s 92.5125s

non-convex 0.1458 0.0146
eh,1 3.3951e-1 2.6454e-1
time 23.1257s 110.6263s

In Tables 4–5, we report the comparison results of the two-grid algorithm
and fixed-point iterative method for solving the above quasilinear problems on
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Table 5. Comparison between two-grid algorithm and fixed-point iterative method for
Example 1.

Mesh H h parameter Two-grid algor. Fixed-point iter.

square 0.1010 0.0072
eh,1 1.6901e-1 1.3083e-1
time 72.3592s 316.6477 s

lloyd 0.1047 0.0079
eh,1 1.5601e-1 1.2707e-1
time 99.4753s 428.3219s

non-convex 0.1041 0.0074
eh,1 1.7887e-1 1.3489e-1
time 83.4171s 381.8415s

Table 6. Error table for Example 1 on square meshes with k = 2.

H h eh,1 RateH Rateh

0.4714 0.3536 2.9375e0 \ \
0.2828 0.1571 6.6891e-1 2.8967 1.8247
0.2357 0.1179 3.7815e-1 3.1282 1.9825
0.1767 0.0744 1.5209e-1 3.1661 1.9821
0.1285 0.0456 5.7421e-2 3.0587 1.9897

Table 7. Error table for Example 1 on lloyd meshes with k = 2.

H h eh,1 RateH Rateh

0.3970 0.2507 1.2534e-0 \ \
0.2987 0.1647 5.5831e-1 2.8409 1.9259
0.2159 0.0990 2.0803e-1 3.0445 1.9382
0.1503 0.0586 6.5421e-2 3.1962 2.1075
0.1387 0.0517 5.1083e-2 3.0587 1.9901

different meshes. Two-grid algorithm is performed on a set of combination
of h and H as shown in Tables 4–5, and the fixed-point iteration method is
performed with mesh size h. From the data, we find that the H1 errors of
them are almost the same, but the time of the two-grid algorithm is much less
than that of the fixed-point iterative method. Therefore, it can be seen that
the two-grid algorithm can save a lot of computing time while maintaining the
accuracy.

We also carry out numerical experiment on the virtual element space with
k = 2 for square and lloyd polygon meshes. The errors and convergence rates
are presented in Tables 6–7. The Theorem 1 suggests that optimal rate of
convergence in the two-grid method using quadratic virtual element space (k =
2) can be achieved by employingH = O(h2/3). From Tables 6–7 we can observe
that the convergence rates are optimal.

Math. Model. Anal., 29(1):77–89, 2024.
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